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Simple Summary: Pregnancy is a period of increased metabolic processes, which can lead to the
formation of oxidative stress. The objective of the study was to investigate the influence of the
altered metabolic state on the effectiveness of the antioxidant profile of plasma and saliva during
the pregnancy of cows. In addition, we aimed to compare these biological fluids concerning their
usefulness as possible markers of the physiological course of pregnancy. The results showed dynamic
changes depending on the period of pregnancy course and revealed that the increase in oxidative
intensity induced an appropriate answer of the organism. However, taking into account examined
antioxidant/oxidative parameters, saliva reflects the content of plasma only in part, due to the local
metabolism of the salivary gland. Therefore, further studies are necessary to establish physiological
ranges of antioxidative/oxidative profiles of body fluids in cows.

Abstract: Increased metabolism that occurs during pregnancy can result in oxidative stress which
is harmful to cells and, consequently, for the proper functioning of the whole organism. Plasma
and recently also saliva are important resources for evaluating physiological and pathological
conditions in animals. The study aimed to investigate the influence of the metabolic state on
the effectiveness of the antioxidant profile of plasma and saliva during the pregnancy of cows.
Seventy-six healthy pregnant and twelve non-pregnant control cows were included in the study.
Blood and saliva samples were collected each month of the pregnancy course. Examined body
fluids were used to evaluate both the total antioxidant capacity (TAC) and the oxidative parameters
related to protein and lipid peroxidative processes. TAC, the content of hydroperoxides, and SH
groups were determined spectrophotometrically while formylokinurenine and bityrosine contents
were measured spectrofluorimetrically. The results showed dynamic changes depending on the
period of pregnancy course. The highest antioxidant activity in plasma was mostly noted in early
pregnancy and advanced pregnant cows. All tested parameters except SH groups expressed higher
values in saliva compared to plasma. Obtained results reveal that the increase in oxidative intensity
induced appropriate answers of cells reflected in the increase in antioxidative activity of the organism.
Moreover, some examined parameters can indicate the intensity of oxidative stress and therefore
could be used in a panel of markers of the physiological course of pregnancy. However, with regards
to antioxidant/oxidative parameters, saliva reflects the content of plasma only in part, due to the local
metabolism of the salivary gland. Further studies are necessary to establish physiological ranges of
antioxidative/oxidative profiles in cows and to define the usefulness of saliva as biological material
in oxidative stress diagnostics.

Keywords: oxidative stress; free radicals; antioxidants; pregnancy; cows

1. Introduction

Reactive oxygen species (ROS) are intermediates that are formed during metabolic
changes. They are constantly produced in the body and in small quantities are involved
in the regulation of some physiological processes [1]. The well-known ROS that are
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generated as by-products of metabolism by biological systems are superoxide radicals
(O2•−), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and singlet oxygen (1O2) [2].
ROS are mainly produced by mitochondria, both under physiological and pathological
states. O2 may be produced by cellular respiration, lipoxygenase, and cyclooxygenase in
the metabolism of arachidonic acid, endothelial cells, and inflammatory cells [3].

The balance between ROS formation and neutralization is controlled by the antioxi-
dant systems of the body [4]. In a state of physiological equilibrium, the body has sufficient
reserves of antioxidants necessary to neutralize free radicals. Enzymatic and non-enzymatic
defense mechanisms neutralize ROS through various biochemical reactions [4,5]. Cells
use an antioxidant defense system primarily based on enzyme components such as su-
peroxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) to protect
against ROS-induced cellular damage [6]. Moreover, non-enzymatic scavengers are also
important—glutathione, retinoids, carotenoids, ascorbic acid, vitamin E—as well as estro-
gens. Additionally, other equally significant molecules in the total antioxidative capacity
of blood plasma are proteins. Albumins that are considered to be the major circulating
non-enzymatic antioxidants prevent the production of free radicals by binding free metal
ions [7].

An imbalance between redox processes causes excess ROS to lead to peroxidative
damage to macromolecules not only in the cell but also in the cell membrane. This condition
is known as oxidative stress [4,8]. As a consequence, the metabolic pathways are altered
and the products of peroxidation have harmful effects even beyond the site of damage.
This can happen when the organism is exposed to exogenous oxidizing agents or as a
result of an insufficient antioxidant system that cannot effectively remove excess ROS or by
breaking chain reactions [8,9]. Oxidative damage and ROS have been suggested to play
a role in the initiation or development of many disorders and pathological conditions in
livestock farms such as sepsis, enteritis, pneumonia, and arthritis, as well as reproductive
disorders including udder edema, retention of fetal membranes, and mastitis [10].

During periods of increased metabolic activity such as pregnancy, there may be an
imbalance between the production and accumulation of ROS in cells and tissues, and the
ability of the biological system to detoxify these reactive products may occur [11,12]. The
pregnancy period is related to extensive changes in protein synthesis in the uterus where
the fetus is developed. These changes concern the remodeling of connective tissue and
its proteins [13,14]. Any peroxidative damage of both biologically active or structural
proteins may lead to pregnancy alterations and complications [15]. It is possible because
free amino acids and amino acid residues in proteins are highly susceptible to oxidation by
one or more reactive species. Protein oxidation processes lead to the modification of amino
acid residues, aggregation resulting from cross-linking, fragmentation, and an increase in
sensitivity of modified proteins to proteolysis [16,17].

There is evidence that during the periparturient period in cows the imbalance between
ROS production and inactivation occurs. Kankofer and colleagues [8] demonstrated the
presence of dynamic changes of the antioxidative/oxidative profiles during the peripar-
turient period in the plasma of cows with indications of oxidative stress during the final
two weeks of pregnancy. Similar changes associated with late pregnancy were observed by
Castillo and colleagues [18]. The profile of antioxidative/oxidative balance during whole
pregnancy is absent in the available literature.

Parameters of antioxidative and prooxidative profile can be detected in blood plasma
and also in saliva which is a biological fluid of special importance as it is collected in a
non-invasive way [19]. Whether saliva also reflects metabolic profile remains unclear due
to the dynamics and complexity of the saliva proteome [20].

The hypothesis was stated that pregnancy is a period of increased metabolic processes,
which can lead to the formation of oxidative stress. Moreover, the feasibility of using saliva
as diagnostic material as an alternative to blood to assess changes in antioxidant status and
oxidative stress parameters can be examined.
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This study aimed to investigate the impact of the altered metabolic state on the
effectiveness of the antioxidant profile to defend against ROS during pregnancy in the
plasma and saliva of cows. An additional aim was to compare these two biological fluids
with regard to their usefulness as possible markers of the physiological course of pregnancy.

2. Materials and Methods

Plasma and saliva were collected during routine veterinary procedures in accordance
with the principles of antiseptics from clinically healthy, sexually mature non-pregnant
(aged 2–8 years; n = 12), and pregnant Polish Holstein dairy cows (aged 2–8 years; n = 76,
1–9 months pregnant). The cows were from the same farm. The average milk yield was
9000 L per cow per year. All examined cows were sampled once.

From each animal, blood was collected at a similar time of day from the coccygeal vein
via puncture, into tubes with anticoagulant and centrifuged at 1500 rpm for 15 min at 4 ◦C.
Plasma samples were portioned and stored at −20 ◦C until they were used for analysis.

Saliva was collected at a similar time of day with sponges mounted in the space
between the teeth and cheeks. Materials were then centrifuged at 1500 rpm for 15 min at
4 ◦C, portioned, and frozen at −20 ◦C until they were tested.

2.1. Total Antioxidant Capacity

The concentration of total antioxidant capacity (TAC) was measured according to the
method of Benzie and Strain (1996) [21], based on the ferric reducing ability of plasma
(FRAP) with some modifications. The working reagent contained 300 mmol/L acetate
buffer (pH 3.6), 10 mmol/L 2,4,6 tri pyridyl striazine (TPTZ, Sigma, Poznań, Poland)
solution in 40 mmol/L HCl, and 20 mmol/L FeCl3 × 6H2O solution in distilled H2O,
mixed to the ratio of 10:1:1. The mixture was prepared immediately before use. The
working reagent (2250 µL) was mixed with 25 µL of sample and absorbance was measured
at 593 nm. The working reagent itself was used as a control. After 10 min of incubation at
room temperature, the absorbance was checked again. The difference in absorbance at 0
and at 10 min was compared with a standard curve prepared with 10 different dilutions of
Fe (II) between 0 and 1000 µmol/L. The results were expressed as µmol/g protein. Each
determination was performed in duplicate.

Changes in absorbance were directly related to the ‘total’ reducing capacity of the
electron-donating antioxidants that were present in the examined plasma and saliva.

2.2. The Content of Hydroperoxides

The content of hydroperoxides was measured according to the method of Alberti et al.
(2000) [22]. A volume of 20 µL blood plasma or saliva was diluted in 1 mL of 100 mmol/L
acetate buffer (pH 4.8) and 10 µL 3.7 × 10−1 M of an aqueous solution of N,N,diethyl para-
phenylenediamine (DEPPD) was added. After 90 min of incubation at 37 ◦C, absorbances
were read at 505 nm against acetate buffer alone. In the control sample, 20 µL of distilled
water was added instead of sample. The results were expressed as µmol/g protein. Each
determination was performed in duplicate.

2.3. The Content of Sulfhydryl Groups

The concentrations of sulfhydryl residues (SH) in plasma and saliva were measured
by spectrophotometry, as detailed by Rice Evans and colleagues (1991) [23]. A volume of
300 µL 10% (w/v) sodium dodecyl sulphate (SDS, Sigma, Poznań, Poland) in 10 mmol/L
sodium phosphate buffer (pH 8.0) was added to 300 µL of sample and mixed. A 2.4 mL
of 10 mmol/L sodium phosphate buffer (pH 8.0) was added. Then, 300 µL 20 mg of
5,5-dithiobis- 2-nitro benzoate (Sigma, Poznań, Poland) in 50 mL of buffer (DTNB) was
added and the absorbance was measured at 412 nm. The control sample contained 300 µL
of the same buffer. All samples were incubated for 1 h at 37 ◦C. After incubation, the
absorbance was measured again at 412 nm. The difference between absorbance before
and after incubation (after subtracting the respective absorbance of the control) pointed
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to the content of SH groups. The content was calculated using a standard curve prepared
with different dilutions of glutathione (GSH, Sigma, Poznań, Poland) ranging from 0 to
1 mmol/L in 10 mmol/L sodium phosphate buffer (pH 8.0) and was expressed in mmol/g
protein. Each determination was performed in duplicate.

2.4. The Content of Bityrosine Bridges

Bityrosine bridges were determined by a spectrofluorimetric method according to
Rice Evans and colleagues (1991) [23]. The diluted plasma and saliva samples were
excited by light at 325 nm and emission was measured at a wavelength of 410 mm. The
spectrofluorometer was standardized to 100 deflections with chinine sulphate (0.1 µg/ mL
in 0.1 mol/ H2SO4) at excitation (350 nm) and emission wavelength (445 nm). The results
were expressed as µg/mg protein. Each determination was performed in duplicate.

2.5. The Content of Formylokinurenine

Formylokinurenine was determined by a spectrofluorimetric method described by
Rice Evans and colleagues (1991) [23]. The diluted plasma and saliva samples were
excited by light at 360 nm and emission was measured at a 454 nm wavelength. The
spectrofluorimeter (Jasco, Tokyo, Japan) was standardized, as described above. The results
were expressed as µg/mg protein. Each determination was performed in duplicate.

2.6. Protein Content

The protein content of the plasma samples was measured by the biuret method, using
commercial assay kits (Cormay, Łomianki, Poland) based on the method reported by
Gornal and colleagues (1949) [24].

The protein content of the saliva samples was measured according to the Bradford
method [25] using commercial reagents (Bradford Reagent, Sigma, Poznań, Poland).

2.7. Statistical Analysis

Individual data in duplicate were subjected to normality test (Shapiro–Wilk test) [26]
and equal variance test (Levene’s test) [27]. Differences between groups were tested using
Kruskal–Wallis [28] and Mann–Whitney U [29] tests. A p-value of <0.05 was considered
statistically significant. The analysis was performed with STATISTICA Version 13.0 (Stat-
Soft, Poland, TIBCO Software Inc., Palo Alto, CA, USA). Data are expressed as the means
+/− standard deviation.

3. Results

Analysis of the TAC in plasma (Figure 1A) showed that, among the 9 months of
pregnancy, the highest values were observed in the first three months (3.94 ± 0.928 µmol/g,
2.91 ± 0.782 µmol/g, 3.12 ± 0.932 µmol/g, respectively). The control group reached the
value of 3.04 ± 0.337 µmol/g protein and was significantly (p < 0.05) lower compared to
the first month of pregnancy. In the next months of pregnancy (4th–7th), the values tended
to increase from 2.57 ± 0.393 µmol/g up to 2.90 ± 0.913 µmol/g. In the 9th month of
pregnancy, the value increased as compared to the 8th month and reached the value of
2.85 ± 0.962 µmol/g. The TAC value in the 1st month of pregnancy was the highest and
statistically significantly higher than other examined time points.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–1, C–4, C–5, C–8, 1– all of the other months of pregnancy, 2–8, 3–4, 3–8, 5–8, 6–8,
and 7–8.
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pregnancy. Data are expressed as the means +/− standard deviation.

The TAC values in saliva (Figure 1B) were significantly higher than those observed
in the plasma of all tested samples when calculated relative to the protein content of
each biological fluid. In the first three months, significantly lower values were detected
compared to the later period of pregnancy, unlike in the case of TAC in plasma. The highest
values in saliva were found in the 4th (525.73 ± 50.33 µmol/g), 7th (735.28 ± 91.77 µmol/g),
and 9th month (450.15 ± 97.51 µmol/g) which were significantly increased than in control
(p < 0.05). Non-pregnant cows are characterized by the lowest value of TAC as compared
to pregnant cows. An increase in antioxidant activity was observed in the 9th month
(450.15 ± 97.51 µmol/g), compared to 8th month (295.71 ± 79.06 µmol/g), as in the case
of plasma.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–all of the other months of pregnancy, 1–4, 1–5, 1–6, 1–7, 1–9, 2–4, 2–5, 2–6, 2–7,
2–9, 3–4, 3–5, 3–6, 3–7, 3–9, 4–5, 4–6, 4–7, 4–8, 5–6, 5–7, 5–9, 6–7, 6–9, 7–8, 7–9, and 8–9.

Analysis of the content of hydroperoxides in plasma (Figure 2A) showed that the high-
est values were observed in the 2nd and the 3rd month of pregnancy (0.028 ± 0.008 mmol/g
and 0.027 ± 0.008 mmol/g, respectively), which were significantly higher than in control
(p < 0.05). The control group reached the value of 0.021 ± 0.008 mmol/g protein. In the
6th and 7th months, the values decreased significantly (p < 0.05) as compared to the first
three months and reached the value of 0.014 ± 0.007 mmol/g and 0.014 ± 0.002 mmol/g,
respectively. From the 6th to 9th month of pregnancy, the values tended to increase from
0.014 ± 0.007 mmol/g to 0.023 ± 0.013 mmol/g.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–2, C–3, C–6, C–7, 1–4, 1–6, 1–7, 2–4, 2–6, 2–7, 3–4, 3–5, 3–6, 3–7, 3–8, 5–6, 5–7, 6–8,
6–9, 7–8, and 7–9.
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control group and examined months of pregnancy; a,b—different small letters above the bars mean significant differences
(p < 0.05) between 1st month and control group as well as examined months of pregnancy; A,B—different big letters above
the bars mean significant differences (p < 0.05) between 9th month and control as well as examined months of pregnancy.
Data are expressed as the means +/− standard deviation.

Detected contents of hydroperoxides in saliva (Figure 2B) were significantly higher
than in plasma, similar to in the case of TAC. Throughout the pregnancy, the significantly
(p < 0.05) lowest values were found in the first two months (0.160 ± 0.052 mmol/g and
0.150 ± 0.051 mmol/g, respectively). In the subsequent months, there was a significant
increase in the hydroperoxides content—from a value of 0.302 ± 0.145 mmol/g in the 3rd
month to 0.578 ± 0.110 mmol/g in the 5th month. Observed hydroperoxides content from
the 6th to the 8th month decreased and remained at a similar level of about ~0.3 mmol/g.
The value in the 9th month increased compared to the 8th month, reaching a value of
0.406 ± 0.109 mmol/g.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–3, C–4, C–5, C–6, C–7, C–8, C–9, 1–3, 1–4, 1–5, 1–6, 1–7, 1–8, 1–9, 2–3, 2–4, 2–5,
2–6, 2–7, 2–8, 2–9, 3–5, 4–6, 4–7, 4–8, 5–6, 5–7, 5–8, and 5–9.

The highest values of the concentration of SH groups in plasma (Figure 3A) were de-
tected in the first two months (4.61 ± 0.862 µmol/g and 4.37 ± 0.742 µmol/g, respectively)
and the last two months of pregnancy (4.46 ± 1.053 µmol/g and 4.04 ± 0.800 µmol/g,
respectively). Compared to these months, significantly (p < 0.05) lower values were found
in the period from the 3rd to the 7th month, where the values tender to fluctuate on the
level of about ~3.0 µmol/g.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–7, 1–3, 1–4, 1–5, 1–6, 1–7, 2–3, 2–4, 2–5, 2–7, 3–8, 3–9, 4–8, 4–9, 5–8, 5–9, 6–8, 7–8,
and 7–9.

The concentration of sulfhydryl groups in saliva (Figure 3B) slightly increased in the
4th–5th months compared to the period from the 1st to the 3rd month. Significantly higher
values (p < 0.05) were noted at the end of the pregnancy period, from the 7th to the 9th
month (2.480 ± 0.688 µmol/g, 2.123 ± 0.453 µmol/g, and 2.954 ± 0.729 µmol/g, respectively).
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Figure 3. (A) Concentration of sulfhydryl groups (SH) in plasma; (B) concentration of sulfhydryl groups (SH) in saliva.
C—control group, 1–9—months of pregnancy; 1,2—different numbers above the bars mean significant differences (p < 0.05)
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Statistically significant differences (p < 0.05) were detected between the following time
points: C–4, C–5, C–7, C–8, C–9, 1–5, 1–6, 1–7, 1–8, 1–9, 2–4, 2–5, 2–6, 2–7, 2–8, 2–9, 3–5, 3–7,
3–8, 3–9, 4–7, 4–9, 5–6, 5–7, 5–8, 5–9, 6–7, 6–8, 6–9, and 8–9.

The highest concentration of bityrosine bridges in the plasma (Figure 4A) was de-
tected in the 1st month of pregnancy (0.534 ± 0.087 µg/mg) which was significantly
higher than in control (p < 0.05). From the 2nd to the 7th month, values ranged between
0.334 ± 0.174 µg/mg and 0.427 ± 0.100 µg/mg. In the last two months of pregnancy
(8th–9th), there was an increase in the concentration of bityrosine bridges from the value of
0.248 ± 0.152 µg/mg in the 8th month to the value of 0.376 ± 0.173 µg/mg in the 9th month.
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Figure 4. (A) Bityrosine content in plasma; (B) bityrosine content in saliva. C—control group, 1–9—months of pregnancy;
1,2—different numbers above the bars mean significant differences (p < 0.05) between the control group and examined
months of pregnancy; a,b—different small letters above the bars mean significant differences (p < 0.05) between 1st month
and control group as well as examined months of pregnancy; A,B—different big letters above the bars mean significant
differences (p < 0.05) between 9th month and control as well as examined months of pregnancy. Data are expressed as the
means +/− standard deviation.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–1, C–4, C–8, 1–all of the other months of pregnancy, 2–4, 2–8, 5–8, 6–8, and 7–8.
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The concentrations of bityrosine bridges in saliva (Figure 4B) were significantly higher
than those detected in plasma. The highest values were found in the 1st and the 2nd month
(140.90 ± 31.39 µg/mg and 190.24 ± 54.35 µg/mg, respectively) and in the 7th month
(225.60 ± 32.68 µg/mg), which were significantly higher than in control (p < 0.05). Months
8th–9th remained at a similar value and did not differ significantly from each other.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–1, C–2, C–4, C–6, C–7, C–8, C–9, 1–2, 1–3, 1–5, 1–6, 1–7, 1–8, 1–9, 2–3, 2–4, 2–5,
2–6, 2–8, 2–9, 3–4, 3–6, 3–7, 3–9, 4–5, 4–7, 5–6, 5–7, 5–8, 5–9, 6–7, 7–8, and 7–9.

The highest concentration of formylokinurenine in plasma (Figure 5A) was detected
in the 1st and the 2nd month (0.166 ± 0.033 µg/mg and 0.150 ± 0.037 µg/mg, respec-
tively). In the next months of pregnancy (3rd–9th), the values tender to fluctuate from
0.080 ± 0.022 µg/mg to 0.125 ± 0.032 µg/mg. The control group reached the value
of 0.121 ± 0.058 µg/mg protein and was significantly (p < 0.05) different from the 1st
(0.166 ± 0.033 µg/mg) and the 8th (0.080 ± 0.022 µg/mg) month of pregnancy.
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Figure 5. (A) Formylokinurenine content in plasma; (B) formylokinurenine content in saliva. C—control group, 1–9—
months of pregnancy; 1,2—different numbers above the bars mean significant differences (p < 0.05) between the control
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Statistically significant differences (p < 0.05) were detected between the following time
points: C–1, C–8, 1–3, 1–4, 1–5, 1–6, 1–7, 1–8, 1–9, 2–3, 2–4, 2–5, 2–6, 2–7, 2–8, 2–9, 3–8, 4–8,
5–8, 6–8, and 7–8.

Formylokinurenine concentrations found in saliva (Figure 5B) were significantly
higher than in plasma. At the beginning of pregnancy (month 1st–3rd), the values were
the lowest compared to the remaining months. The highest values were obtained in the
4th (25.343 ± 5.608 µg/mg), in the 7th (28.998 ± 5.707 µg/mg), and in the 9th month
(21.758 ± 3.842 µg/mg), which were significantly increased compared to the control
(p < 0.05). In both saliva and plasma, a similar relationship was noted at the end of
pregnancy. Compared to the 8th month (14.139 ± 4.623 µg/mg), in the 9th month, there was
an increase in the formylokinurenine concentration to the value of 21.758 ± 3.842 µg/mg.

Statistically significant differences (p < 0.05) were detected between the following time
points: C–4, C–5, C–6, C–7, C–8, C–9, 1–4, 1–5, 1–6, 1–7, 1–8, 1–9, 2–4, 2–5, 2–6, 2–7, 2–8, 2–9,
3–4, 3–5, 3–7, 3–9, 4–5, 4–6, 4–7, 4–8, 5–7, 5–9, 6–7, 6–9, 7–8, 7–9, and 8–9.

Protein concentration in plasma was approx. 76.14 g/L, in saliva –1.17 g/L.

4. Discussion

This study presents the relationship between the profile of the antioxidant capacity
and oxidative intensity of the plasma and saliva collected from pregnant cows in each
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month of pregnancy and pregnancy course. The results showed differences depending on
the period of pregnancy. These differences may indicate a possible role of the antioxidant
system of the organism, which is altered during pregnancy. The observed fluctuations of
antioxidant defense of organisms could be related to changes in metabolism intensity based
on the need for increased protein synthesis by the mother associated with fetal growth and
development [30].

ROS are constantly generated in the body and they are involved in many metabolic
processes [1]. Excessive production of ROS or the reduced efficiency of antioxidants leads to
oxidative stress and consequently to various pathological conditions, such as peroxidative
damage of tissues, cells, and biologically active molecules [12,31]. These changes may
lead to disturbances in metabolic pathways and clinical symptoms of illness, e.g., retained
placenta in cows [32]. Furthermore, physiological pregnancy as a period of increased
metabolic activity may cause an imbalance between the production and neutralization of
ROS [11,12].

Saliva is a body fluid containing electrolytes, hormones, proteins, and other organic
compounds produced mostly by salivary glands with a small portion originating from the
blood [33]. This makes saliva a potential source of information about the physiological
status of animals, including animal diseases. Moreover, the advantage of saliva is that it
can be easily obtained in a non-invasive way, which is relatively stress free for animals [34].
For these reasons, the use of saliva as a diagnostic material is of great interest to scientists.

TAC values represent the total capacity of the organism to defend ROS and cover
substances of different chemical structures. Our results showed some differences within
this parameter between the months of pregnancy both in plasma and saliva. Interestingly,
the TAC of saliva was higher than the TAC of plasma which may indicate a more powerful
saliva solution. The lowest levels of the TAC in saliva were found at the beginning of
pregnancy (in contrast to plasma levels). It can be concluded that the changes in TAC
capacity in saliva are secondary to plasma. Moreover, cows adjust their antioxidative
defense to their needs related to particular stages of pregnancy such as implantation,
placentation, and parturition. These stages represent special metabolic activities that
occur within the course of pregnancy and are related to mother–fetus interaction, placenta
development, and pregnancy development.

Another side effect of reactions taking place through the presence of free radicals is the
degradation of the cell membranes. Frequent targets of peroxy radicals are polyunsaturated
fatty acids, which, due to the presence of a methylene group between two double bonds,
are characterized by easily removable hydrogens [35]. The indirect method used here is
concerned with the monitoring of a rather persistent radical cation formed in the reaction of
alkoxy and peroxy radicals derived from the hydroperoxides with a suitable additive, i.e.,
DEPPD. In the present study, lipid peroxidation in plasma was significantly higher in early
pregnancy and advanced pregnant cows. This is in agreement with the TAC determinations
showing the appropriate answer of the organism to the increase in oxidative intensity. The
findings of our study are in corroboration with the reports of Gaál et al. (2006) [36].

SH groups, which are present in cysteine and the vast majority of peptides and
proteins, are highly susceptible to ROS attack [37]. Cysteine is an amino acid that, due to
the presence of the SH group in its structure, most often undergoes oxidation, resulting in
the formation of disulfide bridges. Any modifications of protein structure cause changes
in or loss of their biological activity, changes in the functions or inactivation of enzymes,
as well as affect the ability to bind receptors or other biologically active substances [38].
The content of cysteine SH groups as redox sensors can be used as a measure of protein
peroxidation intensity since any decrease in these levels may indicate peroxidative damage
to proteins [8,39]. This study showed relatively higher concentrations of SH groups at
the end of pregnancy which may point to the regeneration of protein molecules or their
synthesis which is related to the development of the fetus as well as the development of
the uterine environment assuring appropriate growth of the fetus.
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Proteins are highly sensitive to the action of free radicals [37]. Other amino acids
susceptible for oxidation are aromatic amino acids (tryptophan, tyrosine, phenylalanine),
and their modification results in formylokinurenines, kinurenines (from tryptophan), and
bis-tyrosyl bridges (from phenylalanine and tyrosine) [30,40].

The concentrations of formylokinurenine and bityrosine bridges were significantly
higher in the saliva than in the plasma of the examined animals. Moreover, recorded
concentrations were rather higher in the first two months and the last month of pregnancy.
This may confirm the increase in metabolic activity related to the course of pregnancy and
possible alterations between antioxidative and oxidative balance [41,42]. Interestingly, the
increased values of concentrations of formylokinurenine and bityrosine bridges in saliva
were recorded in the 4th and 7th month and the increased values of TAC in these months
were probably a consequence of it.

All parameters examined here should not be considered separately as they depend
on each other, and this relationship is visible also in the present paper—the increase
in peroxidative intensity is reflected in the adequate antioxidative answer. Our team
confirmed earlier experiments of Castillo et al. (2005) who confirmed the characteristic
metabolic changes associated with late pregnancy and early lactation as well as an increased
lipid peroxidation around the parturition period [18]. Our team examined early-mid
pregnancy and parturient status of plasma and confirmed relationships between the course
of pregnancy and antioxidative/prooxidative profile [8,41]. As long as this relationship
exists and an answer occurs the cells and tissues can respond physiologically and avoid
serious peroxidative damage. The lack of reaction to the increase in peroxidative activity
may lead to peroxidative damage and serious biochemical consequences [15,43,44].

The reason for the possible imbalance in the early pregnancy period could be related
to the rise in oxygen tension which is associated with the formation of placental circula-
tion [45]. This status accompanies the increase in the expression of antioxidative enzymes
in the placenta as well as the increase in tissue oxygen requirements [46]. As a consequence,
oxidation of SH groups may occur.

It is possible, to some extent, to control and influence the relationship between antiox-
idative and oxidative balance by feeding [11,47]. This statement was also confirmed by
the determinations of antioxidative/oxidative profile in the same cows in two consecutive
lactations [48] where two consecutive years expressed differences between samples.

Whether pregnancy can influence the antioxidative/pro-oxidative status of non-
pregnant and pregnant animals, experiments were carried out on cows and bitches [49–51].
Authors observed significant differences between physiological status in examined pa-
rameters and related the observed changes to the hormonal profile, hormonal control of
antioxidative enzymes as well as estrogens itself as ROS scavengers. Moreover, higher
values of TAC in saliva as in plasma were confirmed.

The present paper is part of a project on searching for markers of physiological
pregnancy and parturition. The results obtained here reveal that some parameters can be
used in a panel of markers of the proper course of pregnancy while pointing to metabolic
changes in the organisms, as well as antioxidative/oxidative profile.

5. Conclusions

In summary, the present study revealed changes in the antioxidative/oxidative profiles
of plasma and saliva during the pregnancy course in cows. In corroboration with other
studies, recorded dynamic changes were observed in early pregnancy and advanced
pregnant cows that can be related to the implantation, placentation, and parturition phase.
However, with regards to antioxidant/oxidative parameters, saliva reflects the content of
plasma only in part, due to the local metabolism of the salivary gland. The study is limited
by the lack of other parameters related to the course of pregnancy. These parameters would
have allowed us to link the tested data of saliva and blood plasma. Although no other
characteristic for the pregnancy parameters has been identified, it is clear that the course of
pregnancy should be associated with a well-known hormonal profile. Additionally, to limit
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the individual variability, the same cow could be sampled each month of the pregnancy in
a repeated measures design.

Further studies are necessary to establish physiological ranges of antioxidative/oxidative
profiles in cows and to define the usefulness of saliva as biological material in the estimation
of this profile.
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inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo 2017, 67, 91–101. [CrossRef]
11. Gundelach, Y.; Streuff, B.; Franczyk, M.; Kankofer, M.; Hoedemaker, M. Influence of two different feeding strategies in the dry

period on dry matter intake and plasma protein peroxidative and antioxidative profile during dry period and early lactation.
BMC Vet. Res. 2020, 16, 134. [CrossRef] [PubMed]

12. Bansal, M.; Kaushal, N. Introduction to Oxidative Stress Mechanism and Their Modulation; Springer: New Delhi, India, 2014; Volume
366, p. 2014, ISBN 9788132220312.

13. Wawrzykowski, J.; Franczyk, M.; Ner-Kluza, J.; Silberring, J.; Kankofer, M. 2D Electrophoretic pattern of bovine placental proteins
during early-mid pregnancy. J. Mass Spectrom. 2020, 55, e4483. [CrossRef]

14. Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511.
[CrossRef]

15. Hempstock, J.; Jauniaux, E.; Greenwold, N.; Burton, G.J. The contribution of placental oxidative stress to early pregnancy failure.
Hum. Pathol. 2003, 34, 1265–1275. [CrossRef] [PubMed]

16. Davies, K.J.; Lin, S.W.; Pacifici, R.E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J.
Biol. Chem. 1987, 262, 9914–9920. [CrossRef] [PubMed]

17. Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino
Acids 2003, 25, 207–218. [CrossRef]

http://doi.org/10.1155/2017/8416763
http://doi.org/10.1016/j.rbmo.2012.08.004
http://doi.org/10.1111/j.1432-1033.1993.tb18025.x
http://doi.org/10.5194/aab-46-227-2003
http://doi.org/10.1016/j.bbagen.2012.09.018
http://doi.org/10.1016/j.repbio.2016.03.003
http://doi.org/10.1016/j.theriogenology.2010.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20663543
http://doi.org/10.1016/S0002-9343(00)00412-5
http://doi.org/10.15567/mljekarstvo.2017.0201
http://doi.org/10.1186/s12917-020-02347-x
http://www.ncbi.nlm.nih.gov/pubmed/32404087
http://doi.org/10.1002/jms.4483
http://doi.org/10.1016/j.tvjl.2006.06.005
http://doi.org/10.1016/j.humpath.2003.08.006
http://www.ncbi.nlm.nih.gov/pubmed/14691912
http://doi.org/10.1016/s0021-9258(18)48021-0
http://www.ncbi.nlm.nih.gov/pubmed/3036878
http://doi.org/10.1007/s00726-003-0011-2


Animals 2021, 11, 3204 12 of 13

18. Castillo, C.; Hernandez, J.; Bravo, A.; Lóopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and
early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [CrossRef] [PubMed]

19. Lima, D.P.; Diniz, D.G.; Moimaz, S.A.S.; Sumida, D.H.; Okamoto, A.C. Saliva: Reflection of the body. Int. J. Infect. Dis. 2010, 14,
e184–e188. [CrossRef]

20. Schulz, B.; Cooper-White, J.; Punyadeera, C.K. Saliva proteome research: Current status and future outlook. Crit. Rev. Biotechnol.
2013, 33, 246–259. [CrossRef]

21. Iris, F.F.; Benzie, J.J.S. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay Iris.
Anal. Biochem. 1996, 239, 70–76. [CrossRef]

22. Alberti, A.; Bolognini, L.; Macciantelli, D.; Caratelli, M. The radical cation of N,N-diethyl-para-phenylendiamine: A possible
indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [CrossRef]

23. Rice-Evans, C.A.; Diplock, A.T.; Symons, M.C.R. Techniques in Free Radical Research; Elsevier: Amsterdam, The Netherlands, 1991.
24. Gornal, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret method reaction. J. Biol. Chem.

1949, 177, 751–766. [CrossRef]
25. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of

protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]
26. Shapiro, A.S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611.

[CrossRef]
27. Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling;

Stanford University Press: Stanford, CA, USA, 1960.
28. Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
29. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.

Stat. 1947, 18, 50–60. [CrossRef]
30. Badawy, A.A.-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015, 35, e00261. [CrossRef]
31. Halliwell, B. Oxidants and human disease: Some new concepts 1. FASEB J. 1987, 1, 358–364. [CrossRef]
32. Miller, J.; Brzezinska-Slebodzinska, E.; Madsen, F. Oxidative Stress, Antioxidants, and Animal Function. J. Dairy Sci. 1993, 76,

2812–2823. [CrossRef]
33. Pedersen, A.M.L.; Bardow, A.; Jensen, S.B.; Nauntofte, B. Saliva and gastrointestinal functions of taste, mastication, swallowing

and digestion. Oral Dis. 2002, 8, 117–129. [CrossRef]
34. Lamy, E.; Mau, M. Saliva proteomics as an emerging, non-invasive tool to study livestock physiology, nutrition and diseases. J.

Proteom. 2012, 75, 4251–4258. [CrossRef]
35. Porter, N.A. Mechanisms for the autoxidation of polyunsaturated lipids. Acc. Chem. Res. 1986, 19, 262–268. [CrossRef]
36. Gaál, T.; Ribiczeyné-Szabó, P.; Stadler, K.; Jakus, J.; Reiczigel, J.; Kövér, P.; Mézes, M.; Sümeghy, L. Free radicals, lipid peroxidation

and the antioxidant system in the blood of cows and newborn calves around calving. Comp. Biochem. Physiol. Part B Biochem. Mol.
Biol. 2006, 143, 391–396. [CrossRef]

37. Colak, E. New Markers of Oxidative Damage to Macromolecules. J. Med. Biochem. 2008, 27, 1–16. [CrossRef]
38. Kankofer, M. Protein Peroxidation Processes in Bovine Retained and Not-retained Placenta. J. Vet. Med. Ser. A Physiol. Pathol.

Clin. Med. 2001, 48, 207–212. [CrossRef]
39. Wu, F.; Tian, F.; Lin, Y. Oxidative Stress in Placenta: Health and Diseases. Biomed Res. Int. 2015, 2015, 293271. [CrossRef]
40. Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D. Free radicals induced peptide damage in the presence of transition metal

ions: A plausible pathway for biological deleterious processes. Free Radic. Biol. Med. 1994, 17, 11–18. [CrossRef]
41. Wawrzykowski, J.; Jamioł, M.; Mojsym, W.; Kankofer, M. The comparison of pro- and antioxidative parameters in plasma and

placental tissues during early phase of placental development in cows. Mol. Biol. Rep. 2021, 48, 1291–1297. [CrossRef]
42. Torres-Cuevas, I.; Parra-Llorca, A.; Sánchez-Illana, Á.; Nuñez-Ramiro, A.; Kuligowski, J.; Cháfer-Pericás, C.; Cernada, M.; Escobar,

J.; Vento, M. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017, 12, 674–681. [CrossRef]
43. Goff, J.; Horst, R.L. Physiological Changes at Parturition and Their Relationship to Metabolic Disorders. J. Dairy Sci. 1997, 80,

1260–1268. [CrossRef]
44. Cortijo, D.R.; Herrera, T.; Rodríguez, P.R.; De Pablo Ángel, L.L.; De La Calle, M.; López-Giménez, M.R.; Mora-Urda, A.I.;

Gutiérrez-Arzapalo, P.Y.; Gómez-Rioja, R.; Aguilera, Y.; et al. Maternal plasma antioxidant status in the first trimester of
pregnancy and development of obstetric complications. Placenta 2016, 47, 37–45. [CrossRef]

45. Jauniaux, E.; Watson, A.L.; Hempstock, J.; Bao, Y.-P.; Skepper, J.N.; Burton, G.J. Onset of Maternal Arterial Blood Flow and
Placental Oxidative Stress: A Possible Factor in Human Early Pregnancy Failure. Am. J. Pathol. 2000, 157, 2111–2122. [CrossRef]
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51. Szczubial, M.; Kankofer, M.; Bochniarz, M.; Dąbrowski, R. Effects of Ovariohysterectomy on Oxidative Stress Markers in Female
Dogs. Reprod. Domest. Anim. 2015, 50, 393–399. [CrossRef]

http://doi.org/10.1515/pjvs-2015-0022
http://www.ncbi.nlm.nih.gov/pubmed/25928925
http://doi.org/10.1111/rda.12501

	Introduction 
	Materials and Methods 
	Total Antioxidant Capacity 
	The Content of Hydroperoxides 
	The Content of Sulfhydryl Groups 
	The Content of Bityrosine Bridges 
	The Content of Formylokinurenine 
	Protein Content 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

