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Macrophages (Mϕ) are innate immune cells with a variety of functional phenotypes
depending on the cytokine microenvironment they reside in. Mϕ exhibit distinct
activation patterns that are found within a wide array of activation states ranging from the
originally discovered classical pro-inflammatory (M1) to the anti-inflammatory (M2) with
their multi-facades. M1 cells are induced by IFNγ + LPS, while M2 are further subdivided
into M2a (IL-4), M2b (Immune Complex) and M2c (IL-10) based on their inducing stimuli.
Not surprisingly, Mϕ activation influences the outcome of viral infections as they produce
cytokines that in turn activate cells of the adaptive immune system. Generally, activated
M1 cells tend to restrict viral replication, however, influenza and HIV exploit inflammation
to support their replication. Moreover, M2a polarization inhibits HIV replication at the
post-integration level, while HCMV encoded hrIL-10 suppresses inflammatory reactions
by facilitating M2c formation. Additionally, viruses such as LCMV and Lassa Virus directly
suppress Mϕ activation leading to viral chronicity. Here we review how Mϕ activation
affects viral infection and the strategies by which viruses manipulate Mϕ polarization
to benefit their own fitness. An understanding of these mechanisms is important for
the development of novel immunotherapies that can sway Mϕ phenotype to inhibit
viral replication.
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ACTIVATED MACROPHAGES: THE FOE TO VIRAL INFECTIONS

Macrophages (Mϕ ) recognize viruses, and bridge innate and adaptive immunity to assist in T cell
priming (Naito et al., 1996; Takahashi et al., 1996; Iwasaki and Medzhitov, 2010; Trus et al., 2020;
Petrina et al., 2021). Mϕ polarization (Murray et al., 2014; Yunna et al., 2020), occurs in response
to changing environmental stimuli where activated Mϕ can become (M1) associated with Th1
cytokines response, or (M2) associated with Th2 cytokines (Nathan et al., 1983; Stein et al., 1992;
Gordon and Taylor, 2005; Yunna et al., 2020). The pro-inflammatory M1 phenotype is induced
by lipopolysaccharide (LPS) in the presence of interferon-gamma (IFNγ) (Nathan et al., 1983;
Nathan and Hibbs, 1991; Tugal et al., 2013). In contrast, M2 Mϕ function as anti-inflammatory
cells and promote tissue repair (Stein et al., 1992; Martinez et al., 2006; Tugal et al., 2013). The M2
designation has been further subdivided into (M2a, b, c, and d) based on the cytokines that induces
them and their gene expression profiles (Mantovani et al., 2004). For example, M2a Mϕ, involved
in parasitic infections (Sica and Mantovani, 2012), can be derived from either bone marrow or
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spleen tissues by short or long-term incubation with IL-4 (Mulder
et al., 2017; Banete et al., 2021). Genetic approaches have been
used to investigate Mϕ activation (Biswas and Mantovani, 2010;
Smale, 2010; Lawrence and Natoli, 2011), but little is known about
dysregulated Mϕ functions during viral infection (Beadling and
Slifka, 2004; Trivedi et al., 2018).

In various infectious diseases, activated Mϕ produce cytokines
such as IL-6, IL-12 and IL-23 to regulate immunity against viral
invasion (Arango Duque and Descoteaux, 2014; Ruytinx et al.,
2018). IL-12 and IL-23 are induced by diverse Mϕ populations
after Toll-like receptor (TLR) stimulation by viral pathogen-
associated molecular patterns (PAMPs) (Gee et al., 2009; Mehta
et al., 2015; Petes et al., 2017; Che Mat et al., 2018; Alothaimeen
et al., 2021; Banete et al., 2021).

When Mϕ encounter viruses or viral PAMPs, they begin
producing type I IFNs, which are needed to aid with NK and
eventually T cell activation (Kadowaki and Liu, 2002; Keppler
et al., 2012). This IFN rapid response starts with the production
of IFN-β followed by IFN-α, causing the phosphorylation of
interferon regulatory factor 7 (IRF7), which is needed to enhance
the antiviral response (Sun et al., 2013). IRFs can also be activated
via the endoplasmic reticulum (ER) adaptor protein stimulator
of interferon genes (STING), which detects cytoplasmic DNA
from viral infection, resulting in type I IFN induction that
interferes with virus replication (Banete et al., 2018). Several
viruses have been shown to interfere with this STING-induced
type I IFN response (Banete et al., 2018). For example, Dengue
virus (DENV) expresses a protease (NS2B3) that cleaves STING
causing the reduction of induced type I IFN after infection with
DENV (Aguirre et al., 2012).

Other viruses, such as Herpes simplex virus (HSV), have been
shown to interfere with type I IFN production in human Mϕ after
infection by expressing a viral inhibitory protein that interferes
with the STING signalosome activation of IRF (Christensen et al.,
2016). There is evidence that the TRIM family of proteins are
critical in the activation of STING. Recent reports show that
TRIM29 is expressed in alveolar Mϕ, where they regulate their
activation state, acting as a negative regulator of antiviral immune
responses (Xing et al., 2017, 2018; Li et al., 2018). TRIM29
was shown to be up-regulated by viral RNA and DNA, with
EBV suppressing innate immune responses by targeting STING
through the TRIM29 signaling pathway, indicating a mechanism
of persistence for DNA viruses. Whether viruses can regulate
Mϕ polarization through TRIM29 remains to be determined.
Type II IFN (IFN-γ) can directly inhibit Murine Norovirus
replication by reducing the levels of both structural and non-
structural viral proteins expression in infected cells (Changotra
et al., 2009). Additionally, the ability of IFN-γ to induce nitric
oxide synthase (iNOS) to aid in how Mϕ respond to viruses
to inhibit Coxsackievirus viral replication (Jarasch et al., 2005).
Viruses have developed mechanisms to evade this activation
pathway; for example Epstein-Barr virus (EBV) encodes several
proteins that inhibit IFN-γ as well as type I IFNs by targeting
the activation of the JAK-STAT signaling pathways (Taylor et al.,
2015; Jangra et al., 2021).

In addition to IFNs, other cytokines secreted by activated
Mϕ, such as IL-1β, and IL-6, can also contribute to antiviral

activities due to their ability to activate MAPK/ERK signaling
pathways (Lucin et al., 1994; Ichikawa et al., 2002; O’Neill, 2008;
Tanaka et al., 2014; Mariani et al., 2019). Thus, activated Mϕ can
help mediate viral restriction by producing a variety of cytokines
which could also be influenced by their polarization states.

Studies on HIV-1 have characterized some of the antiviral
responses observed in Mϕ (Cassol et al., 2009; Li et al., 2009).
In HIV-1, M2a Mϕ inhibit virus replication to a certain degree
without impairing viral entry or reverse transcriptase activities,
suggesting that inhibition occurs in the later events of the viral
cycle, while M1 cells downregulate CD4 expression to prevent
HIV-1 entry into cells (Cassol et al., 2009). The mechanism
behind the impaired virus replication in M2a cells has not been
fully elucidated in the above model. Though, in other viral
infections, HSV-1 replication was observed to be significantly
higher in M2 than M1 cells in vitro, but in vivo, M2 cells
were better at restricting viral replication (Lee and Ghiasi,
2017). Thus, viral inhibition by M2a cells could be limited to
certain viral models. Indeed, more studies are needed to carefully
delineate the mechanism of antiviral responses in activated Mϕ,
because certain virus infections could benefit from the Mϕ

polarization status.

HOW VIRUSES COUNTER Mϕ

ACTIVATION

Mϕ are early targets for viral infection, and their activation by
infection plays a crucial role in regulating innate and adaptive
immunity. Many studies show that pathogenic Arenaviruses such
as LASV and Junin virus (JUNV) are highly immunosuppressive,
in contrast with their non-pathogenic counterparts Mopeia
virus (MOPV) and Tacaribe virus (TCRV). Infection does
not activate human Mϕ upon infection, and patients who
succumb to hemorrhagic disease lack a significant upregulation
of pro-inflammatory cytokines in their sera (Baize et al.,
2004). As well, the pathogenic LCMV has also been shown
to inhibit Mϕ activation, in contrast to Pichinde arenavirus,
which does not cause disease in humans (Xing et al., 2015a).
LCMV infection of human monocyte-derived Mϕ does not up-
regulate cytokine production and the co-stimulatory molecules
CD80 and CD86, leading to the inhibition of Mϕ activation
(Xing et al., 2015a).

Furthermore, infection with human cytomegalovirus
(HCMV) is associated with immunological dysfunction. Studies
show that HCMV encodes different gene products that can
modulate immune functions to enhance viral pathogenesis.
UL111A encodes homologs of the anti-inflammatory cytokine
human IL-10 during both the acute and latent stages of
infection (Kotenko et al., 2000; Jenkins et al., 2004). Mϕ

polarization is skewed toward a deactivated M2c phenotype,
with downregulated pro-inflammatory cytokine production,
and inhibition of MHC I and II expression (Avdic et al., 2013).
As well, M2c polarization by HCMV viral IL-10 reduces their
ability to stimulate CD4 T cell activation and proliferation
(Avdic et al., 2013). Thus, it is crucial to further understand
how viruses can manipulate the activation state of Mϕ to benefit
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their own replication, as it may help in the development of
immunotherapies.

As highlighted above, M1 Mϕ are associated with the
production of inflammatory cytokines (Sica et al., 2015), and are
prominent in the initial stages of the antiviral immune response
(Gracia-Hernandez et al., 2020). Thus, Mϕ represent key targets
for viruses to infect (Sang et al., 2015). This has been observed in
viral infections such as with HIV, where Mϕ act as a reservoir for
HIV due to their long half-life. African Swine Fever Virus (ASFV)
is another virus that infects many types of Mϕ (Basta et al., 1999,
2001; McCullough et al., 1999). In vivo, increased numbers of
Mϕ after ASFV infections were observed and they tend play a
role in ASF viral pathogenesis by contributing to increased levels
of proinflammatory cytokines, typically associated with M1 cells
that can cause severe pathology (Gomez-Villamandos et al., 2013;
Paulina Achita, 2015).

The role IL-6 plays during viral clearance has been shown
to favor viral infections in mice infected with Theiler’s murine
encephalomyelitis virus (Hou et al., 2014). In this study,
excessive levels of the IL-6 cytokine were observed due to viral
infection. This causes an increased number of inflammatory IL-
17-producing helper T cells. The combined effects of IL-6 and
IL-17 synergistically allow for viral persistence because virus-
infected cells were protected from undergoing apoptosis (Hou
et al., 2014). Thus, high levels of IL-6 benefit the virus in this
infection model.

The excessive polarization of M1 and M2 Mϕ can be
correlated with viral infection and its related complications,
such as sepsis and acute respiratory distress syndrome (ARDS)
(Zhang et al., 2019). M1-polarized cells can be problematic in
certain viral infections, as they recruit other cell populations to
the inflammation site, which creates a favorable environment
for virus infection of immune cells (Herbein and Varin, 2010;
Nikitina et al., 2018). An example of M1 Mϕ promoting viral
dissemination is in the acute phase of HIV infection. This phase
is characterized by a predominance of M1 Mϕ expressing the
proinflammatory cytokines TNF-α, IL-1β, IL-6 and IL-18 (Burdo
et al., 2015; Nikitina et al., 2018). This seems to aid in HIV spread,
since inflammation promotes the recruitment of more monocytes
and T-cells to the site, which allows HIV to infect these cells and
establish infection in the host.

In SARS-CoV-2 severe infections, monocytes are recruited to
the lungs where they differentiate into Mϕ that tend to upregulate
pro-inflammatory genes needed for T-cells activation (Gracia-
Hernandez et al., 2020; Zheng et al., 2021). The continuous
recruitment of inflammatory monocytes to lung tissues can be
harmful to the host as it distorts pulmonary Mϕ to persist in
the active M1 state (Morales-Nebreda et al., 2015). This bias
toward M1 Mϕ during viral infection can cause undesirable
pathological inflammatory response leading to ARDS (Brufsky,
2020). In ARDS, high levels of inflammatory cytokines especially
IL-6 are problematic (Zheng et al., 2021). In this scenario, high
levels of pro-inflammatory cytokines enhance viral persistence,
multiorgan failure, vascular permeability and possibly death
(Gracia-Hernandez et al., 2020).

It has recently been shown that infection of Mϕ by SARS-CoV-
2 triggers M2-associated gene expression in vivo. In addition,

infection of polarized M1 and M2 Mϕ significantly increases
the release of both pro- and anti-inflammatory cytokines after
24 and 48 h. Interestingly, although all Mϕ subtypes were
susceptible to SARS-CoV-2 infection, viral load was significantly
lower in M2 compared to M0 (Boumaza et al., 2021). The
higher permissivity of M0 and M1 macrophages to SARS-CoV-
2 infection may be why conditions associated with excessive
M1 polarization, such as obesity and diabetes, are comorbidities
of COVID-19.

Another example where the virus makes use of Mϕ is seen
in Human Cytomegalovirus (HCMV) where the virus is able
to establish a low-level productive infection in both types of
Mϕ (M1 and M2) for a total of 21 days in vitro culture (Bayer
et al., 2013). Both types of Mϕ display features of activation
with upregulation of inflammatory cytokines such as IL-6 and
TNF-α (Bayer et al., 2013). It has been shown that HCMV can
regulate the polarization of infected Mϕ to create a favorable
environment for the virus to disseminate (Nikitina et al., 2018).
These examples remind us of the importance of studying Mϕ

responses in different models of viral infections.

VIRAL TRICKS TO AVOID PATHOGEN
RECOGNITION RECEPTORS
ACTIVATION

Viruses PAMPs are recognized by pathogen recognition
receptors (PRRs) expressed by Mϕ (Kawai and Akira, 2009).
PRRs include Toll-like receptors (TLRs), the retinoic-acid-
inducible gene I (RIG-I)-like receptors (RLRs), melanoma
differentiation-associated gene 5 (MDA5), and NOD-like
receptors (NLRs) (Takeuchi and Akira, 2010). Endosomal TLRs
recognize viral nucleic acids. Upon encountering infections,
these receptors help in the initiation of immune responses,
inducing the influx of inflammatory cells to the site of infection
(Biswas and Mantovani, 2010).

In response to PRRs stimulation (Figure 1), IRFs and NF-κB
are activated to induce IFN production and pro-inflammatory
cytokines. IRF1, 3, and 7 have been implicated as positive
regulators of type I IFN transcription. IRF3 and 7 are essential
for the cytosolic pathway induction of type I IFN, whereas IRF1
is non-essential. IFN signaling then initiates a positive feedback
loop, acting in autocrine and paracrine manners to induce
interferon-stimulated genes (ISGs). Two essential ISGs involved
in RNA virus infections are RIG-I and MDA5, recognizing
cytoplasmic ssRNA and dsRNA, respectively (Reikine et al.,
2014). Upon interaction with their ligands, RIG-I and MDA5
oligomerize to form filaments, interacting with their adaptor
protein MAVS to induce filament formation and signaling.
Activated MAVS form large, prion-like aggregates (Hou et al.,
2011). It has been shown recently that membrane-bound
organelles are platforms for immune signaling events (Vazquez
and Horner, 2015). In addition to the mitochondria, MAVS has
also been found on peroxisomes, where it can induce a unique
signaling pathway that specifically triggers IFNλ expression but
not IFNβ in response to certain viral infections (Dixit et al., 2010;
Odendall et al., 2014; Bender et al., 2015).
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FIGURE 1 | Innate immune antagonism by viruses. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) detect cytosolic
viral RNA and interact with MAVS, cGAS binds DNA to activate the STING pathway. Viral PAMPs interact with Toll-like receptors expressed on the plasma membrane
and in the endosome, leading to the activation of MyD88 and TRIF. Detection of viral nucleic acid triggers downstream signaling culminate in the phosphorylation and
activation of interferon regulatory factors (IRFs) 3 and 7, and expression of type I interferons (IFN) together with NF-kB. Viral proteins inhibit innate sensing and
signaling by interacting with cellular proteins at several steps, as shown. Black arrows indicate pathways that lead to the activation of downstream molecules, while
red blunted arrows indicate steps that are inhibited. Figure created with licensed Biorender software.

Another sensor of RNA virus infection in Mϕ is poly ADP-
ribose polymerase 9 (PARP9) (Xing et al., 2021). Interestingly,
PARP9 is required to control RNA virus infection in STAT1-
dependent signal transduction, enhancing IFN-regulated host
responses (Zhang et al., 2015). While PARP9 increases M1-
associated gene expression (Iwata et al., 2016), PARP14 has been
shown to enhance IL-4-dependent gene expression (Mehrotra
et al., 2011). All members of the Coronaviridae family encode a
macrodomain that reverse ADP-ribosylation by PARP proteins
(Grunewald et al., 2019), and recently the SARS-CoV-2 Nsp
macrodomain has been shown to impair IFN signaling and
induction of IFN-responsive genes (Russo et al., 2021).

Moreover, TLR signaling pathway molecules are targets for
viral inhibition. Arenaviruses are able to inhibit a TLR2 response
through the suppression of NF-κB activation by the viral NP
(Rodrigo et al., 2012). The Arenavirus NP plays several roles
in the suppression of immune responses (Martinez-Sobrido
et al., 2007). It is able to prevent the nuclear translocation
and transcriptional activity of NF-κB by binding the IkB kinase
(IKK)-related kinase IKKε, which is part of the upstream complex

involved in activation and subsequent translocation of NF-κB to
the nucleus (Pythoud et al., 2012). Also, infection of monocytes
with Kaposi’s sarcoma-associated herpesvirus (KHSV) inhibits
both TLR2 and TLR4 signaling (Lagos et al., 2008; Meyer et al.,
2013). The KHSV replication and transcription activator (RTA)
induces the degradation of mRNA encoding MyD88. RTA also
promotes proteasomal degradation of TLR3 adaptor protein
TRIF, which blocks downstream signaling (Bussey et al., 2014).

Furthermore, Arenavirus NP is involved in the suppression
of type I IFN responses through an early interference with
the IRF3 activation pathway (Martinez-Sobrido et al., 2007).
This leads to inhibition of type I IFN production and ISGs
expression, needed for the establishment of an antiviral state.
IRF3 is normally present in the cytoplasm in an inactive state.
However, in response to viral infection, it is phosphorylated and
can either dimerize or form a complex with IRF7 to translocate
to the nucleus where it activates the transcription of IFNα and
IFNβ. LCMV-NP inhibits IRF3 phosphorylation through the
same mechanism as NF-κB inhibition (Pythoud et al., 2012).
The classical IKK complex IKKα/IKKβ is involved in activation
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of NF-κB, whereas TBK1 (TANK-binding kinase) and IKKε

can also activate IRF by direct phosphorylation of IRF3 and
IRF7. By binding to IKKε and inhibiting its function, LCMV-
NP inhibits phosphorylation of IRF3, preventing its activation
and nuclear translocation (Pythoud et al., 2012). Another viral
inhibitory protein, KHSV ORF45 acts as a competitive substrate
for IKKε and TBK1 to prevent the activation of IRF7 (Liang
et al., 2012). As well, the Ebola virus (EBOV) VP35 blocks
TBK1 and IKKε-mediated IRF7 phosphorylation, leading to
the inhibition of type I IFN production (Leung et al., 2009;
Kimberlin et al., 2010).

Viruses can induce type I IFN production through cytosolic
PRRs such as RIG-I and MDA5, which detect viral 5′-
triphosphorylated ssRNA and dsRNA present in the cytoplasm
of infected cells. When activated by viral dsRNA, RIG-I and
MDA5 lead to the activation of signaling pathways that activate
IRFs, and NF-κB, that translocate to the nucleus and activate
the transcription of inflammatory cytokines and type I IFNs
(Figure 1). Arenavirus-NP evades immune detection by both
RIG-I and MDA5, because the C-terminal domain of NP has
exonuclease activity and can digest dsRNA, preventing its sensing
by RIG-I and MDA5 and subsequent production of type I
IFNs (Borrow et al., 2010; Hastie et al., 2011; Reynard et al.,
2014; Huang et al., 2015). However, this inhibitory mechanism
is not fully efficient and small amounts of type I IFN can
still be produced.

Arenavirus Z protein is a small zinc-binding protein involved
in the regulation of replication and transcription of the virus
genome, as well as in the mediation of viral budding (Salvato
et al., 1992; Perez et al., 2003; Kranzusch and Whelan, 2011).
Introducing the Z protein of pathogenic arenaviruses into non-
pathogenic species was shown to enhance viral replication in Mϕ,
which are the early target of these viruses. Interestingly, it has

been reported that the Z protein of all arenaviruses pathogenic
to humans, including LCMV, is able to inhibit IFN production by
binding to RLRs. The Z protein binds to the N-terminal CARD-
domain of RIG-I and MDA5, which disrupts their interaction
with MAVS to inhibit downstream signaling (Xing et al., 2015b).

Another well-characterized viral immune inhibitory protein
is the EBOV VP35 protein. VP35 prevents the activation of
RIG-I signaling by shielding the viral dsRNA from detection by
effectively coating the viral genome and preventing its interaction
with cytosolic detectors (Leung et al., 2011).

In conclusion, viruses evolved multiple tactics to cope with
the host immune response, which taught us many lessons in
Microbiology. Activated Mϕ antiviral functions can be dictated
by their polarization and activation signals they exchange. In
certain infections, polarization toward one end of the spectrum
may be associated with immunopathology. This imbalance can
provide an advantage for viral replication. Lessons gathered from
the above studies necessitate more research in understanding and
utilizing polarized Mϕ in antiviral immunotherapeutics.
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