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Abstract: Recent reports have pointed to the link between persistent inflammation, oxidative
stress, and carcinogenesis; however most of the studies concerning the role of viruses in head
and neck cancer (HNC) are focused mainly on one type of virus. Our present study aimed to
study the relationship between Epstein–Barr virus/human papilloma virus (EBV/HPV) coinfection
and glutathione peroxidase (GPx) and superoxide dismutase (SOD) level in oropharyngeal cancer.
Fresh-frozen tumor tissue samples were collected from 128 patients with oropharyngeal cancer
infected with EBV or HPV or with EBV/HPV coinfection. After DNA extraction, EBV and HPV DNA
was detected using a polymerase chain reaction (PCR) assay. GPx and SOD activity was determined in
homogenates of cancer tissue using diagnostic kits produced by Randox Laboratories. Both GPx and
SOD activity was statistically lower in patients with EBV/HPV coinfection than in a single EBV or HPV
infection. Analysis of GPx and SOD activity in relation to histological grading and tumor, node (TN)
classification revealed that in poorly-differentiated tumors, the level of antioxidant enzymes was
lower compared with well-differentiated lesions and in cases with greater tumor dimensions and
lymph-node involvement, both GPx and SOD activity was decreased. Further studies are necessary to
clarify the influence of interplay between EBV, HPV, and oxidative stress on malignant transformation
of upper aerodigestive tract epithelial cells.
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1. Introduction

Oncogenic virus-induced cancers are an important global concern nowadays. According to various
reports, although all human cancers are non-communicable diseases, infections may contribute to about
13–20 % of global human cancer burden, and it is estimated that about 35 % of all infection-associated
malignancies are attributable to human papilloma virus (HPV) and Epstein–Barr virus (EBV) [1–4].
EBV and HPV infections are associated with different cancers, including gastric, cervical, and breast
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carcinoma, as well as head and neck cancer (HNC) [5]. As some studies revealed, EBV and HPV
coinfection plays an important role in the malignant transformation of epithelial cells [6,7].

EBV establishes a latent infection, reactivated periodically into the lytic cycle, which plays an
important role in the pathogenesis of tumors related to EBV [8]. During latent infection, several specific
viral proteins, such as Epstein–Barr nuclear antigen 1 (EBNA1), Epstein–Barr virus-encoded RNA 1
and 2 (EBER1 and EBER2), and BamHI-A rightward transcripts (BART) as well as latent membrane
protein 1 and 2 (LMP1, LMP2) are expressed [9]. LMP1 is regarded as the most important oncoprotein
encoded by EBV, which can trigger multiple signaling cascades, such as nuclear factor-kappa B (NF-κB),
MAPK, JNK/AP1, PI3K, and as a result it may generate various cancer hallmarks. EBNA1 expressed in
all types of EBV latency is the only protein expressed in all EBV-positive tumors and sometimes the
only protein expressed. It is responsible for maintaining the EBV genome in latently infected cells,
but it can also contribute to cell immortalization and malignant transformation via interferences with
tumor suppressors, induction of DNA damage, and altering of signaling pathways [10].

HPV oncogenic potential is connected with E6 and E7 oncoprotein expression, whereas the
oncogenic properties of EBV are attributed to the expression of latent genes, including LMP1 and
LMP2 [6,11]. HPV E6 protein inactivates tumor suppressor p53-mediated DNA damage and the
apoptosis pathway, while HPV E7 protein inactivates the tumor suppressor pRb-mediated cell cycle
regulation pathway [12].

Oxidative stress is defined as the imbalance between the production of reactive oxygen species
(ROS) and antioxidant defense, which can lead to damage of various cell components and influence
cellular processes, such as proliferation or apoptosis, involved in the development of cancer [13].
ROS act as second messengers in many intracellular signaling pathways responsible for maintaining
homeostasis of the cell with its immediate environment. Moreover, ROS take part in various
cellular functions, such as intracellular signal transduction, proliferation, cell apoptosis, regulation
of gene expression, and participate in the process of protein phosphorylation. They may also induce
transcription factors (e.g., NF-KB), which causes disorders in the normal functioning of cells involved
in the development of cancer [13,14].

The most important defense against oxidative damage is antioxidants. The main enzymes with
antioxidant activity are glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT).
Superoxide dismutase is the most important antioxidant enzyme in aerobic cells, responsible for the
elimination of superoxide radicals. SOD catalyzes the dismutation of hydrogen peroxide and molecular
oxygen. Glutathione peroxidase (GPx) in cells is the main hydrogen peroxide-scavenging enzyme
which converts this molecule to water. SOD and GPx can directly counterbalance the oxidant attack
and protect the cells against DNA damage [14].

Numerous studies have shown that both EBV and HPV infection are associated with the production
of reactive oxygen species (ROS) and may activate signaling pathways mediated by oxidative stress,
thus influencing migration of inflammatory cells and leading to mutations and tissue damage [15–17].

Recent reports pointed to the link between persistent inflammation, oxidative stress, and
carcinogenic processes [1,18–20]. Therefore, our present research focuses on the analysis between
coinfection and oxidative stress parameters in oropharyngeal cancer. The aim of the study was
the assessment of GPx and SOD activity in patients with oropharyngeal carcinoma with EBV/HPV
coinfection in comparison to oropharyngeal cancer patients with a single HPV or EBV infection.

2. Materials and Methods

2.1. Patients

The present study involved 128 patients with a diagnosed and histopathologically confirmed
oropharyngeal squamous cell carcinoma (SCC), who were also infected with EBV or HPV,
or coinfected with both EBV and HPV. In this group, 54 patients were EBV(+), 44 patients were
HPV(+), and 30 patients were coinfected with EBV and HPV. The patients were hospitalized at the
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Otolaryngology Division of the Masovian Specialist Hospital in Radom, Poland. The patients had
not received radiotherapy or chemotherapy before. Clinical and epidemiological characteristics of
the patients are presented in Table 1. The study groups did not differ in terms of epidemiological and
clinical features.

Table 1. Epidemiological and clinical characteristics of oropharyngeal cancer patients with human
papilloma virus/Epstein–Barr virus (HPV/EBV) coinfection or with EBV(+) or HPV(+) single infection.

EBV + HPV
n = 30

EBV(+)
n = 54

HPV(+)
n = 44

n % n % N %

Sex
female 3 10.0 6 11.1 5 11.4
male 27 90.0 48 88.9 39 88.6

p 0.9817

Age
<50 5 16.7 9 16.7 7 15.9

50–69 18 60.0 34 63.0 28 63.6
≥70 7 23.3 11 20.3 9 20.4

p 0.9975

Place of residence
Urban 24 80.0 43 79.6 34 77.3
Rural 6 20.0 11 20.4 10 22.7

p 0.9469

Smoking Yes 23 76.7 41 75.9 33 75.0
No 7 23.3 13 24.1 11 25.0

p 0.9861

Alcohol abuse
Yes 27 90.0 49 90.7 40 90.9
No 3 10.0 5 9.3 4 9.1

p 0.9906

Histological grading G1-G2 13 43.3 23 42.6 19 43.2
G3 17 56.7 31 57.4 25 56.8

p 0.9972

T stage T1-T2 22 73.3 39 72.2 32 72.7
T3-T4 8 26.7 15 27.8 12 27.3

p 0.9939

N stage N1-N2 23 76.7 41 75.9 33 75.0
N3-N4 7 23.3 13 24.1 11 25.0

p 0.9860

M M0 30 100.0 54 100.0 44 100.0

Pearson’s Chi-square test

The tissue samples were collected from all patients during surgery and frozen at −80 ◦C until
analysis. Tumor, node, metastasis (TNM) classification was determined during primary diagnosis
according to the criteria of the Union for International Cancer Control (UICC) [21]. Histological grading
was performed according to World Health Organization criteria, which divide tumors into three types:
well differentiated (G1), moderately differentiated (G2), and poorly differentiated (G3) [22].

The research was approved by the Medical University of Lublin Ethics Committee and was in
accordance with good clinical practice (GCP) regulations (No. KE-0254/135/2017, 25.05.2017).

2.2. DNA Extraction from Fresh Frozen Tumor Tissue

Fragments of the fresh frozen tumor tissue (20 mg) collected from the patients with oral squamous
cell carcinoma (OSCC) were cut and homogenized in a manual homogenizer Omni TH/Omni
International/Kennesewa/Georgia/USA. DNA was extracted using a protocol as described in the
DNeasy Tissue Kit Handbook (QiagenGmBH, Hilden, Germany). Purified DNA was quantified by



Viruses 2020, 12, 1008 4 of 10

spectrophotometry (Epoch Microplate Spectrophotometer, BioTek Instruments Inc., Vinooski, Vermont,
USA). Isolated DNA was kept at −20 ◦C until the test was conducted. To verify the quality of the
obtained DNA (presence of inhibitors of Polymerase Chain Reaction), a β-globin assay was performed.

2.3. Detection of EBV DNA

EBV DNA detection: All PCR reactions were carried out in the final volume of 25 µL using
HotStartTaq DNA Polymerase (Qiagen, Hilden, Germany). Concentrations of PCR reaction components
were prepared as follows: 2.0 mM MgCl2, 0.2 mMdNTPs, 0.5 µM of each forward and reverse
primers and 0.5 U of HotStartTaq polymerase. During each run, the samples were tested together
with one negative (nuclease-free water) and one positive control (EBV-positive cell line, Namalwa,
ATCC-CRL-1432).

2.4. HPV Detection and Genotyping

It was performed using the INNO-LiPA HPV Genotyping Extra assay (Innogenetics, Gent,
Belgium). The kit is based on the amplification of a 65 bp fragment from the L1 region of the HPV
genome with SPF10 primer set. PCR products are subsequently typed with the reverse hybridization
assay. This kit identifies 28 HPV genotypes: HPV 6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 43, 44, 45, 52, 52, 53,
54, 56, 58, 59, 66, 68, 69, 70,71, 73, 74, and 82.

2.5. Oxidant Parameters

The tissue samples were rinsed with 0.9 % NaCl and stored at −80 ◦C until the analysis. Tissue
homogenates (10 % w/v) were prepared in 0.1 mol. l–1Tris-HCl buffer, pH = 7.4 using a laboratory
MPW-120 homogenizer, and supernatants were obtained by centrifugation at 5000× g for 30 min.

The following oxidant parameters were determined in homogenates of cancer tissue: activities of
superoxide dismutase (SOD) and glutathione peroxidase (GPx).

SOD activity was determined using diagnostic kit RANSOD produced by RANDOX (Randox
Laboratories Ltd., Crumlin, County Antrim, UK) according to Arthur and Boyne [23] and expressed in
U of SOD/10 mg of protein.

GPx activity was determined using diagnostic kit RANSEL produced by RANDOX (Randox
Laboratories Ltd., Crumlin, County Antrim, UK) according to Paglia and Valentine [24] and expressed
in U of GPx/mg of protein. Protein was measured using the Bradford method [25]. The assays were
performed with the use of spectrophotometer SPECORD M40 (Carl Zeiss, Jena, Germany).

2.6. Statistical Analysis

Descriptive statistics were used to present patient baseline characteristics. Means and standard
deviations (SD) were calculated. For variables with non-normal distribution, the Mann–Whitney U-test
and Kruskal–Wallis test were used. Pearson’s chi-square test was used to investigate the relationship
between clinical and demographical parameters. Statistical significance was defined as p < 0.05.

3. Results

Both GPx and SOD values were the highest in HPV(+) patients, lower in EBV(+), and the lowest in
EBV/HPV coinfection (GPx level in HPV(+) = 4.99 U/mg of protein, in EBV(+) = 4.47 U/mg of protein,
in EBV/HPV coinfection = 3.75 U/mg of protein; SOD level in HPV(+) = 11.49 U/100 mg of protein, in
EBV(+) = 11.06 U/100 mg of protein, in EBV/HPV coinfection = 9.77 U/100 mg of protein). There was
no significant difference in the activity of GPx and SOD in patients infected with only EBV or HPV.
However, the activity of both antioxidant enzymes in oropharyngeal cancer tissue in patients with
EBV/HPV coinfection was statistically lower than in a single EBV or HPV infection (Table 2).



Viruses 2020, 12, 1008 5 of 10

Table 2. Activity of glutathione peroxidase (GPx) (U/mg of protein) and superoxide dismutase
(SOD) (U/100 mg of protein) in tissue of EBV(+), HPV(+) and EBV/HPV coinfected patients with
oropharyngeal cancer.

n GPx Kruskal–Wallis Test
M SD Min Max Me H p

EBV+ 54 4.47 2.11 2.05 9.55 4.73
8.169148 0.0168 *HPV+ 44 4.99 1.89 2.37 9.55 4.91

EBV+/HPV+ 30 3.75 2.09 1.22 9.55 3.32

n SOD Kruskal–Wallis Test
M SD Min Max Me H p

EBV+ 54 11.06 1.59 9.11 13.91 10.83
13.37263 0.0012 *HPV+ 44 11.49 1.44 9.25 13.91 11.97

EBV+/HPV+ 30 9.77 2.24 5.22 12.44 9.81

* statistically significant.

Comparison between GPx and SOD activity and histological grading as well as TN classification
was also carried out (Table 3). In poorly-differentiated tumors (G3), the activity of GPx and SOD
was lower compared with well and moderately-differentiated lesions (G1-G2). Similar relationships
were stated between tumor dimensions, lymph-node involvement, and the values of oxidative stress
parameters. In cases with greater tumor dimensions (T3-T4) and lymph-node involvement (N3-N4),
the level of antioxidant enzymes was lowered. Therefore, all analyzed parameters had the lowest values
in EBV/HPV coinfected patients with poorly-differentiated tumors (G3) and in stages T3-T4, N3-N4.

Table 3. Comparison between tissue activity of GPx (U/mg of protein) and SOD (U/100 mg of protein)
and G,T,N in EBV/HPV coinfection, EBV(+) and HPV(+) patients with oropharyngeal cancer.

EBV + HPV EBV HPV
GPx SOD GPx SOD GPx SOD

G1-G2 5.74 ± 1.50 11.88 ± 0.55 6.33 ± 1.51 12.66 ± 0.57 6.58 ± 1.55 12.83 ± 0.42
G3 2.23 ± 0.76 8.15 ± 1.58 3.10 ± 1.26 9.87 ± 0.90 3.77 ± 1.03 10.47 ± 1.04

p value <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 *

T1-T2 4.54 ± 1.88 10.87 ± 1.35 5.34 ± 1.85 11.77 ± 1.29 5.79 ± 1.58 12.19 ± 0.99
T3-T4 1.58 ± 0.32 6.76 ± 1.09 2.22 ± 0.21 9.21 ± 0.12 2.85 ± 0.31 9.62 ± 0.28

p value <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 *

N1-N2 4.43 ± 1.91 10.77 ± 1.39 5.21 ± 1.90 11.65 ± 1.35 5.71 ± 1.62 12.13 ± 1.05
N3-N4 1.52 ± 0.30 6.47 ± 0.80 2.16 ± 0.12 9.17 ± 0.07 2.82 ± 0.30 9.59 ± 0.27
p value <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 *

* statistically significant, Mann–Whitney U Test.

4. Discussion

Coinfection with two or more oncogenic viruses may induce neoplastic transformation [6,7,26,27].
It is interesting that some malignant lesions develop in a minority of chronically infected persons,
usually after many years of persistent infection [1,4,28]. However, most of the studies concerning the
role of viruses in HNC development are focused mainly on one type of virus, and only few recent
reports analyze the possible relationship and interplay between two different viruses [6,7].

Our previous studies revealed that HPV/EBV coinfection was found in 37.8% of patients with
oropharyngeal cancer. Comparison of a single EBV infection and a coinfection, regarding different
clinical and pathological features of the lesion, showed a significant relationship between histological
grading and presence of EBV/HPV coinfection. In the group with EBV/HPV coinfection, the prevalence
of poorly-differentiated tumors (G3) was over four-fold more frequent than in the group with EBV
infection alone. [29]. In the next study, decreased activity of antioxidant enzymes (GPx and SOD) in
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oropharyngeal cancer tissue, particularly in EBV-positive patients was stated. Significantly lower GPx
and SOD values were found in patients with reactivation of EBV infection [30].

Jalouli et al. [26] reported occurrence of EBV/HPV coinfection in 15–30 % of patients with oral
squamous cell carcinoma in industrialized countries and in 6–65 % of OSCC patients in developing
countries. In another study carried out in Japan, HPV/EBV coinfection was found in 1% of patients
with HNC and in 10 % of patients with nasopharyngeal carcinoma (NPC) [31]. The coinfection with
EBV and HPV in HNC is the most often found in NPC—it is more common in Asian than Caucasian
populations and is most frequently reported in patients from endemic regions such as China, Iran,
and Morocco [32–34]. Oropharyngeal tumors were also hypothesized to be associated with both
HPV and EBV, since coinfected cells might have a higher tumorigenic potential than normal cells [27].
However, it is not clear which infection, HPV or EBV, is the first one [35].

Some researchers suggest that coinfections with high-risk HPV and EBV are important factors in
initiation of carcinogenesis in human oral epithelial cells [6]. Both HPV and EBV have tropism for
epithelial cells as they infect and replicate in the epithelium of the upper respiratory system and upper
digestive tract. Several studies documented that oncoproteins of both viruses (LMP-1, LMP-2, E6 and
E7) can cooperate and may induce oral epithelial cell transformation [6,11]. Guidry and Scott [28]
suggested that HPV/EBV coinfection increases EBV persistence, either through latency or enhanced
viral replication and by extending expression of HPV oncogenes. Makielski et al. [7] found that HPV18
promotes lytic reactivation of EBV in differentiating epithelial cells. The authors indicated that infection
with HPV in the oral cavity may increase the capacity of epithelial cells to support the EBV life cycle,
which could in turn contribute to pathogenesis mediated by EBV. Moreover, they stated that E6 and E7
HPV oncogenes are necessary and sufficient to promote EBV lytic reactivation mediated by HPV in the
oral epithelial cells. However, the mechanism in which E6 and E7 cause EBV lytic reactivation remains
to be elucidated. There is no experimental evidence that both viruses actually co-exist in the same cell,
but coinfection may contribute to HNC in several ways. The authors reported that HPV stabilizes EBV
in epithelial cells in the oral cavity, and that increased EBV persistence contributes to the likelihood of
malignant transformation in this tissue. HPV, due to promotion of EBV lytic cycle, may increase viral
yield, which can induce proliferation of neighboring cells [7].

It has been suggested that malignancies directly connected with several oncogenic viruses may be
a result of prolonged latency following a chronic infection [11]. The mechanisms of the infection are
complex and not fully understood. It is only in rare cases that infected individuals develop invasive
cancer, therefore, it was stated that pathogenic infections are necessary but not sufficient for cancer
initiation or progression [1,5,11,19,28]. It was documented that in chronic inflammation, epithelial
and inflammatory cells generate ROS and reactive nitric species (RNS), and release growth factors
and cytokines, which may cause DNA damage and alterations in critical pathways leading to cancer
development or progression [36].

As several studies revealed, both EBV and HPV can act via ROS-based mechanisms. Long-term
expression of the EBNA1 causes increased ROS and a nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase level [13,37]. According to some researchers, ROS formation may be induced by
LMP1 [15]. Exposure of HPV16-infected cells to ROS results in an increased level of E6 and E7 as well
as increased DNA damage [38,39].

Decreased antioxidant defense with increased oxidative stress was reported in patients with oral
cavity cancer [40]. According to some reports, a lowered level of antioxidant enzymes may be crucial
in lesion progression and can lead to the development of oxidative stress [41,42]. Our present study
revealed significantly decreased GPx and SOD activity in patients with oropharyngeal cancer with
HPV/EBV coinfection in relation to a single viral infection. No study comparing the level of oxidative
stress parameters in patients with HNC coinfected with various viruses is available; therefore, we
cannot relate our outcomes to the results obtained by other researchers. However, interesting research
involving oxidative stress and infectious agents was carried out on a human cell model by Marullo et
al. [18]. The authors revealed that oxidative stress plays a key role in promoting genomic instability in
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HPV(+) HNC cells. Moreover, they observed a state of chronic oxidative stress in HPV(+) HNC cells
and reported that expression of HPV oncoproteins E6 and E7 is sufficient to induce ROS generation via
NOX2 which led to oxidative DNA damage.

Studies concerning oxidative stress and EBV documented that oxidative agents causing damage
to DNA induce the expression of EBV lytic genes. Carcinogens and EBV lytic infection synergistically
increase oxidative stress, which is an integral link between environmental factors and EBV-associated
cancers [43].

As some studies revealed, decreased antioxidant enzyme activity may also be connected with
an advanced stage of malignant lesion and with the lowering level of histological differentiation of
HNC tumor [42,44]. Srivastava et al. [45] documented lower values of, e.g., SOD and GPx in oral
cancer patients with stage II, III, and IV according to TNM classification. Our outcomes are consistent
with these findings as with advanced tumor dimensions and lymph-node involvement, the values of
oxidative stress parameters were decreased. We have also noted that in poorly-differentiated tumors,
GPx and SOD activity was decreased compared with well-differentiated lesions. In another study
available in the literature performed in HNC patients, poorly and moderately-differentiated tumors
were identified more frequently with lower total antioxidant status (TAS). The authors also found
increased damage of DNA in cancer patients and supposed that it may be connected with insufficient
antioxidant capacity and excessive ROS generation which contributes to the pathogenesis of cancer in
HNC patients [42].

A relationship was also reported between EBV and poor differentiation of the tumor tissue in
OSCC [46]. In experiments carried out by other researchers, EBV infection was found to delay epithelial
differentiation and increase the invasiveness of epithelial cells expressing HPV E6 and E7 oncogenes.
As delayed differentiation and enhanced invasiveness were still stated in epithelial cells after EBV loss,
it was suggested that EBV infection may lead to epigenetic reprogramming [47].

Our study is the first original observation that implicates HPV and EBV coinfection with selected
parameters of oxidative stress in pharyngeal cancer in the Polish population. A limitation of our research
is, however, the small size of the group with coinfection, which makes statistical data comparing the
relationship between viral coinfection and histological grading or TN classification insufficiently strong.
HPV and EBV are the most commonly transmitted human viruses, but the prevalence of EBV and HPV
infection is much more frequent than the incidence of malignant lesions connected with these infections.
Finding factors or processes which lead to malignant transformation may be helpful in predicting
which individuals exposed to these ubiquitous viruses may develop malignant tumors. Moreover,
biological markers associated with viral infections and/or oxidative stress might be useful in diagnosis
and treatment of cancer connected with oncogenic viruses, e.g., the treatment of EBV-positive tumors
may include the use of targeted inhibitors of signaling cascades. Similarly, disorders in antioxidant
enzyme status may be considered a possible biomarker and therapeutic target in cancer treatment
strategy. Therefore, further studies are necessary to elucidate the influence of viral interplay, including
EBV lytic reactivation induced by HPV and/or oxidative stress on malignant transformation.

5. Conclusions

The present study revealed significantly decreased level of GPx and SOD activity in oropharyngeal
cancer tissue with EBV/HPV coinfection compared with a single infection with EBV or HPV.
In poorly-differentiated tumors, GPx and SOD activity was decreased compared with well-differentiated
lesions. In cases with greater tumor dimensions (T3-T4) and lymph-node involvement (N3-N4), the level
of antioxidant enzymes was lowered. Biological markers associated with viral infection and/or oxidative
stress might be useful in diagnosis and treatment of cancer connected with oncogenic viruses.
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