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Abstract: Poly(ionic liquid)s are an innovative class of materials with promising properties in gas
separation processes that can be used to boost the neat polymer performances. Nevertheless, some of
their properties such as stability and mechanical strength have to be improved to render them suitable
as materials for industrial applications. This work explored, on the one hand, the possibility to
improve gas transport and separation properties of the block copolymer Pebax® 1657 by blending it with
poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate (PEVI-DEP). On the other hand, Pebax® 1657 served
as a support for the PIL and provided mechanical resistance to the samples. Pebax® 1657/PEVI-DEP
composite membranes containing 20, 40, and 60 wt.% of PEVI-DEP were cast from solutions of the right
proportion of the two polymers in a water/ethanol mixture. The PEVI-DEP content affected both the
morphology of the dense membranes and gas transport through the membranes. These changes were
revealed by scanning electron microscopy (SEM), time-lag, and gravimetric sorption measurements.
Pebax® 1657 and PEVI-DEP showed similar affinity towards CO2, and its uptake or solubility was
not influenced by the amount of PIL in the membrane. Therefore, the addition of the PIL did not
lead to improvements in the separation of CO2 from other gases. Importantly, PEVI-DEP (40 wt.%)
incorporation affected and improved permeability and selectivity by more than 50% especially for the
separation of light gases, e.g., H2/CH4 and H2/CO2, but higher PEVI-DEP concentrations lead to a
decline in the transport properties.
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1. Introduction

Although the purpose of CO2 capture encourages innovative research in the design of
new gas separation technologies, their industrial implementation remains a major challenge that
needs to be urgently addressed [1]. Membrane-based technologies represent a modular, affordable,
and environmental-friendly alternative to several industrial techniques for separation and purification
of CO2 from gas mixtures, such as natural gas purification or CO2 recovery from flue gas produced
by combustion of fossil fuels [2–4]. The improvement of membrane performance in these industrial
separation processes requires the constant search for novel materials with enhanced performance by
tailoring permeability and selectivity properties [5].

In the last decade, ionic liquids (ILs) emerged as promising materials for improved CO2 separation
properties of membrane-based systems [6]. ILs possess advantageous characteristics, such as negligible
vapor pressures, broad thermal stability and chemical flexibility. Their ionic nature allows the modification
of their physico-chemical properties through various cations and/or anions combinations [7]. ILs are
commonly used in the fabrication of supported liquid membranes (SLMs), wherein the desired IL is
trapped inside a porous polymeric matrix by capillary forces [8]. However, the membranes produced
accordingly are often prone to IL leaching from the pores [9]. This issue can be solved by the
exploitation of a polymerizable group on the IL cation, to create self-standing materials through a
polymeric backbone. Such IL-based polymers are commonly addressed as polymeric or polymerized
ionic liquids (PILs) and represent a class of polyelectrolytes [10–12]. The use of PILs as membranes
for gas separation was initially introduced by Noble’s group. They predicted the performance of
1-R-3-methylimidazolium (Rmim)-based membranes for CO2/N2 and CO2/CH4 separations [13].

Several studies highlighted the strong dependence of the performance of ILs and PILs in gas
separation processes, focusing on high CO2 selectivity and the nature of their cations [5,12,14–20].
Ammonium and imidazolium-based PILs, in particular, demonstrated an improved affinity with CO2

and advantageous CO2/CH4 separation performance [10,21,22]. Other studies focused on the role of
counter-anions and observed significant effects as well [18,23]. Bis(trifluoromethylsulfonyl) imide
([Tf2N]¯) anion is often used in the preparation of ILs. However, the relatively high cost of the starting
material Li[Tf2N] promotes the search for alternatives [24–26]. While a variety of anions is available on
the market (e.g., Ac−, BF4

−, PF6
−), the phosphate anion represents a promising alternative based on its

availability, cost, and chemical stability. Although some commercial ILs with alkyl-phosphate anions
were used in gas separation applications [16], to the best of our knowledge, there are no reports on the
alkyl-phosphate counter-anions application in PILs-based gas separation membranes.

Despite the advanced separation properties, PILs still face some challenges concerning their
functionalization, chemical stability, and mechanical strength. The latter can be considerably improved
by blending PILs with a robust polymer. There are only a few reports about the preparation of
PIL/polymer composite membranes, which are mainly investigated for electrochemical devices and
wastewater purification [27]. Pebax® 1657 is an excellent polymer for the fabrication of composite
membranes with PILs due to its rubbery nature, the presence of polar, CO2-phylic, polyethylene oxide
(PEO) segments in its structure, and its remarkable mechanical properties [28–32]. Despite already
showing good performance in the separation of CO2 from non-polar species, numerous attempts
have been made to further improve the separation properties of Pebax® 1657, by combining
the polymer with ILs [33,34]. Recently, a composite Pebax® 1657/IL membrane containing the
1-n-alkyl-3-methylimidazolium cation showed considerable improvement in CO2 permeability [35].
However, the IL in liquid physical state may still be prone to leaching. Thus, the combinations of
robust polymers and tailor-made PILs in composite membranes for gas separation may benefit both
classes of materials. The confirmed high affinity of imidazolium-based PILs towards CO2 could be
combined with resistant and well-defined polymers, to prepare novel families of membranes with
enhanced separation properties.
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The present work investigates the role of poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate
(PEVI-DEP) in gas separation performance of Pebax® 1657/PEVI-DEP composite membranes, prepared
by blending and solvent casting. The PEVI-DEP/Pebax® 1657 gas transport parameters were studied
for the first time using sorption experiments and time-lag measurements for single and mixed gas
permeation. Correlation with different PEVI-DEP contents and morphological aspects was expected to
reveal the influence of PIL on the gas transport mechanism.

2. Materials and Methods

2.1. Materials

Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate and Pebax® 1657 (pellets) were kindly
provided by SOLVIONIC (Toulouse, France) and Arkema (Milan, Italy), respectively (Figure 1).
Pebax® 1657 was used as received, whilst PEVI-DEP was dried in an oven at 100 ◦C for 20 h prior
further use. Demineralized water and ethanol used for the fabrication of dense membranes were
supplied by VWR (Milan, Italy). The gases used in permeation tests (nitrogen, oxygen, methane, helium,
hydrogen, and carbon dioxide, minimum purity of 99.9995%) were supplied by Sapio (Monza, Italy).
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Figure 1. Structures of Pebax® 1657 and PEVI-DEP (PA = polyamide, PEO = polyethylene oxide).

2.2. Membrane Preparation

Dense composite membranes were solvent cast from Pebax® 1657/PEVI-DEP blends. 8 wt.% of
Pebax® 1657 in EtOH/H2O (70/30 wt.%) was stirred for 24 h at room temperature and subsequently
heated at 80 ◦C under reflux for 2 h. Pebax® 1657/PEVI-DEP solutions with PEVI-DEP content of
20 wt.%, 40 wt.% and 60 wt.% were prepared by adding PEVI-DEP to the solution while still hot and
stirred till homogeneous. The solutions were cast onto Petri dishes in a controlled environment at
25 ± 1 ◦C and 20 ± 1 % relative humidity and left to solidify for ca. 120 h. The solid membranes were
removed from the Petri dishes and dried in a vacuum oven overnight prior to further handling.

2.3. Scanning Electron Microscopy (SEM)

SEM images of the surface of the fabricated composite membranes were acquired using a Phenom
ProX desktop SEM (Phenom-World B.V., Eindhoven, Netherlands) in backscattered electron mode.
The samples were placed on a stub using adhesive carbon tape and analyzed without sputter coating
at an acceleration voltage of 10 kV.

2.4. X-ray Diffraction (XRD)

The X-ray diffraction (XRD) analysis was performed at room temperature using the Bruker
D8 (Bruker, Berlin, BB, Germany) Discoverer θ-θ diffractometer with para-focusing Bragg-Brentano
geometry and CuKα radiation (λ = 0.15418 nm, U = 40 kV, I = 40 mA). Data were scanned over the
angular range 5–80◦ (2θ) with a step size of 0.05◦ (2θ), 3791 steps, and a total effective time of 1943 s.
Data processing was performed with the software package DIFFRAC.SUITE™.
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2.5. Fourier-Transformed Infrared Spectroscopy (FT–IR)

Fourier-transformed infrared spectroscopy (FT–IR) measurements were conducted on a Nicolet
iS50 FTIR Spectrometer ((Thermo Scientific, Boston, MA, USA). The membrane samples were fixed
onto the attenuated total reflection (ATR) diamond crystal surface, and a deuterated triglycine sulfate
detector was used for the measurements in the range of 500–3500 cm−1, with a resolution of 0.09 cm−1,
for all samples.

2.6. Time-Lag

Single gas time-lag experiments were carried out on a fixed volume/pressure increase instrument
designed by Helmholz Zentrum Geesthacht and constructed by Elektro and Elektronik Service Reuter
(Geesthacht, Germany) on circular membrane samples. A description of the experimental apparatus
can be found elsewhere [36]. The membranes were degassed in the test cell using a turbo molecular
pump before being tested. The feed gas pressure was set to 1 bar for all gases. The permeate pressure
was measured up to a maximum of 13.3 mbar with a resolution of 0.0001 mbar. The gases were always
tested in the following order: H2, He, O2, N2, CH4, and CO2. Permeability (P) is reported in Barrer
(1 Barrer = 10−10 cm3 (STP) cm·cm−2

·s−1
·cm Hg−1) and defined according to Equation (1) as the product

of the diffusion coefficient D (m2
·s−1) and the solubility S (cm3 (STP) cm−3

·bar−1). The diffusion
coefficient was calculated from the permeation time-lag Θ (s) and knowing the membrane thickness l
(measured using a micrometer screw gauge), according to Equation (2).

P = D · S (1)

Θ =
l2

6 D
(2)

The ratio of the permeability over the diffusion coefficient provides an indirect measurement of
the gas solubility [36–38]. The selectivity (α, dimensionless) between two gas species was calculated as
the ratio of the parameters measured for each species.

2.7. Gravimetric Sorption

Gravimetric sorption experiments were performed on an in-house designed apparatus equipped
with a McBain balance for N2, CH4, and CO2, using a method described elsewhere [39–42]. The sample
(approximately 0.15 g) placed in a thick-walled glass tube was evacuated (<10−3 mbar) prior to
each measurement by a rotary oil pump (Leybold Trivac D4B) until a constant weight was achieved.
The gas was then flushed in the chamber and the quartz spiral elongation was recorded by a
charge-coupled device (křemenná spirála, Brno, SM, Czech Republic), leading to the gravimetric
sorption determination. Sorption experiments were carried out in the range of gas pressures from
1 bar to 10 bar, at room temperature.

Sorption isotherms in a dense, homogeneous matrix generally follow Henry’s law, which describes
a linear correlation between the gas uptake and the pressure applied:

c = kD p (3)

where c (cm3 (STP) cm−3) is the volumetric concentration of gas in the sample, p (bar) is the pressure,
and kD (cm3 (STP) cm−3

·bar−1) is Henry’s sorption constant. When micropores are dispersed in a dense
polymeric matrix, two kinds of sorption processes contribute to the total amount of adsorbate in the
material [43,44]. In this case, the sorption isotherm is described by the dual-mode model [45,46] (4).
According to the dual-mode theory, sorption in the dense phase follows Henry’s law whilst the uptake
of gas into the voids is described by Langmuir’s model.

c = kD p +
cHbp

1 + bp
(4)
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In Equation (4), cH (cm3 (STP) cm−3) and b (bar−1) derive from Langmuir’s model and take into
account, respectively, the effects of a gradual saturation of the defects in the matrix of the membrane
and the affinity between gas and polymer.

2.8. Mixed Gas Analysis

Mixed gas permeation measurements were performed on a custom-made variable volume/constant
pressure instrument. The permeate, retentate, and feed compositions are measured using
a mass-spectrometric residual gas analyzer (HPR-20 QIC, Hiden Analytical, Warrington, UK).
Measurements were performed in a cross-flow cell, at high feed flow rates and relatively high
flow rate of Argon used as the sweeping gas. This allows us to avoid polarization phenomena by
having a low stage cut and gives negligible partial pressure in the permeate. Details on the instrument,
measurement, and calibration procedures were described in earlier works [47,48].

3. Results and Discussion

3.1. Morphology and Bulk Properties

Pictures of the membranes and SEM images of their surface are shown in Figure 2. Clear effects of
the addition of the PIL in Pebax® 1657 were (i) a change of color from colorless of neat Pebax® 1657 to
brown, and (ii) a decrease of the mechanical strength. Specifically, membranes became more fragile
but maintained their soft nature (i.e., samples were not brittle). At high PEVI-DEP concentrations the
SEM images show evident needle-like features in the polymer blend, which we partially ascribe to
PEVI-DEP domains, indicating low miscibility between the PIL and Pebax® 1657. We believe that
PEVI-DEP clusters cause an increase in the distance between Pebax® 1657 polymeric chains, which
affects significantly the mechanical properties of the membranes. This is due to the radically different
nature of the two materials: Pebax® 1657 exhibits good mechanical strength due to the presence of
hard PA segments, whereas the character of the PIL was rather viscous at room temperature and did
not exhibit any mechanical resistance.
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Figure 2. Photographs and SEM images of samples containing (a) 0 wt.%, (b) 20 wt.%, (c) 40 wt.%, and
(d) 60 wt.% of PEVI-DEP in Pebax® 1657. SEM images in (b–d) were acquired at magnifications of
1000× and 10,000×. The SEM image in (a) was adapted from Peng et al. [49].

XRD patterns of the membranes with different amounts of PEVI-DEP are shown in Figure 3a.
The semicrystalline character of Pebax® 1657 is demonstrated by a broad amorphous halo (12.5–22.6◦)
and a dominant peak around 24◦ (2θ) representing the crystalline segments of the PA domains.
The presence of PEVI-DEP in the Pebax® 1657 matrix caused a shift in the PA peak and a corresponding
increase in the d-spacing from 24.29◦ and 3.664 Å for neat Pebax® 1657, to 23.79◦ and 3.739 Å for
the Pebax® 1657/60 wt.% PEVI-DEP sample, confirming our previous hypothesis. This shift can be
attributed to the intercalation of the charges of the cations in the PIL to influence the Pebax® 1657
polymer chain backbone [50] and is in agreement with earlier observations that low-molar-mass
[BMIM][CF3SO3] interferes with the crystalline phase of Pebax® 1657 [35]. Simultaneously, it indicates
that the addition of PIL did not affect the inter-chain hydrogen bonding between PA segments in Pebax,
since the hindering of their formation generally leads to the growth of the amorphous region [51].
Furthermore, the Pebax® 1657/PEVI-DEP membranes spectra contain another peak at 19.23◦ originating
from the presence of crystalline ionic liquid-like domains.
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Figure 3. (a) The XRD patterns of the Pebax® 1657 membranes blended with 0-60 wt.% of PEVI-DEP
(b) The FTIR spectra of fabricated neat Pebax® 1657 and Pebax® 1657/PEVI-DEP membranes.

The observed peaks at 2881 cm−1 and 1557 cm−1 in all the FTIR spectra (Figure 3b) represent the
stretching vibration of asymmetric and symmetric primary amines, and secondary amines groups
from the PA segments of Pebax® 1657. Their identical position for the neat Pebax® 1657 and Pebax®

1657/PEVI-DEP samples implies that there is no chemical change in the membrane matrix after
the addition of PIL, and thus supporting the physical blending nature of ionic liquid within the
Pebax matrix in the microphase domains and confirming the low miscibility. Two observed minor
blue-peak-shifts related to the increasing content of PIL in the membranes, from 1644 cm−1 and
1117 cm−1 to 1630 cm−1 and 1085 cm−1, can be attributed to the and C–O stretching vibrations, and the
decrease in the peak-intensity with increasing PIL content reveals a weak tendency of the carbonyl
group to form hydrogen bonding with the PIL.

3.2. Gas Transport Properties

Figure 4 and Appendix A (Table A1) demonstrate the gas transport parameters of Pebax®

1657/PEVI-DEP composite membranes. Overall, the trends of gas permeability and diffusivity exhibit
a rise with increasing PEVI-DEP content (Figure 4a,c). More specifically, the permeabilities reach
maximum values for all gases in the membrane prepared with 40 wt.% of PEVI-DEP. However, CO2 and
CH4 deviate from this trend, as their permeability remains almost constant or slightly decreases with
increasing PEVI-DEP content. The transport reflects a combination of the effects of PEVI-DEP on the
morphology and microstructure of the membranes and the effect on the individual phases. The weak
increase in permeability for the smaller gases, together with a slight increase in size-selectivity, is due
to a combination of effects caused by the addition of PEVI-DEP: reduced crystallinity of samples and
an increase of their amorphous fraction leading to an increase of the overall permeability, since the
crystalline phase is impermeable.

Simultaneously, the decrease in crystallinity did not lead to the expected (tangible) decrease
in overall stiffness, which means that the effect is apparently compensated by a stiffening of the
amorphous phase, either by the presence of PEV-DEP itself or by the presence of a larger amount of the
hard polyamide chain segments in the amorphous phase. Since the amorphous phase is the only phase
where gas transport takes place, for smaller gases the increase in the amorphous phase dominates
and the sample becomes more permeable, but for larger gases stiffening compensates the effect of
the increase of the amorphous fraction. At high PEVI-DEP content, the stiffening of the amorphous
phase dominates, and the permeability and diffusivity of all gases decreases. The solubility values
(Figure 4e) were not affected significantly by PEVI-DEP and remain almost constant. This observation
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contrasts with the original hypothesis stating that the incorporation of PIL into Pebax® 1657/PEVI-DEP
composite membranes should improve CO2 affinity, and this is most likely due to the already high
sorption capacity of Pebax® 1657. It should be noted that the time lag of He and H2 is near the lower
measurement limit, causing a higher scatter in D and S for these two gases, which are therefore not
included in the plots.
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3.3. Gas Sorption Properties

Sorption isotherms in Figure 5a,b show that all samples adsorbed CO2 in a slightly nonlinear
fashion, which can be described satisfactorily by the dual-mode sorption model (Equation (4)).
The sorption of CH4 and N2 was too close to the lower detection limit and could not be determined
with sufficient accuracy. Therefore, the sorption isotherms of CH4 and N2 are not reported. The low
CH4 and N2 uptakes in Pebax® 1657/PEVI-DEP composites align well with other literature reports.
The gas sorption follows the decreasing trend N2 ≤ CH4 << CO2 as reported for a series of
poly(diallyldimethylammonium) (P[DADMA])-based PILs [52]. While the PIL concentration in
the Pebax® 1657/PEVI-DEP membranes has a relatively mild effect on the CO2 sorption capacity,
the change in the isotherm shape is clearly distinguishable. Figure 5b compares sorption behavior of
neat Pebax® 1657 and neat PEVI-DEP. While the CO2 sorption isotherm of neat Pebax® 1657 increases
almost linearly with pressure, with a dominant role of Henry’s law, the sorption isotherm of neat
PEVI-DEP exhibits concave shape attributed to dual-mode sorption. Dual-mode-like features are,
therefore, transferred to Pebax® 1657/PEVI-DEP composite membranes as well. The CO2 sorption
isotherms (and data reported in Appendix A (Table A2)) confirm the earlier observation that the gas
solubility is nearly independent of the PEVI-DEP content, especially at low concentration, similar to
that of the permeability measurements.
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3.4. Robeson Plots and Correlations

Robeson plots summarize the performance of Pebax® 1657/PEVI-DEP composite membranes
and put them in perspective for several industrial gas separation processes (i.e., CO2/CH4, CO2/N2,
H2/CH4, O2/N2, and H2/CO2) (Figure 6). With increasing amounts of PEVI-DEP, the selectivity
towards CO2 decreases, and the selectivity towards light gases increases. Previous reports demonstrate
remarkable improvements of CO2 separation performance in Pebax® 1657 thanks to the addition
of ILs [33–35]; however, a drop of selectivity was observed for CO2/CH4 and CO2/N2 separations
(Figure 6a,b) in Pebax® 1657/PEVI-DEP composites. Therefore, the combination of the two materials
did not meet the expectation of improving CO2 separation processes. In particular, the performances
of the membrane containing 60 wt.% of PEVI-DEP were fully controlled by the PIL and were very
similar to those of other PIL and PIL/IL based membranes [5,22,53–56]. However, especially in CO2/N2

separation, Pebax® 1657/60 wt.% PEVI-DEP composite membrane is more selective than other PIL
and PIL/IL membranes. These pieces of evidence indicate that CO2/CH4 and CO2/N2 separations are
mostly favored by the presence of Pebax® 1657. By contrast, H2/CH4 separation (Figure 6c) benefited
from the addition of PEVI-DEP, showing an increase of selectivity and H2 permeability, which take
Pebax® 1657/PEVI-DEP samples closer to the performance of recently reported phosphonium-based
PILs [55]. For H2/CO2 separation (Figure 6e) a trend that moves towards an inversion of selectivity
was observed. This is due to simultaneous loss and gain of permeability for CO2 and H2, respectively.
Moreover, the addition of PEVI-DEP substantially improved O2 and N2 permeabilities (for PEVI-DEP
contents up to 40 wt.%), with a small gain in O2/N2 selectivity as well (Figure 6d). A common feature
observed for O2/N2, H2/CH4 and H2/CO2 separations is a decrease of selectivity detected in the
membrane prepared with 60 wt.% PEVI-DEP, compared to samples prepared with 40 wt.% and 20 wt.%
of PIL. However, despite the modest increase in selectivity and permeability for some gas pairs, Pebax®

1657/PEVI-DEP membranes are still rather far from recent Upper Bound limits [57,58].
The observed behavior, with a deviation from the trend for the sample with the highest PEVI-DEP

content, may be due not only to the intrinsically different properties of the blended polymers but also to
a change in the microstructure of the samples. At high PEVI-DEP content, the presence of crystal-like
particles becomes more evident in the XRD patterns, and thus the sample heterogeneity. Although it is
common to calculate the effective transport parameters using the Equations (1)–(3), a more correct
evaluation would require the application of the Maxwell model or more sophisticated models for
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heterogeneous systems. Nevertheless, for practical application of the membranes, knowledge of the
effective parameters is sufficient.
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and the critical temperature of the gases, respectively [60]. The correlation between the logarithm of 
the diffusion coefficient and the square of the effective gas diameter defined by Teplyakov and 
Meares [60] reveals a linear decrease with increasing gas diameter. The slope of the line is a measure 
of the size-selectivity of the membranes. Besides some occasional scatter in individual points, there 
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Figure 6. Robeson plots of neat Pebax® 1657 and Pebax® 1657/PEVI-DEP membranes analyzed
in this work (filled circles) for (a) CO2/CH4, (b) CO2/N2, (c) H2/CH4, (d) O2/N2, and (e) H2/CO2

separations. Black arrows indicate the trend followed by the samples with increasing PEVI-DEP
content. Data measured for the CO2/CH4 (35/65 vol.%) mixture at different feed pressures are indicated
as “X” symbols with the same colour as the corresponding membrane. Other literature data for
PILs [5,22,53–56] (empty diamonds), IL with the same anion as PEVI-DEP [59] (empty triangle) and
Pebax® 2533 [35] (empty circle) are reported for comparison.

Figure 7 illustrates the correlations of transport parameters D and S with the effective diameter
and the critical temperature of the gases, respectively [60]. The correlation between the logarithm
of the diffusion coefficient and the square of the effective gas diameter defined by Teplyakov and
Meares [60] reveals a linear decrease with increasing gas diameter. The slope of the line is a measure of
the size-selectivity of the membranes. Besides some occasional scatter in individual points, there is
no clear correlation between the PIL content and the size-selectivity. Interestingly, the diffusivity of
CO2 is substantially lower than that of N2, especially at 20 wt.% and 40 wt.% PIL, suggesting that
CO2 interacts with the PIL and is slightly slowed down. The slower diffusion of big molecules in the
Pebax® 1657 /PEVI-DEP membranes, probably due to specific non-covalent interactions [61], confirms
a dominant role of diffusion-controlled transport in these materials. The plot of the solubility against
the critical temperature of the gases (Figure 7b) also shows a nearly linear trend, with the highest
values for CO2, and with little differences between neat Pebax® 1657 and the composite membranes.
The decrease in diffusivity and the increase in solubility with increasing size of the gas molecule is a
typical feature for dense gas separation membranes [62].
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Mixed gas permeation measurements were carried out across a total pressure range of 1–6 bar using
a 35/65 vol.% of CO2/CH4 mixture for the two representative samples, namely Pebax® 1657/20 wt.%
PEVI-DEP and Pebax® 1657/40 wt.% PEVI-DEP. Both membranes show very similar transport properties
to those measured with pure gases in the time-lag setup (Figure 6a). The feed pressure barely affects the
transport parameters, which are constant over the investigated range for both membrane compositions
(Figure 8). This allows stable performance during industrial operations with variable pressure and
composition, such as the biogas upgrading.
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4. Conclusions

Pebax® 1657 composite membranes with PEVI-DEP as PIL additive were tested for gas sorption
and separation properties. The gas separation measurements by time-lag method revealed a modest
improvement of permeability compared to neat Pebax® 1657 for H2, He, O2, and N2 and of selectivity
in O2/N2, H2/CH4, and H2/CO2. This increase is mostly associated with better diffusion properties of
small molecules in viscous PIL domains in the polymeric matrix. The best gas transport performance
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was observed for the membrane with 40 wt.% of PEVI-DEP in Pebax® 1657. However, a higher
PEVI-DEP content inverts the trend probably due to the change in the microstructure visible in the
SEM images and XRD patterns. Sorption tests with CO2 showed a similar gas uptake for Pebax® 1657
and PEVI-DEP. Despite not providing a higher affinity for CO2, and therefore an enhancement of CO2

separation performance, the addition of PEVI-DEP improves the efficiency of diffusion-controlled
separations. This work demonstrated that the addition of specific amounts of PEVI-DEP to polymer/PIL
composite membranes allows the fabrication of tailor-made dense membranes and improves processing
properties of the polymer, using the viscous PIL as an additive in the polymeric matrix, but only up to
a maximum of 40 wt.% of PEVI-DEP. Moreover, the membranes result stable at different feed pressures
and under mixed gas permeation, proving to be reliable for real industrial operations. Further studies
could explore the use of PILs with different structures (i.e., backbone and/or counter-anion) as additives
to Pebax® 1657 to modify and control its gas separation properties.
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Appendix A

Table A1. Data of single gas permeation measurements performed on neat Pebax® 1657 and Pebax®

1657/PEVI-DEP blend membranes. The data of He and H2 relative to diffusivity and solubility are not
included due to low accuracy.

Permeability (Barrer) Selectivity (Px/PN2)

PIL Content (wt.%) H2 He O2 N2 CH4 CO2 H2/N2 He/N2 O2/N2 CH4/N2 CO2/N2

0 7.88 5.12 3.48 1.46 4.14 75.92 5.40 3.51 2.38 2.84 52.00
20 10.74 8.14 5.37 2.32 4.38 69.95 4.61 3.51 2.31 1.89 30.15
40 15.92 11.28 6.50 2.40 3.86 69.46 6.63 4.71 2.71 1.61 28.94
60 13.61 9.53 4.20 1.50 3.85 56.01 9.07 6.35 2.80 2.57 37.34

Diffusivity (10−12·m2·s−1) Selectivity (Dx/DN2)

0 - - 80.8 65.6 35.3 43.9 - - 1.23 0.54 0.67
20 - - 137 118 46.2 55.7 - - 1.16 0.39 0.47
40 - - 161 130 39.7 59.5 - - 1.24 0.31 0.46
60 - - 103 73.5 34.9 44.9 - - 1.41 0.47 0.61

Solubility (cm3(STP) cm−3·bar−1) Selectivity (Sx/SN2)

0 - - 0.032 0.017 0.088 1.295 - - 1.88 5.18 76.2
20 - - 0.026 0.014 0.071 0.943 - - 1.86 5.07 67.4
40 - - 0.029 0.014 0.073 0.876 - - 2.07 5.21 62.6
60 - - 0.030 0.015 0.083 0.935 - - 2.00 5.53 62.3

1 Barrer = 10−10 cm3(STP) cm·cm−2
·s−1
·cm Hg−1.
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Table A2. Data of CO2 sorption measurements carried out on neat Pebax® 1657, neat PEVI-DEP and
Pebax® 1657/PEVI-DEP composite membranes.

Volume Concentration (cm3 (STP) cm−3)

Pressure
(bar)

Neat Pebax®

1657
Pebax® 1657/20
wt.%PEVI-DEP

Pebax® 1657/40
wt.%PEVI-DEP

Pebax® 1657/60
wt.%PEVI-DEP

Neat
PEVI-DEP

1.0 1.79 1.78 2.02 1.87 1.35
2.0 3.16 3.29 3.51 3.19 2.93
2.9 4.40 4.65 4.87 4.66 4.15
3.9 5.51 5.87 6.08 5.89 5.57
5.9 7.82 8.15 8.10 8.18 7.69
7.9 9.99 10.39 10.33 10.08 9.84
9.8 12.53 12.01 12.30 12.16 11.67
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