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Abstract
Purpose: Our purpose was to determine whether bone density and bone-derived radiomic metrics in combination with dosimetric
variables could improve risk stratification of rib fractures after stereotactic body radiation therapy (SBRT) for early-stage non-small cell
lung cancer (NSCLC).
Methods and Materials: A retrospective analysis was conducted of patients with early-stage NSCLC treated with SBRT. Dosimetric
data and rib radiomic data extracted using PyRadiomics were used for the analysis. A subset of patients had bone density scans that
were used to create a predicted bone density score for all patients. A 10-fold cross validated approach with 10 resamples was used to
find the top univariate logistic models and elastic net regression models that predicted for rib fracture.
Results: A total of 192 treatment plans were included in the study with a rib fracture rate of 16.1%. A predicted bone density score was
created from a multivariate model with vertebral body Hounsfield units and patient weight, with an R-squared of 0.518 compared with
patient dual-energy x-ray absorptiometry T-scores. When analyzing all patients, a low predicted bone density score approached
significance for increased risk of rib fracture (P = .07). On competing risk analysis, when stratifying patients based on chest wall V30
Gy and bone density score, those with a V30 Gy ≥30 cc and a low bone density score had a significantly higher risk of rib fracture
compared with all other patients (P < .001), with a predicted 2-year risk of rib fracture of 28.6% (95% confidence interval, 17.2%-
41.1%) and 4.9% (95% confidence interval, 2.3%-9.0%), respectively. Dosimetric variables were the primary drivers of fracture risk. A
multivariate elastic net regression model including all dosimetric variables was the best predictor of rib fracture (area under the curve
[AUC], 0.864). Bone density variables (AUC, 0.618) and radiomic variables (AUC, 0.617) have better predictive power than clinical
variables that exclude bone density (AUC, 0.538).
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Conclusion: Radiomic features, including a bone density score that includes vertebral body Hounsfield units and radiomic signatures
from the ribs, can be used to stratify risk of rib fracture after SBRT for NSCLC.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Stereotactic body radiation therapy (SBRT) is an effec-
tive treatment for early-stage non-small cell lung cancer,
with a high local control rate.1-5 This high dose-per-fraction
technique allows for treatment plans that are highly confor-
mal to the target volume with a steep dose fall-off, allowing
for optimal normal tissue sparing. Overall, treatment is well
tolerated, with a low incidence of acute and late toxicity.
For peripheral lung lesions, rib fractures and chest wall
pain are the most common toxicities after SBRT. The dose
to the chest wall is a well-established predictor for rib frac-
ture after SBRT,6-17 but even with a high dose to the chest
wall most patients will not develop a fracture. Other factors
such as bone density may contribute to the risk of rib frac-
ture. For example, Thibault et al18 found that among
patients with tumors adjacent to the chest wall only osteo-
porosis predicted for fracture. This interplay between dose,
bone density, and fracture risk is not well understood.

Bone mineral density (BMD) can be predicted by mea-
suring Hounsfield units (HU) from bone.19,20 Vertebral
body HU (VBHU) values have excellent reliability, signifi-
cant correlation with dual-energy x-ray absorptiometry
(DEXA) bone density T-scores, and good performance in
diagnosing osteoporosis.19,20 A considerable body of liter-
ature has been published on the use of textural features
extracted from computed tomography (CT) for osteopo-
rosis detection, diagnosis, assessment, and automatic
bone disorder classification.21-23 Yet, reports on the use of
radiomics for bone fracture risk after SBRT are lacking.
Radiomic-based approaches use computational techni-
ques to find trends in imaging data that may not be easily
visualized and also allow for workflows that can automate
the collection of that data to then be used as an aid and
safeguards for treatment planning workflow.

In this study, we evaluated rib fracture risk in the set-
ting of SBRT and evaluated the use of BMD as determined
by VBHU and radiomic signatures captured from the ribs
adjacent to the planning target volume (PTV) in predict-
ing rib fracture. Discovering predictors that are indepen-
dent from dose will improve our ability to determine
which patients will develop a rib fracture.
Methods and Materials

Patient selection

We retrospectively reviewed the charts of patients with
a T1-T2N0M0 non-small cell lung cancer diagnosed from
2006 to 2018 who were treated with SBRT in 4 to 5 frac-
tions, 10 to 12 Gy per fraction, and who had at least 6
months of follow-up. We excluded patients with a signifi-
cant delay during treatment (elapsed treatment time over
30 days) and those who developed a local recurrence, had
prior conventionally fractionated radiation to the chest,
or prior SBRT to the ipsilateral lung. All patients had at
least 1 documented surveillance chest CT after treatment
and were evaluated for development of a rib fracture. Rib
fractures were determined retrospectively, confirmed on
surveillance CT scan, and included if within 2 ribs above
and below the PTV. To identify rib fractures a complete
chart review on all patients was completed, including
evaluation of CT scan reports for documentation of a rib
fracture or patient reports of chest wall pain. We next had
a radiation oncologist evaluate the CT scan to confirm the
findings on the CT report, evaluate for a fracture on CT
that corresponded to patient-reported pain, and evaluate
the last CT scan of every patient to identify a rib fracture
or sclerotic change in the area of interest, subsequently
confirming on prior CT scans when that change first
developed.
CT acquisition and treatment

Patients underwent 4-dimensional CT (4DCT) simula-
tion in head-first supine position with arms raised above
their head using a full body vacuum cushion (BlueBAG
BodyFix; Elekta AB, Stockholm, Sweden). This setup was
used to ensure that patients remained in the same body
position for simulation and treatment. Scans were
acquired on Philips Brilliance Big Bore CT scanner (Phi-
lips Medical Systems Inc, Cleveland, OH) with a slice
thickness of 3 mm and a tube voltage of 120 kVp. The
4DCT and the average CT scans were exported to MIM
(version 6.6.11; MIM Software Inc, Cleveland, OH) after
images were reviewed for motion artifacts. Target volume
and organs at risk (OARs) were segmented by an experi-
enced radiation oncologist in MIM. The internal target
volumes were contoured on each phase of the 4DCT scans
and PTVs, defined as a 5-mm expansion of ITV and
OARs, were contoured (both lungs, esophagus, trachea,
head, spinal cord, and chest wall/ribs) on the average CT
scans. An institutional chest wall constraint of V30 Gy
≤30 cc was used as a planning goal, but this constraint
was relaxed if PTV coverage of 98% of prescription dose
could not be obtained. Additional planning structures
were used for optimization and limiting the dose to
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OARs. Treatment planning was completed in Pinnacle
(Philips Medical Systems Inc) using the average CT as the
primary image and using a volumetric-modulated arc
therapy (VMAT) plan or intensity modulated radiation
therapy (IMRT) plan with 6 MV photon beam, using 2 to
3 arcs for VMAT plans, and a 0.2-cm dose grid for dose
calculation. Plans generated per treatment planning
objective were reviewed and approved by the treating
radiation oncologist. Patient-specific quality assurance
was performed for all treatment plans with a 3%/3-mm
passing criteria used for all VMAT and IMRT quality
assurance procedures. For treatment, CT simulation setup
was replicated and patients were treated on TrueBeam
(Varian Medical Systems, Palo Alto, CA). A cone beam
CT scan was acquired and registered to average planning
CT for daily treatment setup verification.
Dosimetric analysis

Dosimetric data of the chest wall and ribs were col-
lected on all patients. The chest wall was retrospectively
contoured with a 2-cm outward expansion from the lungs
and ribs were contoured to include all ribs within a 5-cm
expansion of the PTV. Centrally located lesions with a
chest wall expansion extending into the mediastinum and
vertebral bodies were appropriately adjusted. A rib trabec-
ular space volume was also created by contracting the rib
volume by 2 mm in all directions. Collected dosimetric
data on the chest wall and rib volumes included the max
dose to a specified volume at 0.5-cc intervals from 0.5 to
5.0 cc and the volume receiving a specified dose, including
1 Gy and 5 Gy and then increasing at 5 Gy intervals up to
a dose of 70 Gy.
Radiomic analysis

All radiomic data were collected from the patients’ vol-
umetric planning scans. The first radiomic feature we
evaluated was the mean VBHU of a single vertebral body,
which has been previously shown to correlate with osteo-
porosis and bone density.19,20 Mean VBHU was deter-
mined from a single lower thoracic or upper lumbar
vertebral body after contouring a 3-dimensional (3D) vol-
ume of that vertebral body in the anterior trabecular space
(excluding cortical bone, focal lesions, or other defects
and choosing a vertebral body with minimal defects). The
mean HU of that 3D volume was reported. We next
extracted radiomic features from the ribs included in the
PTV + 5 cm expansion. A 5-cm PTV based expansion
was used to stay focused on ribs that would be at highest
risk of fracture while being far enough away from the
PTV so that the radiomic data covered a large enough
area to be independent of PTV−rib overlap and dose.
Quantitative radiomic feature extraction
used PyRadiomics24 and a total of 107 radiomic features
were extracted. A pydicom-based Digital Imaging and
Communications in Medicine object and corresponding
rib mask (segmented volume) were input to the radiomics
feature extractor. The 107 radiomic features extracted
from the rib included features of first order statistics,
shape (2D and 3D), gray level co-occurrence matrix, gray
level size zone matrix, gray level run length matrix, neigh-
boring gray tone difference matrix, and gray level depen-
dence matrix. A description of all these features can be
found at https://pyradiomics.readthedocs.io/en/latest/fea
tures.html.
BMD

A subset of patients with a documented DEXA bone
density scan were used to model bone density. Among
patients with DEXA bone density scans, a multivariate
model was developed to predict bone density and was
used for subsequent rib fracture risk modeling. The pre-
dicted bone density score is meant to correspond to the
bone density DEXA T-scores, where values of >−1, >
−2.5 and ≤−1, and ≤−2.5 correspond to normal bone
density, osteopenia, and osteoporosis, respectively.
Statistical analysis

Clinical characteristics for all patients were compared
between those who developed a rib fracture and those
who did not, using the Student t test for continuous varia-
bles and x2 test for categorical variables for significance
testing. To model which clinical, dosimetric, and radiomic
features best predict for rib fracture, a logistic regression
was used for univariate predictors and the elastic net
regression modeling procedure was used for multivariate
analysis.25 A 10-fold cross validation procedure with 10
resamples was used to evaluate which characteristics best
predict for rib fracture, with no separate validation data
set used given the small size of this data set. The elastic
net procedure is a regularized regression model that com-
bines the least absolute shrinkage and selection operator
and ridge methods, using cross validation to tune the reg-
ularization penalty and least absolute shrinkage and selec-
tion operator/ridge proportion hyperparameters. Models
were compared using the mean area under the receiver
operating characteristic curve (AUC-ROC curve) and
AUC confidence intervals (CI), both calculated from the
10-fold cross validation with a 10 resamples procedure.
For the univariate dose-response rib fracture modeling, a
2-parameter log-logistic model was used to determine rib
fracture risk.26 A competing risk model was also used to
evaluate rib fracture risk given the time-dependence noted
with respect to rib fracture risk, with mortality as the
competing risk variable.27 The advantage of a competing
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risk analysis over the more traditional Kaplan-Meier
method is that a competing risk model aims to estimate
the marginal probability of an event (rib fracture) in the
presence of multiple competing events (lost to follow-up
and death). When necessary, a false discovery rate (FDR)
adjusted P value was reported for multiple testing correc-
tions.28 To determine radiomic clusters we first normal-
ized all radiomic variables using the bestNormalize R
package29 and then used a t-distributed stochastic neigh-
bor embedding (tSNE) plot for clustering.30 All statistical
analysis and modeling procedures were completed in R
(version 4.0.2).
Results
Patient characteristics

A total of 192 treatment plans met inclusion/exclusion
criteria and had available dosimetric data (4 patients had
separate left and right lung SBRT plans included in the
analysis). A subset of 180 of these plans were able to be
used to extract radiomic data from the ribs. The median
follow-up for all patients was 22.4 months, and only
15.6% of patients had less than 12 months of follow-up
(patients with less than 6 months of follow-up were
Fig. 1 Dosimetric predictors of rib fracture. (A) Accumulated
the chest wall and ribs, further stratified by those who developed
the curve (AUC) from univariate logistic models predicting rib
chest wall, rib, and rib trabecular space. (C) Two parameter log
on volume of chest wall receiving 30 Gy.
excluded from the study). There were 31 rib fractures
(16.1%), with 21 of those causing chest wall pain (10.9%).
The 2-year rate of rib fracture was 12.7%. The median
time to a rib fracture was 20.5 months (5.6-77.5 months).
Clinical variables that were significant predictors of a rib
fracture (Table E1) include distance to the chest wall (P <
.001), PTV−rib overlap (P < .001), PTV−chest wall over-
lap (P < .001), and time from treatment to death/last fol-
low-up (P = .023). Of patients with PTV overlapping any
volume of the chest wall, 26.4% developed a rib fracture
compared with 2.4% among those with no PTV−chest
wall overlap.
Dosimetric predictors of rib fracture

Dose-volume histograms were accumulated for all
patients and compared between those who developed a
rib fracture and those who did not (Fig. 1A). A majority
of the collected dosimetric variables were significant pre-
dictors of a rib fracture (77.5%) and so we compared the
mean AUC-ROC and CI of each dosimetric variable from
a univariate logistic model predicting rib fracture
(Fig. 1B). The best predictors were chest wall V35 Gy
(AUC, 0.825; 95% CI, 0.810-0.836) and rib Dmax 2.5 cc
(AUC, 0.824; 95% CI, 0.812-0.841). Three main takeaways
were noted: (1) focusing on the trabecular space of the rib
dose-volume histogram (DVH) curves of all patients for
a rib fracture and those who did not. (B) Mean area under
fracture evaluated for each dosimetric parameter for the
-logistic dose-response model of risk of rib fracture based
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consistently underperformed compared with the whole
rib, except for Dmax 0.5 cc where predictions were compa-
rable; (2) a trend appeared where a max point dose to the
chest wall underperformed compared with the max point
dose to the ribs at low volume (0.5 cc) but was compara-
ble at higher volume (5 cc); (3) chest wall dosimetry
tended to be more predictive when evaluating the volume
received at a specified dose. Chest wall V30 Gy has been
shown to be a common dosimetric predictor for rib frac-
ture after SBRT, which we have validated (AUC, 0.818;
95% CI, 0.791-0.837), and thus, given its clinical use and
overlapping CIs with better performing metrics, we used
this value for subsequent analyses. On dose-response
analysis for a chest wall V30 Gy we found that a V30 Gy
of 34 cc would predict for a 25% risk of rib fracture
(Fig. 1C).
Bone density as a predictor for rib fracture

There were 61 patients (31.8%) who had DEXA bone
density scans and thus this subset was used to develop a
predicted bone density score. On univariate linear regres-
sion modeling of bone density, mean VBHU (P = 7.58E-
9) and weight (P = 1.94E-4) were the best predictors, and
thus these variables were used to develop a predicted
bone density score in a multivariate model (multivariate P
values of 1.05E-7 and 2.52E-3, respectively). The multi-
variate model had an R-squared of 0.518 compared with
the actual DEXA score for these 61 patients. Of the 107
radiomic features collected from the ribs, 3 had FDR-
adjusted significant P values for their univariate associa-
tion with bone density, including gray level size zone
matrix (GLSZM) large area emphasis, GLSZM large area
high gray level emphasis, and GLSZM zone variance, all
with an FDR-adjusted P value of 8.34E-3.

The predicted bone density score from the multivariate
linear model including VBHU and weight was found to
Fig. 2 Bone density as a predictor for rib fracture. (A) Multivar
density score as predictors of rib fracture. (B) Competing risk m
rib fracture with patients stratified by osteopenia/osteoporosis (p
have a mean of −2.04 among those who developed a rib
fracture and a mean of −1.78 for those who did not
develop a rib fracture (Student t test P = .07; Table E1). A
multivariate logistic model incorporating chest wall V30
Gy cut as a binary variable at 30 cc and the predicted
bone density score was used to predict probability of rib
fracture (Fig. 2A), noting a much steeper gradient in rib
fracture risk as predicted bone density score changes
among those with a higher dose to the chest wall. Given
that time from treatment to death was found to be a sig-
nificant predictor of a rib fracture, a competing risk analy-
sis was completed to account for time from treatment and
the competing risk of mortality. For this analysis patients
were stratified into those with predicted osteopenia/osteo-
porosis based on a predicted bone density score ≤−1 and
by chest wall dose (Fig. 2B), noting a significant difference
in predicted rib fracture risk (log rank P < .001). Those in
the high-risk group with a V30 Gy ≥30 cc and a low bone
density score had a significantly higher risk of rib fracture
compared with all other patients (P < .001), with a 2-year
risk of rib fracture of 28.6% (95% CI, 17.2%-41.1%) and
4.9% (95% CI, 2.3%-9.0%), respectively.
Modeling rib fracture risk with clinical,
dosimetric, and radiomic variables

We next compared univariate logistic regression mod-
els to multivariate elastic net regression models, again
using the 10-fold cross validation approach with 10
resamples to determine AUC-ROC. We first evaluated
univariate models comparing distance of the PTV cen-
troid to the chest wall and overlap of the PTV with the
chest wall and ribs (Fig. 3A), noting a higher AUC for the
volume of PTV−rib overlap (AUC, 0.802; 95% CI, 0.778-
0.827) and volume of PTV−chest wall overlap (AUC,
0.800; 95% CI, 0.779-0.821) compared with the distance
from the PTV centroid to the chest wall (AUC, 0.737;
iate logistic model with chest wall V30 and predicted bone
odel with mortality as the competing risk, showing risk of
redicted bone density score ≤−1) and chest wall V30.



Fig. 3 Univariate and multivariate modeling of rib fracture risk. Receiver operating characteristic curves comparing plan-
ning target volume (PTV) distance to chest wall and PTV overlap with chest wall/ribs (A), univariate and multivariate
dosimetric models (B), and univariate/multivariate models of clinical, dosimetric, and radiomic data (C).
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95% CI, 0.713-0.762). We next compared univariate pre-
dictors to a multivariate elastic net model that included
all dosimetric variables (Fig. 3B), noting that inclusion of
all dosimetric variables performed the best (AUC, 0.864;
95% CI, 0.844-0.883) compared with univariate predictors
such as chest wall V30 Gy (AUC, 0.818; 95% CI, 0.796-
0.839) and rib Dmax 2.5 cc (AUC, 0.824; 95% CI, 0.802-
0.845). Finally, we compared radiomic data collected
from the rib to clinical predictors and dosimetric predic-
tors (Fig. 3C). We note that including dosimetric data
improves the model relative to inclusion of just PTV−rib/
chest wall overlap, consistent with the previously men-
tioned nonoverlapping CIs. We also note that bone den-
sity variables (AUC, 0.618; 95% CI, 0.589-0.647) and
radiomic variables (AUC, 0.617; 95% CI, 0.577-0.657)
have better predictive power than clinical variables that
exclude bone density (AUC, 0.538; 95% CI, 0.503-0.572).

Given the predictive utility of radiomic variables, we
next evaluated all 107 radiomic variables in univariate
logistic models and noted that no individual radiomic var-
iable significantly predicted for rib fracture after FDR-
adjusted multiple testing corrections. We next evaluated
Fig. 4 Radiomic clusters and rib fracture risk. (A) T-distribute
fied 2 primary radiomic clusters from the 107 radiomic features
ment planning scan. (B) Competing risk model with mortality
patients stratified by radiomic risk group and chest wall V30. (C
risk, showing risk of rib fracture with patients stratified by radio
radiomic cluster signatures using a tSNE plot (Fig. 4A),
which reduces the dimensionality of the radiomic data so
that patients with similar radiomic signatures are near
each other on the plot. The tSNE algorithm is an unsuper-
vised clustering technique, meaning that the algorithm
clusters the radiomic data independently of the rib frac-
ture outcome variable. The tSNE plot identified 2 primary
clusters within the radiomic data—1 cluster had a 19.4%
rate of rib fracture, which we labeled as the “high-risk
cluster,” while the other cluster had a 9.7% rate of rib frac-
ture, which we labeled as the “low-risk cluster.” Patients
were then finally stratified based on these radiomic groups
and the chest wall V30 Gy ≥30 cc and evaluated in a com-
peting risk model (Fig. 4B; log rank <0.001). We also
observed that these radiomic groups were independent of
bone density, PTV−rib overlap, and dose, noting on uni-
variate logistic regression that predicted bone density
score (P = .454), PTV−rib overlap (P = .693), chest wall
V30 Gy (P = .767), and rib Dmax 2.5 cc (P = .516) did not
predict for cluster group. As stated previously, no rib
radiomic variables were significant predictors for rib frac-
ture after multiple testing correction, but there were many
d stochastic neighbor embedding (tSNE) plot that identi-
, with each point on the plot representing a separate treat-
as the competing risk, showing risk of rib fracture with
) Competing risk model with mortality as the competing
mic risk group and osteopenia/osteoporosis status.
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that met significance threshold for predicting the cluster
group, with the gray level co-occurrence matrix cluster
shade the most predictive (FDR-adjusted P = 9.78E-34),
followed by first order skewness (FDR-adjusted
P = 1.39E-28), both measuring asymmetry of the struc-
ture. A significantly higher gray level co-occurrence
matrix cluster shade was identified in the high-risk clus-
ter, consistent with a more asymmetrical structure. Of the
previously noted radiomic variables that predict for bone
density, only GLSZM large area high gray level emphasis
predicted for radiomic risk group (FDR-adjusted
P = .012). Finally, we developed a competing risk model
to compare the risk of rib fracture based on a patient’s
predicted bone density and radiomic risk group (Fig. 4C;
log rank = 0.10). Although the overall comparison
between these groups was nonsignificant, the trend was
consistent with prior analysis and we were able to identify
a subgroup of patients who had no rib fractures—patients
within the low-risk radiomic cluster with a normal pre-
dicted bone density.
Discussion
In this study, we modeled bone density and rib fracture
risk using clinical, dosimetric, and radiomic features, all
data that were collected retrospectively from chart review
and treatment planning scans. We validated that dosimet-
ric variables are the primary drivers of rib fracture risk,
observing a range of effective univariate predictors. We
next validated the utility of the mean VBHU in estimating
bone density on a treatment planning scan, observing that
VBHU was the best univariate predictor of bone density.
Using a predicted bone density score that combines
VBHU and patient weight, we observed an increasing risk
in rib fracture as bone density decreased, which was more
pronounced in patients who had a chest wall V30 Gy ≥30
cc, further noting a much steeper decline in rib fracture
risk as predicted bone density score increased among
those with a higher dose to the chest wall. We next found
that overlap of PTV with the rib or chest wall was a better
predictor than distance from the PTV centroid to the
chest wall, but that dosimetric data improved this predic-
tion even further. We observed that a multivariate elastic
net model of all dosimetric data performs the best in pre-
dicting rib fracture, but that univariate predictors such as
V30 Gy and Dmax 2.5 cc are close in their predictive util-
ity. Finally, although dosimetric data were clearly the
most important variables in predicting rib fracture risk,
we discovered that radiomic data and bone density data
were able to estimate risk better than other clinical patient
characteristics.

Dosimetric variables and distance of treated lesion
from the chest wall have previously been shown to drive
the risk of rib fracture after SBRT to the lung.6-17 Ando-
lino et al6 found that tumors adjacent to the chest wall
(50% isodose line or greater abutting the chest wall) had a
rib fracture rate of 21% compared with 4% in treated
lesions that did not meet this criteria. Nambu et al9 noted
a rate of 36.7% rib fractures when tumor to chest wall dis-
tance was 0 mm. We built off these findings by showing
that the overlap of the PTV with the chest wall or ribs sig-
nificantly improves on modeling rib fracture risk com-
pared with distance from chest wall alone, also noting a
rate of 26.4% rib fractures for those with some PTV
−chest wall overlap compared with 2.4% for those with
no overlap. Multiple studies have documented the utility
of max dose to the chest wall and ribs,6,10-12,31 which we
validate here and show that rib Dmax 2.5 cc was the best
predictor, but that other volumes for the rib max dose
were not significantly inferior. We noted though that
chest wall max dose did have more variation across differ-
ent volumes, which underperformed compared with the
ribs at low volume (0.5 cc) but not at higher volume (5
cc). Further, we show that there is no benefit to focusing
on the trabecular space of the rib compared with the
whole rib. Finally, many studies have validated the utility
of V30 Gy,13-16 which we have validated here, and we also
observed a predicted rib fracture risk of 25% at a V30 Gy
of 34 cc.

This is the first study to validate a method for deter-
mining bone density off of a treatment planning scan and
to use that data to evaluate rib fracture risk. Osteoporo-
sis18 and lower bone mineral density32 have both been
previously identified as predictors of rib fractures. We
observed that a lower predicted bone density score
approached significance for predicting rib fracture
(P = .07) and observed a relationship between dose and
bone density, with patients with a high bone density better
able to tolerate higher doses to the chest wall. The effect of
radiation to healthy bone has been documented as having
the largest effect on bone that contains red (hematopoi-
etic) marrow as opposed to yellow (fatty) marrow,33

observing that doses over 40 Gy may permanently impair
the ability of sites of former red marrow to return to a
hematopoietic state. The pathogenesis of this alteration
has been documented primarily from reduced osteoblast
activity after radiation,34 thus leading to an increase in the
osteoclast to osteoblast ratio, resulting in greater bone
resorption and turnover. Given that these changes are
similar to what is seen in osteoporosis,35 we hypothesized
that a relationship between radiation therapy to the rib
and bone density may predict a rib fracture. This relation-
ship is of further interest as it could suggest a similar ben-
efit from bisphosphonates in patients receiving excess
dose to healthy bone. Although the risk of a rib fracture
after SBRT is low enough in most patients to not warrant
such an intervention, we did note that among patients
with a chest wall V30 Gy ≥30 cc and with predicted osteo-
penia/osteoporosis, rib fracture risk reached as high as
50% at 5 years out from treatment, a high enough rate to
warrant investigating possible interventions.
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Finally, our analysis found that radiomic data col-
lected from the ribs could aid in risk stratification. We
found that a radiomic signature identified a high-risk
cluster of patients with a risk of fracture over 2 times
higher than the low-risk cluster. We found that this dif-
ference could not be explained by correlations of these
risk groups with predicted bone density, dose, or PTV
−rib overlap. We also found a subgroup of patients
within the low-risk radiomic cluster with normal bone
density that had no rib fractures. The radiomic features
that most significantly explained this difference in clus-
ters were associated with structure asymmetry, with the
high-risk cluster associated with a more asymmetrical rib
structure, suggesting that asymmetry of an adjacent rib
(such as the curvature of the rib or asymmetry in cortical
rib thickness) may predict for higher risk of a fracture.
Radiomics-based workflows provide a promising balance
for modern image data mining, using unused data to aid
predictions while relying on extracted features whose
mathematical basis may allow for more interpretable
models rather than the “black box” inherent to more
complex modeling, such as with convolutional neural
networks.

With any retrospective study there will be limitations
in how data are captured, such as identifying rib fractures
that weren’t always called by the reading radiologist or
relying on bone density scans that varied in timing com-
pared with when treatment was completed. Radiomic
studies have also struggled to get appropriate validation,
and although we took a conservative approach with 10-
fold cross validation and resampling mixed with multiple
testing corrections to reduce the risk of spurious findings,
differences in technique of feature extraction between
institutions increase the difficulty of future cross institu-
tional validation. A strength of our study is validation of
the dosimetric factors that drive risk and our ability to
relate those dosimetric factors to our radiomic-based
bone density score and rib radiomic signatures that can
aid in risk stratification. The end goal of an analysis like
this is to identify variables that can help with critical deci-
sion making in the oncology clinic. Here we have demon-
strated how VBHU, a predicted bone density score, and
radiomic risk groups can help identify patients who would
be at a higher risk of a rib fracture and could warrant fur-
ther attention to their chest wall dose during treatment
planning or consideration of interventions to improve
bone density. A great benefit of this workflow is that all
additional data came from patient planning scans, thus
identifying a strategy of clinically useful information
being extracted from scans that all radiation oncologists
are already performing. As we try to implement more
strategies to better personalize cancer treatment, we hope
that modeling techniques such as those demonstrated
here can provide a better framework for creating data-
backed treatment planning workflows that can be used to
improve patient outcomes.
Supplementary materials
Supplementary material associated with this article can
be found in the online version at doi:10.1016/j.adro.2021.
100884.
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