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Mild tomoderate traumatic brain injury (TBI) due to blast exposure is frequently diagnosed in veterans returning
from thewars in Iraq and Afghanistan. However, it is unclearwhether neural damage resulting fromblast TBI dif-
fers from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes). Little is also known
about the effects of blast TBI on neural networks, particularly over the long term. Because impairment inworking
memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI) study
sought to investigate whether brain activation in response to a working memory task would discriminate
blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 fe-
male) who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age =
27.4 years, standard deviation= 6.68 years, 4 females) with TBI due to blunt-force trauma performed the Stern-
berg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items inworkingmem-
ory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females) and a group of
25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females) without history of TBI
underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group
and both control groups demonstrated a monotonic relationship between working memory set size and activa-
tion in the right caudate during encoding, whereas the blast TBI group did not (p b 0.05, corrected for multiple
comparisons using False Discovery Rate). Blast TBI was also associatedwithworse performance on the Sternberg
ItemRecognition Task relative to the other groups, although no other group differenceswere found on neuropsy-
chological measures of episodic memory, inhibition, and general processing speed. These results could not be at-
tributed to caudate atrophy or the presence of PTSD symptoms. Our results point to a specific vulnerability of the
caudate to blast injury. Changes in activation during the Sternberg Item Recognition Task, and potentially other
tasks that recruit the caudate, may serve as biomarkers for blast TBI.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mild traumatic brain injury (TBI) is typically defined as a loss of con-
sciousness (LOC) up to 30 min, posttraumatic amnesia (PTA) not ex-
ceeding 24 h, or any period of confusion or disorientation associated
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with a non-penetrating head injury (Kristman et al., 2014) in which a
patient presents for health care with a Glasgow Coma Scale (GCS)
(Teasdale and Jennett, 1974) score of 13–15. A moderate TBI is defined
by PTA up to 7 days and loss of consciousness up to 24 h. Both mild and
moderate TBI (TBI) can have long term consequences on cognition
(Vanderploeg et al., 2005; Salmond et al., 2006; Ruttan et al., 2008;
Silver et al., 2009). The most commonly studied type of TBI results
from blunt-force trauma encountered in falls, vehicle accidents, contact
sports, and assaults (Andriessen et al., 2011). Diffuse axonal injury,
which occurs when the brain accelerates and decelerates within the
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skull (Adams et al., 1989), is considered to be the primarymechanismof
blunt-force TBI.

In contrast, themost common type of TBI inmilitary personnel is the
result of exposure to improvised explosive devices and grenades. TBI,
largely due to blast exposure, has been estimated to occur in 15–30%
of service personnel (Hoge et al., 2008; Tanelian and Jaycox, 2008).
Blast explosions can result in several types of injury: primary blast
resulting from changes in pressure within the brain that lead to injury;
secondary blast caused by contactwith external objects that are animat-
ed by the blast; and tertiary blast occurring when the õindividual is
thrown against an external surface, such as the ground or a wall. Any
other injury resulting from the explosion, e.g., burns, is referred to as a
quaternary blast. While the mechanisms behind secondary and tertiary
blast TBI are similar to those found in non-blast settings, less is known
about the effects of primary blast on the brain.

Blast explosions are associated with transient increases in air pres-
sure (overpressure) that produce a dose dependent increase in intracra-
nial pressure (Saljo et al., 2009), and have been linked to neuronal
injury, hemorrhage, and edema (Cernak et al., 2001; Saljo et al., 2011).
Blast has also been associated with acceleration of the brain (Courtney
and Courtney, 2011; Goldstein et al., 2012; Sosa et al., 2013). Animal
studies of primary blast TBI have revealed a variety of types of damage
to structures. Molecular changes have been reported in the thalamus,
hypothalamus, and hippocampus in mice (Woods et al., 2013), as well
as cell death in the nucleus accumbens in rats (Sajja et al., 2013). In
the brainstem, activated microglia, indicators of neuroinflammation,
have been found in the substantia nigra of rats exposed to blast
(Readnower et al., 2010), consistent with loss of dopaminergic neurons
in the substantia nigra of rats with non-blast TBI (Hutson et al., 2011).
However, less is known about pathological changes subsequent to
blast-related TBI in humans. For example, the brainstemmay be equally
or even more vulnerable to the effects of blast (Taylor and Ford, 2009;
Yeh et al., 2014) than the frontal and temporal regions associated with
blunt-force TBI. These regional differences between blast and blunt-
force injuries may influence the pattern of neural and cognitive sequel-
ae of TBI.

Studies that have directly compared blast and blunt-force TBI on
symptom, neurocognitive, and psychiatric measures have typically re-
ported no differences between the groups (Kennedy et al., 2010;
Belanger et al., 2011; Luethcke et al., 2011; Cooper et al., 2012;
Mendez et al., 2013; Dretsch et al., 2014; Mac Donald et al., 2014). In
one study (Lippa et al., 2010), veteranswith blast TBI endorsed elevated
cognitive symptoms on the Neurobehavioral Symptom Inventory (NSI)
(Cicerone and Kalmar, 1995), a measure of postconcussion symptoms,
approximately 3 years after injury, and the severity of symptoms was
similar to those reported by veterans with non-blast TBI; however, the
NSI queries general cognitive functioning and may not identify subtle
differences. Belanger et al. (2009) administered four standardized
tests measuring visual and verbal memories, interference resolution,
and IQ to veterans and reported no differences in performance between
the two types of TBI.

Another approach to identifying potential differences between blast
and blunt-force injuries involves structural brain imaging. Our group
found no differences when directly comparing blast and blunt-force
TBI groups on the presence of brain lesions and brain region volumes
(Fischer et al., 2014). Another study (Jorge et al., 2012) used diffusion
tensor imaging (DTI) to investigate changes in white matter in veterans
with blast TBI and civilians with blunt-force TBI bymeasuring fractional
anisotropy (FA) of whole white matter tracts and examining heteroge-
neity in FA, or “potholes”. The authors reported no significant group
differences when measurements were taken for an entire tract, but
civilians with acute blunt-force TBI had more potholes than veterans
with blast TBI. In a recent DTI study (Yeh et al., 2014), no white mat-
ter differences were found between blast and blunt-force TBI groups
in a whole brain diffusion measure; however, when hemispheric
asymmetries of FA were examined using tract-based spatial statistics
(Smith et al., 2006), the blast TBI group demonstrated more
asymmetries than a blunt-force TBI group in tracts extending inferiorly
to superiorly. In an autopsy study, identical neuropathology was found
in the brains of veterans and mice exposed to blast and athletes with
blunt-force TBI (Goldstein et al., 2012).

The strongest evidence for identifying differences between blast and
blunt-force TBI comes from functional imaging studies. Patients with
blast TBI showed greater hypometabolism on positron emission tomog-
raphy (PET) than patients with blunt-force TBI in the right superior
parietal lobe (Mendez et al., 2013). Within the blast group, higher
postconcussive symptom severity scores were related to decreasedme-
tabolism in the posterior cingulate cortex, while poorer performance on
the Paced Auditory Serial Addition Test (Gronwall, 1977), a task involv-
ing sustained attention, cognitive processing speed, and workingmem-
ory, was associatedwith hypometabolism in themedial frontal gyrus. In
a functional magnetic resonance imaging (fMRI) study using the stop
signal activation task, a measure of response inhibition, our group
differentiated blast from blunt-force TBI by identifying alterations in
an orbitofrontal–striatal inhibitory control circuit more than 4 years
after blast exposure (Fischer et al., 2014). When correctly performing
the inhibition task, veterans with blast TBI had alterations in activation
similar to those in a civilian control groupwith TBI. However, when fail-
ing to inhibit, the blast TBI group demonstrated increased activation in
the caudate nucleus, consistentwith other studies that link the striatum,
particularly the caudate, to successful response inhibition (Li et al.,
2008; Ghahremani et al., 2012; Ness and Beste, 2013). Moreover, in-
creased activation was also found in cortical regions that enervate the
striatum, the lateral orbitofrontal, anterior cingulate, and inferior tem-
poral gyri (Alexander et al., 1986), suggesting that striatal pathways
may be particularly vulnerable to blast injury.

An additional frontostriatal circuit involving the dorsolateral pre-
frontal cortex (DLPFC) has been closely linked to working memory
(Levy et al., 1997), an executive function involved in maintaining and
manipulating information in short term memory (Baddeley, 1986).
The DLPFC–striatal working memory circuit extends from the DLPFC
to the caudate, which in turn projects to other subcortical structures
(globus pallidus, brainstem, and thalamus) and then back to the
DLPFC. Given the vulnerability of the orbitofrontal–striatal inhibitory
control circuit to blast as evidenced by the stop signal task in our previ-
ous study (Fischer et al., 2014), we hypothesized that blast injury may
also have a selective effect on the DLPFC–striatal working memory cir-
cuit. To address this hypothesis, we compared veterans with blast TBI
(military TBI; milTBI) and civilians with blunt-force (acceleration–
deceleration) TBI (civTBI) performing a working memory task, the
Sternberg Item Recognition Task (SIRT) (Sternberg, 1966), during
fMRI. Veterans and non-veteran civilians without histories of blast
exposure or TBI served as control groups. We also studied the pres-
ence of long term neuropsychological sequelae in the TBI groups
(Vanderploeg et al., 2005; Lippa et al., 2010). We predicted that the
two TBI groups would demonstrate differing activation patterns in
working memory circuits.

2. Methods

2.1. Participants

All procedures and recruitment strategies were reviewed and ap-
proved by the institutional review boards of the Cleveland Clinic, Baylor
College ofMedicine (BCM), Louis Stokes Veterans AffairsMedical Center
(VAMC) (Cleveland), Michael E. DeBakey VAMC (Houston), and the U.S
Department of Defense. Four groups of participants were enrolled:
(1) veterans who had been deployed in the Afghanistan and Iraq wars
(Operation Enduring Freedom and Operation Iraqi Freedom, OEF–OIF)
who had experienced blast-related TBI (milTBI), (2) OEF–OIF veterans
who had never experienced blast and/or head injury and who served
as controls to themilTBI group (milCON), (3) civilians with TBI (civTBI)
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due to sports ormotor vehicle accidents, and (4) civilianswith orthope-
dic injuries who served as controls for the civTBI group (civCON). Data
were collected at the Cleveland Clinic and BCM. Seventy subjects were
studied at the Cleveland Clinic (16 milTBI, 21 milCON, 16 civTBI, and
17 civCON), and 30 subjects were seen at BCM (9 milTBI, 4 milCON, 9
civTBI, and 8 civCON).

Themilitary recruitment pool consisted of all OEF–OIF veterans who
had registered for VAMC-related services (not restricted to head injury).
Letters were sent to those individuals describing the study and inviting
them to participate if they suffered a head injury (milTBI) or served but
did not suffer a head injury (milCON). Veterans were also recruited via
referral to the study from Michael E. DeBakey VA physicians, ongoing
projects, a registry of veterans interested in participating in research,
and through advertisements posted at local colleges and in newspapers.
In Cleveland, civilian participants were recruited primarily through in-
formational mailings sent from their treating physician at the Cleveland
Clinic, and inHouston, civilian participantswere recruited fromongoing
projects, advertisements, and referrals from friends.

Potential participants initially underwent telephone screening to de-
termine eligibility. Those participants meeting inclusion/exclusion
criteria (see below) were invited to undergo neuroimaging. Attempts
were made to match the groups on age, gender, education, and, for
the TBI participants, time since injury. Please see Table 1. Specific details
of the inclusion/exclusion criteria for each group are as follows.

milTBI participants sustained a blast-related TBI during deployment
between 1 and 6 years prior to participation in this study. Eligibility
for the milTBI group included report of a blast-induced injury that
resulted in LOC, a period of PTA, or alteration of consciousness (AOC)
following the event. This was assessed via self-report, but with trained
interviewers who probed and clarified responses in an attempt to ob-
tain the most accurate information possible. If there was a LOC, it did
not exceed 24 h in duration and, if PTA occurred, it did not exceed
7 days. GCS scores were not available. Two milTBI subjects (8%) were
characterized as having an injury of moderate severity due, in one
case, to a self report of LOC of 150 min after the injury and, in the
other case to a report of PTA of approximately 5 days. Moderate classi-
fication in both TBI groups was based solely on self-report of LOC/PTA,
which is inherently subjective, especially when queried years after
injury.

For those participants with repetitive head injuries, the most severe
served as the “index injury” for purposes of estimating time since injury.
Any subject who reported a TBI during the post-deployment periodwas
excluded.

milCON participants served in active duty within the prior 6 years
but had no history of brain injury, blast exposure, or LOC during or
prior to their deployment. This group controlled for the nonspecific
emotional distress associatedwith combat. The number of deployments
was comparable for the milTBI and milCON groups.
Table 1
Demographic, injury, and self-report scales.

milTBI milCON civTBI civCON 2

Variable (n = 25) (n = 25) (n = 25) (n = 25) TB

Age — yrs 29.8 (6.01) 29.9 (5.53) 27.4 (6.68) 27.3 (5.81) −
Education — yrs 13.1 (1.62) 13.6 (1.75) 14.3 (1.38) 14.2 (2.41) −
Sex — number (%) female 4 (16%) 0 1 (4%) 0 −
Months since last TBI 50.1 (17.98) NA 27.1 (15.03) NA −
Number (%) with N1 blast 14 (56%) NA NA NA −
Number of deployments 1.82 (0.7) 2.04 (1.6) NA NA −
PCLC — total 50.9 (17.46) 27.4 (16.70) 25.9 (7.95) 26.6 (10.23) b

CESD — total 19.5 (12.16) 7.9 (9.75) 8.4 (7.60) 9.0 (7.84) 0
Pain — total 3.1 (2.63) 0.8 (1.59) 0.8 (1.84) 1.0 (1.87) 0
Fatigue − total 4.2 (2.94) 2.4 (2.38) 1.9 (2.33) 2.8 (2.60) −
NSI − total 32.5 (14.82) 10.0 (13.63) 11.9 (10.31) 10.2 (10.83) b

TBI = traumatic brain injury, CON= controls, mil =military, civ = civilian, PCLC = PTSD Che
NSI = Neurobehavioral Symptom Inventory. – = not significant. Mean (SD).
ap-Value (pairwise post hoc analysis).
civTBI participants sustained a mild to moderate TBI through com-
mon non-blast mechanisms, such as motor vehicle accident or sports-
related injuries. Head injury occurred 1–6 years prior to enrollment.
Participants were excluded if intracranial injury was seen on prior
brain imaging (if available). A GCS score (Teasdale and Jennett, 1974)
between 9 and 15 was also an eligibility criterion if available. As with
milTBI participants with multiple head injuries, the most severe civTBI
served as the “index injury” for estimating time since injury. Duration
of LOC and PTA, derived from medical records and self-report, did not
exceed 24 h and 7 days, respectively, in 23 subjects (92%). Two civTBI
subjects (8%)were characterized as having an injury ofmoderate sever-
ity due, in one case, to a reported PTA of “about one year” and, in the
other case, “a couple of weeks after the accident”.

civCON participants were chosen to control for nonspecific effects of
injury on cognitive and brain imaging data. These participants had no
history of brain injury or LOC, and no primary blast exposure. Extra-
cranial injuries were experienced during the previous 6 years and in-
cluded ligament damage and fractures of the arms and legs due to sports
or motor vehicle accidents.

All prospective participants were excluded if any of the following
were present: not fluent in English, history of neurologic disorders asso-
ciated with cerebral dysfunction and/or cognitive deficit (e.g., cerebral
palsy, mental retardation, epilepsy), history of severe psychiatric disor-
der (e.g., bipolar disorder, schizophrenia) with the exception of PTSD,
penetrating gunshot wound to the brain or contraindications to under-
going MRI (e.g., pregnancy, metal implants, claustrophobia). Potential
participants were also excluded based on significant alcohol and/or
drug abuse by administration of the Alcohol Use Disorders Identification
Test (AUDIT) (Babor, 2001) (cutoff score b 20) and the Drug Abuse
Screening Test-10 (DAST-10) (Skinner, 1982) (cutoff score b 7).

2.2. Self-report measures

The Neurobehavioral Symptom Inventory (NSI) (Cicerone and
Kalmar, 1995), determined to be valid and reliable in veterans with
blast TBI (King et al., 2012), was administered to characterize common-
ly self-reported symptoms following concussion. Severity of PTSD
symptoms over the past month was measured with the PTSD Check-
list— Civilian (PCL-C) version (Weathers et al., 1993). Self-reported de-
pression symptoms were assessed with the Center for Epidemiological
Study of Depression Scale (CES-D) (Radloff, 1977). Self-report of pain
and fatigue was measured using visual analog scales ranging from 0 to
10.

2.3. Neuropsychological measures

Participants completed a standard battery of neuropsychological
tests designed to measure cognitive deficits most commonly associated
× 2 ANOVA

I vs CONa mil vs civa Interactiona

0.039 (mil N civ) −
0.021 (civ N mil) −
− −
− −
− −
− −

0.001 (TBI N CON) b 0.001 (mil N civ) b 0.001 (milTBI N civCON, civTBI, milCON)
.004 (TBI N CON) 0.010 (mil N civ) 0.002 (milTBI N civCON, civTBI, milCON)
.009 (TBI N CON) 0.015 (mil N civ) 0.003 (milTBI N civCON, civTBI, milCON)

− 0.011 (milTBI N civTBI)
0.001 (TBI N CON) b 0.001 (mil N civ) b 0.001 (milTBI N civCON, civTBI, milCON)

cklist - Civilian Version, CESD= Center for the Epidemiological Study of Depression Scale,



546 M.R. Newsome et al. / NeuroImage: Clinical 8 (2015) 543–553
with TBI. The battery included measures of processing speed, executive
function, and memory: written and oral forms of the Symbol Digit
Modalities Test (SDMT) (Smith, 1982), parts A and B of the Trail Making
Test (TMT) (Reitan, 1958), Controlled Oral Word Association Test
(COWAT) (Benton et al., 1983), and the California Verbal Learning
Test-II (CVLT-II) (Delis et al., 2000).

2.4. Sternberg Item Recognition Task

The Sternberg working memory task (Sternberg, 1966) consisted of
a total of 72 trials distributed over three imaging runs. A schematic of
the task is presented in Fig. 1. During the Encode phase, participants
were asked to commit to memory 1, 3, or 5 consonants (set size, SS)
over a 1800 ms interval. The number of encoded items constituted the
working memory load, or set size, with 24 trials for each set size; trials
were pseudo-randomized across set size. Tomaintain the same amount
of visual information across the set sizes, asterisks were used to replace
letters for set sizes 1 and 3 (see Fig. 1). Immediately following the
Encode phase, participants viewed a centrally fixated “+” for 4300 ms
(Maintenance phase). This was followed by the Response phase, in
which a single probe letter appeared on the screen for 2800 ms. On
50% of trials, the probe lettermatched one of the itemspresented during
the Encode phase. Participants were instructed to respond with one of
two fingers if the probe letter matched a letter in the Encode stimulus
and with the other finger if the target did not match. The inter-trial in-
terval consisted of a centrally fixated “+” that varied in duration from
3830 to 14,330ms to introduce jitter into the time series for the analysis
of this event-related fMRI task. The task was programmed using
E-Prime software (Psychology Software Tools, Inc., Sharpsburg, PA)
and displayed in the scanner using a back-projection video system
(Cleveland: Avotec Inc., Stuart, FL; BCM: Sharp USA, Mahwah, NJ). To
ensure that participants understood how to perform the task, individual
training sessions were provided prior to the scan, and all subjects
reached a criterion of 80% accuracy on SS1 during all runs.

2.5. MR image acquisition

Scanningwas conducted at the Cleveland Clinic and Houston sites
using a Siemens TIM Trio 3 T MRI scanner (Erlangen, Germany)
equipped with a 12-channel receive-only head coil. Whole-brain
fMRI scans were acquired with a gradient-echo, echoplanar (EPI)
pulse sequence [31 4-mm thick contiguous axial slices, TE = 29 ms;
TR= 2800 ms, flip angle (FA)= 80°; FOV= 256 × 256mm; matrix =
128 × 128; in-plane resolution = 2 × 2 mm]. The EPI sequence at the
Cleveland Clinic was modified to store the full 24-bit acquisition, but
otherwise scanning at the Houston sites and the Cleveland Clinic were
identical. The SIRT was performed over three imaging runs, each lasting
Fig. 1. Schematic of the encoding, maintenance, and response events in the S
a total of 585 s (209 volumes per imaging run). High resolution struc-
tural MRI scans [T1 with T1-weighted inversion recovery turboflash
(MPRAGE), 120 axial slices, thickness 1–1.2 mm, FOV = 256 × 256,
TI/TE/TR/FA 900 ms/1.71 ms/1900 ms/80, matrix 256 × 128, receiver
band width (BW) 62 kHz] were acquired for registration with lower
resolution EPI images. To facilitate combining data across sites, experi-
enced MR physicists (MJL and EB) set up and tested identical MRI pro-
tocols at both sites. Comparison of acquired phantom data indicated
similar image quality and signal-to-noise ratio. Frequent quality assur-
ance scans were performed at each institution to ensure that imaging
data were free of scanner artifacts and comparable across sites.

2.6. Image analysis (structural MRI)

All structural MRI scans were reviewed for TBI-related and inciden-
tal pathology by board-certified neuroradiologists (RA and SEJ). Quanti-
tative regional brain volumes were obtained using the parcellation
method incorporated in Freesurfer 5.1 software (http://freesurfer.net/
fswiki) using the Desikan atlas (Desikan et al., 2006). Results for each
participant were visually inspected by a single rater to ensure accuracy
of the cortical surface reconstruction. Manual editing, where necessary,
was performed to optimize accuracy. The surface inaccuracies involving
skull stripping or frank exclusion of brain parenchyma were edited ei-
ther by (1) adding control points to aid FreeSurfer in the identification
of white matter (since it uses the WM/GM boundary as a starting
place for reconstructing the pial surface), (2) by fixing the skull strip
by removing remaining dura, or (3) by adding back in the sections of
brain that were inadvertently automatically removed. Correction for in-
tracranial volume (ICV)was achieved by dividing the volume of interest
by ICV and multiplying by 100.

2.7. Image analysis (fMRI)

The first 4 pre-steady-state volumes of the EPI time series were re-
moved. The remaining images were time-shifted, motion corrected,
and spatially filtered using a 2D 4 mm full width at half maximum
(FWHM)Gaussianfilter in the Fourier domain. A deconvolution analysis
was used to extract the hemodynamic response function (HRF) to the
task for each of the set sizes (SS1, SS3, and SS5). For data reduction pur-
poses, the analysis for this study focused on the Encode phase, which
was characterized by the sum of the HRF points 2.8 and 5.6 s post stim-
ulus onset. Individual subject Encode t-maps for SS1, SS3, and SS5 trial
types were converted to z-maps and transformed to Talairach stereo-
taxic space (Talairach and Tournoux, 1988). Because brain activity dur-
ing errors can be different than that during correct responses, to report
brain activation that corresponds with working memory processing,
events for which responses were errors were omitted from analysis.
ternberg Item Recognition Task. ITI = inter-trial interval; SS = set size.

http://freesurfer.net/fswiki
http://freesurfer.net/fswiki
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Results in the functional regions of interest (fROI) were defined by
brain regions that demonstrated working memory load effects during
the Encode phase. T-maps of load effect were generated for each of
the four groups (milTBI, milCON, civTBI, and civCON). A significant clus-
terwasdefined by an individual voxel probability (p b 0.005) and amin-
imum cluster size (0.684ml), for an overall family-wise error of p b 0.05.
A disjunction mask was created by combining the suprathreshold
voxels from the group t-maps. Large fROIswere divided along localmin-
ima in the averaged t-maps. Within each fROI and set size, z-statistics
were averaged for each subject.

For each fROI, a 3 (SS1, SS3, and SS5) × 2 (TBI/CON) × 2 (mil/civ)
ANOVA was conducted. The within-subject factor was set size and be-
tween subject factors were TBI/CON and mil/civ. False discovery rate
(FDR) was used to correct for multiple comparisons. For those two-
way (TBI/CON × Load; mil/civ × Load) and three-way (TBI/CON × mil/
civ × Load) interactions surviving the FDR correction, Tukey B post
hoc analyses were used to identify which groups contributed to the sig-
nificant interaction. Finally, to examine the specificity of the role of any
regions distinguishing military from civilian TBI groups, exploratory
analyses were conducted that related regions that were significant in
the three-way ANOVA to SIRT performance and neuropsychological
variables. To understand the role of potential neurodegeneration, signif-
icant regions were also related to time since injury.

3. Results

The final sample consisted of 100 participants, with 25 in each group
(see Table 1). No significant group differences in gender were observed,
with the majority of the participants being male. The military groups
were older by 2 years (p = 0.039) and reported a year less education
(p= 0.021) than the civilian groups. Time since the most severe injury
was significantly longer for milTBI than civTBI participants (p=0.001).
For the milTBI group, 11 participants (44% of the sample) had been ex-
posed to a single blast event, 5 (20%) reported 2 blast exposures, and the
remaining 9 (36%) reported multiple blast exposures (range 3–20).

3.1. Self-report measures

Participants in the milTBI group endorsed significantly more
concussion-related symptoms (NSI), posttraumatic stress disorder
(PTSD) (PCL-C), depression (CES-D), and pain compared to the par-
ticipants in the three other groups (Table 1). The milTBI group also
reported significantly more fatigue relative to the civTBI group.
Fig. 2. Accuracy and reaction time as a function ofmemory set size, or load, for each group. For lo
and civilian control subjects. For load 5, the military TBI subjects were significantly less accura
3.2. Neuropsychological and Sternberg performance

Two-way (TBI/CON vs. mil/civ) ANOVAs were conducted on each
neuropsychological test (Table 2). No differences in performance were
identified between the groups for the neuropsychological measures.

Behavioral performance on the SIRT wasmeasured in terms of accu-
racy and reaction time. Responses that were errors were excluded from
analyses. Overall accuracy, collapsed across set sizes, had a significant
group effect, with the milTBI group showing the lowest accuracy rates.
At the most difficult working memory condition (SS5), the milTBI
group was less accurate than the other three groups (milCON, civTBI,
civCON) (see Fig. 2). Despite these group differences, all four groups
performed well above chance (50%).

Analysis of reaction time was conducted in three different ways.
First, the average reaction time was calculated across all set sizes.
There were no significant differences between the means of overall
reaction time between the groups. Second, the reaction times were an-
alyzed for each individual set size (see Table 2 and right panel of Fig. 2).
At SS1, the TBI groups (civTBI and milTBI) were significantly slower
than the control groups (civCON and milCON). Finally, a linear regres-
sion was fit for each subject, with reaction time as the dependent
variable and set size as the independent variable. From this regression,
the slope and intercept were extracted and compared using a 2 × 2
ANOVA. The average intercept of the TBI groupswas significantly great-
er than the average intercept of the control groups (Table 2). No signif-
icant group differences were observed for slope.

3.3. Structural MRI

None of the participants had lesions consistent with TBI on conven-
tional MRI. Groups did not differ on gray matter, white matter, or cere-
brospinal fluid whole brain volumes (Table 2). No significant group
differences were observed following False Discovery Rate correction
for individual cortical and subcortical volumes and cortical thickness
measures (Supplementary Tables 2–4).

3.4. fMRI

Thedisjunction analysis identified25Encode fROIs that demonstrated
differential activation based on set size (Fig. 3 and Supplementary
Table 1). As noted above, all fROIs were analyzed for set size by group ef-
fects using a 3×2×2ANOVA. False discovery ratewas used to control for
multiple comparisons. None of the regions had a significant interaction
ad 3, themilitary TBI subjects were significantly less accurate than the civilian TBI subjects
te than all other three groups, which did not differ from each other.



Table 2
Neuropsychological testing, Sternberg task performance, and whole brain volumes.

2 × 2 ANOVA

Variable milTBI milCON civTBI civCON TBI vs CONb mil vs civb Interactionb

Neuropsychological testing
Trails A — sec 25.6 (9.6)a 23.5 (4.6) 23.6 (5.7) 25.8 (11.0) − − −
Trails B — sec 71.0 (40.7) 60.2 (24.9) 57.8 (19.1) 76.2 (44.0) − − −
Trails B−A — sec 45.3 (35.8) 36.6 (22.7) 34.2 (18.5) 50.4 (41.1) − − −
CVLT short delay — total 10.8 (3.2) 10.1 (3.1) 11.5 (2.0) 10.7 (2.9) − − −
CVLT long delay — total 10.5 (3.6) 10.5 (2.8) 11.9 (2.0) 10.8 (2.9) − − −
SDMT — written correct 51.5 (10.9) 57.0 (8.1) 58.9 (13.8) 57.0 (10.6) − − −
SDMT — oral correct 58.8 (11.3) 64.2 (11.9) 64.0 (12.7) 65.7 (14.2) − − −

Sternberg task
Accuracy — % (SD)

Set size 1 93.3 (5.1) 95.5 (4.8) 95.7 (4.2) 96.7 (3.6) − − −
Set size 3 89.4 (10.6) 94.2 (5.8) 96.0 (5.2) 94.5 (3.9) − 0.014 (mil b civ) 0.025 (milTBI b civCON, civTBI)
Set size 5 83.5 (16.2) 92.2 (8.3) 92.7 (9.2) 92.8 (5.3) 0.038 (TBI b CON) 0.021 (mil b civ) 0.047 (milTBI b civCON,

civTBI, milCON)
Overall 88.8 (8.4) 93.9 (4.6) 94.8 (4.5) 94.7 (3.0) 0.023 (TBI b CON) 0.003 (mil b civ) 0.018 (milTBI b civCON,

civTBI, milCON)

Reaction time — ms (SD)
Set size 1 1014.4 (189.0) 945.7 (119.6) 971.5 (167.0) 897.3 (174.3) 0.032 (TBI N CON) − −
Set size 3 1227.9 (214.8) 1137.9 (139.2) 1118.7 (179.1) 1091.4 (209.0) − 0.041 (mil N civ) −
Set size 5 1353.2 (270.1) 1257.7 (202.6) 1229.7 (182.7) 1231.3 (270.3) − − −
Average 1198.5 (209.9) 1113.8 (133.6) 1106.6 (159.1) 1073.3 (207.3) − − −

Reaction time — intercept 944.4 (193.4) 879.8 (134.3) 913.0 (180.7) 822.9 (164.4) 0.025 (TBI N CON) − −
Reaction time — slope 84.7 (46.5) 78.0 (45.7) 64.5 (35.9) 83.5 (41.0) − − −

Whole brain volumesc

Gray matter 35.37 (2.30) 35.74 (2.71) 36.83 (3.46) 36.83 (2.57) − − −
White matter 45.75 (2.49) 46.89 (4.05) 48.82 (4.65) 48.3 (2.99) − − −
Cerebrospinal fluid 0.08 (0.02) 0.08 (0.01) 0.09 (0.02) 0.08 (0.01) − − −

TBI = traumatic brain injury, CON= controls, mil = military, civ = civilian, COWAT= Controlled Oral Word Association Test, CVLT= California Verbal Learning Test, SDMT= Symbol
Digit Modalities Test, − = not significant.
aMean (SD).
bp-Value (pairwise post hoc analysis).
cmm3, corrected for intracranial volume.
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effect between military service (mil vs. civ) and working memory load
(Table 3).

Seven regions demonstrated significant interaction effects of
working memory load and the presence/absence of a TBI (Table 3
and Fig. 4). These included 3 cortical regions (left insula/inferior
frontal gyrus, bilateral middle orbital frontal gyrus, and right middle
occipital gyrus), 3 subcortical regions (right head/body of the cau-
date, right tail of the caudate, and left caudate/putamen/pallidum),
Fig. 3. Regions that showed a load effect (i.e., greater activation in load 5 than load 3, an
and the cerebellar vermis. In 5 regions (left insula/inferior frontal
gyrus, right head/body of the caudate, right tail of the caudate, left
caudate/putamen/pallidum, and cerebellar vermis), the two non-
injured control groups demonstrated a monotonic increase in fMRI
signal intensity with increasing load; the two TBI groups failed to
demonstrate this monotonic increase (Fig. 4). In 2 regions (bilateral
middle orbital frontal gyrus, and right middle occipital gyrus), the two
control groups demonstrated a decrease in activation (“deactivation”)
d greater activation in load 3 than load 1) in all four groups during Encode events.



Table 3
Regions demonstrating significant two- and three-way interactions with WM load.

Tailarach coordinates

# Side Region BA x y z Vol (ml). TBI/CON ∗ Load mil/civ ∗ Load TBI/CON ∗ mil/civ ∗ Load

1 L Insula, inf. frontal gyrus 45 −32 22 4 4.0 * − −
2 B Mid. orbital gyrus 12 0 42 −10 4.9 * − −
3 R Angular gyrus 39 50 −74 29 1.7 * − −
4 R Caudate (head, body) − 16 9 18 12.3 * − *
5 R Caudate (tail) − 23 −22 28 2.9 * − *
6 L Caudate (head), putamen, pallidum − −18 −2 14 9.0 * − −
7 B Cerebellar vermis − 2 −63 −24 7.2 * − −

*p b 0.05.
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at SS3; in contrast, the TBI groups did not demonstrate deactivation at
SS3 (Fig. 4).

Two regions demonstrated 3-way interactions: right tail of the cau-
date and right head/body of the caudate (see row 3, middle and right-
most graphs in Fig. 4). In both of these ROIs, activation in the milTBI
group did not change with working memory load, whereas the three
other groups demonstrated a monotonic increase associated with
working memory load. Effects were still significant after covarying for
Fig. 4. Significant two-way interactions (1–7) between group (control vs. TBI) and set size (1, 3
(1, 3, 5) and military status (military vs. control).
age, education, PTSD, depression, pain, and fatigue (Supplementary
Table 5) and after removing subjects with moderate TBI.

3.5. Relation of SIRT performance, neuropsychological, and post-injury
interval to caudate activation

Exploratory analyses revealed that activation of the right caudate
head/bodywas significantly related to reaction time slope in the civilian
, 5) and significant three-way interactions (8–9) between group (control vs. TBI), set size



Fig. 5. Slopes for activation in the right caudate head/body and reaction timewere positively correlated in the civilian TBI group, but not in themilitary TBI group, suggesting a dissociation
between the two groups.
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TBI group (p b 0.029), while no region was related to reaction time slope
or any other task performance measure in themilitary TBI group (Fig. 5).
Conversely, the military TBI group showed significant or marginally sig-
nificant negative relations between caudate activation and two DSM-IV
clusters of PTSD, re-experiencing (p = 0.047) and avoidance (p =
0.054), in addition to a painmeasure (p=0.068), thatwere not observed
in the civilian TBI group. Regarding post-injury interval, there were no
significant relations with caudate in either TBI group; however, the mili-
tary TBI group showed a negative relation between post-injury interval
and slope of activation in bilateral middle orbital gyri, a region that was
significant in the two-way (Group × Set Size) interaction.

3.6. Number of blasts

Fourteen of 25 military TBI subjects (56%) were exposed to two or
more blasts. Subjects with one blast were compared to those who had
experienced two or more blasts on all outcomemeasures and encoding
activation. Except for pain, which was significantly greater in subjects
with two or more blasts, all results were NS (Supplementary Tables 6
and 7).

4. Discussion

Our fMRI study provides support for the hypothesis that the basal
ganglia, in particular the caudate nucleus, may be specifically vulnerable
to the effects of blast injury. The blast TBI group (milTBI), in contrast to
the blunt-force TBI group (civTBI) and both control groups, failed to
demonstrate a monotonic relation between set size and activation in
the caudate nucleus (head, body, tail). The lack of a monotonic effect
in the blast TBI group could not be attributed toworkingmemory errors,
since these trials were removed from the image analyses. Notably, re-
duced activation in the caudate in the blast TBI group was significant
even when age, education, PTSD, depression, fatigue, and pain symp-
toms were taken into account.

The caudate has long been implicated in verbal working memory.
Set size effects have previously been found in the caudate of healthy
subjects (Braver et al., 1997; Cairo et al., 2004; Chang et al., 2007). The
caudate is active during working memory encoding (Chein and Fiez,
2001; Chang et al., 2007), maintenance (Chein and Fiez, 2001; Chang
et al., 2007), manipulation (Lewis et al., 2004), retrieval (Chang et al.,
2007), and in preparation of a motor response to a working memory
stimulus (Postle and D3Esposito, 1999). In addition, functional connec-
tivity of the caudate has been reported to have a positive relation with
performance in an n-back working memory task (Gordon et al., 2015).

The caudate has been suggested to facilitate updating contents in
working memory by receiving dopamine from the brainstem for trans-
mission to the dorsolateral prefrontal cortex (Murty et al., 2011) and by
disinhibiting the mediodorsal nucleus of the thalamus (Ashby et al.,
2005). It has also been shown to be functionally and structurally con-
nected to both prefrontal cortex and thalamus (Robinson et al., 2012).
Further, altered activation during working memory tasks in patients
with civilian TBI has been suggested to be related to a disrupted dopa-
mine system (McAllister et al., 2004;Wishart et al., 2011) andmodulat-
ed bydopaminergic genes (McAllister, 2009). Recently, Yeh et al. (2014)
identified white matter disruptions in the fronto-striatal circuit and
brainstem in active duty military personnel with blast TBI, suggesting
that connections from brainstem to prefrontal cortex via the thalamus
and caudate may be particularly vulnerable to blast injury.

What characteristics of the caudatemay have contributed to deficits
in working memory activation after blast exposure? The lack of signifi-
cant differences in brain volume or cortical thickness suggests that al-
tered activation was not driven by atrophy of the caudate. However, a
report of blast-relatedwhitematter hemispheric asymmetries in the in-
ternal capsule (Yeh et al., 2014), adjacent to the caudate, could have im-
plications for impaired neural transmission. Moreover, the striatum
(caudate and putamen) is a highly plastic area linked to changes in
both learning and disease (Kreitzer andMalenka, 2008), thereby affect-
ing the caudate3s role in working memory. As well, neuroplasticity of
the caudate has been found after intensive training on a task involving
attention and working memory (Nikolaidis et al., 2014), and changes
in caudate activation during that task further predicted individual dif-
ferences during performance of a second, unpracticed, task — the SIRT
(Nikolaidis et al., 2014).

In a post-mortem study of brains of athletes and veterans who had a
history of repetitive TBI, chronic traumatic encephalopathy (CTE), a
type of progressive neurodegeneration linked to increased tau patholo-
gy, was found in 80% of the brains (McKee et al., 2013), suggesting that
veterans from the Iraq and Afghanistan wars may be at risk for CTE.
Macroscopic changes in CTE are preceded by subtle changes in memory
and attention (McKee et al., 2009;McKee et al., 2013), and it is plausible
that the performance deficits observed during the SIRT could be related
to early CTE symptoms. Veterans from older wars who experienced TBI
were found to be more likely to develop dementia than veterans who
did not experience TBI (Barnes et al., 2014). However, the majority of
the veterans in the Barnes et al. (2014) report had more severe TBI
than the veterans in this paper, and a recent meta-analysis of civilian
mild TBI suggests there is insufficient evidence for an association of sin-
gle or repetitive mild TBI with dementia (Godbolt et al., 2014). Addi-
tionally, increased endorsement of PTSD symptoms in the military TBI
group may suggest alterations in cognition and pathology as a result
of PTSD (Tian et al., 2014). TBI and PTSD may share neurocircuitry
susceptible to neurodegeneration, possibly similar to how CTE has
been linked to Parkinson3s disease, Alzheimer3s disease, motor neuron
disease, and frontotemporal dementia (McKee et al., 2013), and by
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impacting the caudate, blast TBI may join other diseases that are
involvedwith striatal degeneration (Kreitzer andMalenka, 2008). How-
ever, because of the cross-sectional nature of the present study, it is un-
clear whether changes in the caudate are related to chronic
neurodegeneration or to static effects of injury that occurred approxi-
mately 4 years earlier.

While there is currently little support for a relationship between iso-
lated mild TBI and Parkinson3s disease (Marras et al., 2014), repetitive
mild and more severe TBI have been linked to Parkinson3s disease
(Bower et al., 2003; Shahaduzzaman et al., 2013). The caudate is impli-
cated in Parkinson3s disease, where it is among the first structures to re-
ceive and transmit depleted amounts of dopamine (Cools, 2006), which
could be related to the working memory processes measured here.
Subjects newly diagnosedwith Parkinson3s disease showed reduced ac-
tivation in the caudate while performing the 2-back working memory
task compared to healthy controls,with no group differences in prefron-
tal cortex, consistent with the gradual depletion in dopamine from stri-
atum to frontal structures (Cools, 2006; Marklund et al., 2009). Future
studiesmay test thepresence of additional similarities between patients
with PD and blast TBI along different time points in the progression of
the disorders to understand the extent to which PD may be a model
for advanced blast TBI.

Our group (Scheibel et al., 2012; Fischer et al., 2014) has previously
documented alterations in activation during conflict monitoring and re-
sponse inhibition in veterans approximately two to four years after blast
exposure, suggesting that effects of blast TBI on brain activation are
long-lasting. The present study provides additional evidence for a long
term blast-related TBI effect on brain activation in another executive
function, working memory.

In our previous fMRI study (Fischer et al., 2014) we detected no per-
formance differences between blast and blunt-force TBI despite differ-
ences in brain activation. In the present investigation, we identified
decrements in accuracy for working memory loads 3 and 5 in the blast
TBI group. The SIRT, therefore, may serve as a sensitive cognitive test
for distinguishing TBI due to blast from blunt-force. Alteration in activa-
tion patterns unaccompanied by changes in performance suggests an
ability of the brain to adapt to disruption that may not have a direct
effect in everyday performance. However, the altered activation and
performance decrements found in the present study suggest that
veterans may experience problems in everyday life situations which
impose working memory demands, e.g., multitasking, conversing, and
reasoning (Just and Carpenter, 1992; Johnson-Laird, 1994; Acheson
and MacDonald, 2009).

Exploratory analyses revealed an association between activation in
the caudate and reaction time in the civilian TBI group that was not ob-
served in the military TBI group (Fig. 5), further suggesting how blast
TBI may differ from civilian TBI. Lack of a positive relation with reaction
time is consistent with the lack of a set size effect in the military TBI
group, since larger set sizes would take longer to process. However,
the military TBI group did show significant or marginally significant
negative relations between caudate activation and measures of PTSD
and pain that were not observed in the civilian TBI group, suggesting
that these symptoms may be related to the disrupted caudate activa-
tion. The caudate has been associated with physical pain (Erpelding
and Davis, 2013). Future studies may explore how re-experiencing
and avoiding memories of physical and emotional pain are associated
with working memory processing in the caudate. Future studies may
also investigate the effect of blast on orbitofrontal gyri in light of our ex-
ploratory analyses demonstrating that the blast TBI group demonstrat-
ed a negative relation between post-injury interval and bilateral
orbitofrontal activation. Bony protuberances near orbitofrontal cortex
that are responsible for axonal tearing in blunt-force trauma may also
play a role in brain tissue impacted by blast movement.

We would like to highlight some limitations of our study. We inves-
tigated effects of blast on verbal working memory; it would be desirable
to determine if our findings would be replicated using non-verbal
working memory tasks. While all military subjects had TBI as a result
of blast exposure, somemay have had additional pathology due to accel-
eration–deceleration or blunt-force trauma due to secondary blast; how-
ever, no civilian TBI patients had injuries related to blast. Thus, our group
comparison likely represented a blast + blunt-force TBI versus blunt-
force TBI. Approximately half of the blast TBI subjects had experienced
more than one blast injury, and it is possible that even though criteria
for severe TBI were not met in any subject, multiple blasts could aug-
ment some symptoms to be similar to those observed in severe TBI
patients; significantly greater Neurobehavioral Symptom Inventory
(NSI) (Cicerone and Kalmar, 1995) scores in the blast TBI group
than in the other three groups is consistent with this possibility.
However, number of blasts did not appear to impact age, education, or
scores on the PCL-C, CESD, NSI and fatigue scales, although painwas sig-
nificantly greater in subjects with two or more blasts. Number of blasts
also did not impact the significance of activation in any of the seven
fROIs. The TBI sample included two moderate TBI subjects, raising the
possibility that the results could have been skewed by their greater se-
verity. However, removing the moderate subjects did not alter the re-
sult of the right caudate being significant. It is notable that symptoms
were greater in the blast TBI group than in the civilian TBI group, even
though the blast group had a significantly longer post-injury interval
than the civilian group; in this study, post-concussion effects of blast
TBI appear to be more long-lasting than effects of blunt-force TBI.

Themilitary groups were not matched on combat exposure. TBI and
high levels of combat intensity during deployment have been shown to
increase the risk of post-deployment psychological distress, including
PTSD (Yurgil et al., 2014). Not surprisingly, in our study, military per-
sonnelwhohad been exposed to blast reported greater levels of psycho-
logical distress compared to military personnel not exposed to blast on
self-report measures of PTSD symptoms, depression, fatigue, and pain.
Given the higher levels of psychological distress reported by soldiers ex-
posed to blast, we may assume that blast exposure is associated with
higher levels of self-reported combat stress, although this variable was
not measured. For purposes of this study, however, the key question is
whether the amount of psychological distress reported by veterans
nearly 4 years post-deployment can explain our brain imaging findings
involving a working memory task. Importantly, when we entered self-
report psychological distress variables as covariates in the group analy-
ses, the overall fMRI results were unchanged, indicating that chronic
psychological distress is not influencing our brain imaging findings.

Could combat exposure influence brain imaging results independent
of psychological distress? A prospective, longitudinal brain imaging
study by vanWingen et al. (2012) conducted pre- and postdeployment
demonstrated that higher intensities of combat exposure are associated
with alterations in brain attentional networks even in soldiers who do
not report psychological distress or psychiatric complaints. Importantly
for the current study, these brain alterations normalized within
1.5 years postdeployment. Our military TBI personnel were evaluated
on average 4 years postdeployment.

5. Conclusions

In both blunt-force and blast TBI groups, activation was altered
throughout the brain in frontal (orbitofrontal, inferior frontal gyri/
insula), posterior (angular gyrus, cerebellum), and subcortical (caudate,
putamen, pallidum) regions. However, only blast TBI disrupted amono-
tonic relation between the number of items to be remembered in the
Sternberg Item Recognition Task and activation in the caudate during
encoding. Blast TBI was also associated with worse performance on
the SIRT, although no group differenceswere found on neuropsycholog-
ical measures of memory, inhibition, and general processing speed.
With this and our previous study (Fischer et al., 2014), we have identi-
fied chronic blast-specific changes in brain activation within the dorso-
lateral and orbitofrontal striatal circuits which engage the caudate
nucleus. fMRI patterns in response to the SIRT and Stop Signal tasks,
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and potentially other tasks that recruit the caudate, may serve as bio-
markers for blast TBI.
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