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Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung

diseases including asthma and chronic obstructive pulmonary disease (COPD). There

is substantial interest in identifying and characterizing cellular sources vs. targets of

IL-33, and downstream signaling pathways involved in disease pathophysiology. While

epithelial and immune cells have largely been the focus, in this review, we summarize

current knowledge of expression, induction, and function of IL-33 and its receptor

ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal

conditions, epithelial cells and endothelial cells are thought to be the primary resident

cell types that express high levels of IL-33 and serve as ligand sources compared to

mesenchymal cells (smoothmuscle cells and fibroblasts). Under inflammatory conditions,

IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial,

endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows

low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by

inflammation in these non-hematopoietic lung cells which may then participate in chronic

inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream

effects of IL-33 may occur via direct receptor activation or indirect interactions with the

immune system, overall contributing to lung inflammation, airway hyper-responsiveness

and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective,

targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.

Keywords: IL-33, ST2, inflammation, tissue remodeling, epithelial cells, endothelial cells, airway smooth muscle,

fibroblasts

INTRODUCTION

Interleukin-33 (IL-33) is a member of the IL-1 superfamily. IL-33 is a multifunctional cytokine
critically involved in a variety of biological processes such as development and regulation of the
immune system, tissue homeostasis vs. repair, and remodeling. IL-33 has been implicated in the
pathogenesis of a number of human diseases, including allergy, infection, inflammation, fibrosis,
obesity, diabetes, and cancer (1).

IL-33 is a tissue-derived nuclear cytokine, produced predominantly by cells of the epithelium
and endothelium and by fibroblasts. At baseline, IL-33 is localized to the cell nucleus. Upon
cellular stress or injury, IL-33 is released into the extracellular milieu in an active form, and targets
cells expressing the IL-33 receptor, commonly known as ST2 (Figure 1). The most recognized
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function of IL-33 is activation of immune cells involved in
type 2 immunity, including group 2 innate lymphoid cells
(ILC2s), T helper 2 (Th2) cells, T regulatory cells, macrophages,
mast cells, eosinophils, basophils, and dendritic cells (1–3).
Extensive studies have analyzed the functional roles of IL-33
in type 2 immunity-associated allergic responses and diseases
such as asthma. Multiple genome-wide association studies have
identified both the IL-33 and ST2 genes as asthma susceptible
loci in humans (4–8). Clinical studies find that IL-33 and ST2
expression are often increased in biological fluids or tissue
specimens from patients with allergic diseases (9–12). Preclinical
animal data show that the IL-33/ST2 axis is critical in type 2
immune responses (13–17). Beyond type 2 immune cells, recent
studies suggest that IL-33 also activates other cell types, such as
Th1 cells, natural killer (NK) cells, CD8+ T cells and B cells (18).

Compared with the expansive knowledge regarding IL-33
expression and function in immune cells, there is relatively
limited information regarding expression patterns and
functional roles of IL-33 in non-hematopoietic lung cells
in the context of disease. Accumulating evidence suggests
that non-hematopoietic lung cells are not only an important
cellular source for IL-33, but also express ST2 and respond
to IL-33 stimulation (regardless of source) to participate
in lung inflammation and tissue remodeling (Figure 1). In
the following sections, we briefly review current knowledge
regarding the production and function of IL-33 in non-
hematopoietic lung cells, including epithelial cells, endothelial
cells, smooth muscle cells, and fibroblasts, in the context
of pulmonary inflammation, airway reactivity, and tissue
remodeling: aspects critical to the pathophysiology of diseases
such as asthma.

IL-33 BIOLOGY

General IL-33 biology has been described in detail elsewhere
(18) and is briefly summarized here in the context of the
lung. Human and mouse full-length IL-33 proteins share 55%
homology and are 270 and 266 amino acids in length, respectively
(19). IL-33 consists of three functional domains: a nuclear
domain, a central domain, and an IL-1-like cytokine domain
(18) (Figure 2). The nuclear domain contains a chromatin-
binding motif that tethers IL-33 protein to chromatin (20). The
central domain contains protease recognition sites that allow
full-length IL-33 to undergo cleavage into mature bioactive
forms encompassing the cytokine domain under inflammatory
or stress conditions (21). The IL-1-like cytokine domain binds

Abbreviations: COPD, chronic obstructive pulmonary disease; ILC2s, group

2 innate lymphoid cells; NK, natural killer; Th2, T helper 2 cell; ST2L,

transmembrane ST2; sST2, soluble ST2; IL1RAcP, IL-1 receptor accessory protein;

MyD88, myeloid differentiation primary response protein 88; IRAKs, IL-1R-

associated kinases; TNF, tumor necrosis factor; TRAF6, TNF receptor associated

factor-6; MAPK, mitogen-activated protein kinases; ERK, extracellular signal-

regulated kinases; JNK, c-Jun N-terminal kinases; IκB, inhibitor of κB; NFκB,

nuclear factor kappa-light-chain-enhancer of activated B cells; OVA, ovalbumin;

HUVECs, human umbilical vein endothelial cells; VEGF, vascular endothelial

growth factor; ASM, airway smooth muscle; AHR, airway hyperresponsiveness;

PCLS, precision-cut lung slices.

to ST2 on target cells and mediates the cytokine activities of
IL-33 (19, 22).

Under basal conditions, full-length IL-33 protein (about 31
kDa) is localized to the nucleus via the chromatin-binding motif
in its nuclear domain (23). The nuclear function of IL-33 is not
well understood. In transfected cells, IL-33 appears to regulate
chromatin compaction (20) and NF-κB transcriptional activity
(24). However, nuclear IL-33 knockdown does not affect either
proteome or NF-kB expression in primary human endothelial
cells (25). It is currently believed that sequestration of IL-33
in the nucleus of IL-33 producing cells prevents detrimental
effects of IL-33 on the host. Supporting this concept, deletion
of the chromatin-binding domain of IL-33 in mice results
in constitutive IL-33 extracellular release and ST2-dependent
lethal eosinophilic and neutrophilic inflammation in multiple
organs (26).

IL-33 does not possess a classical signal sequence to direct the
cytokine to the endoplasmic reticulum-Golgi secretory pathway.
As such, it is not well understood how IL-33 is secreted
into the extracellular milieu. Studies suggest that IL-33 can be
released from IL-33-producing cells either passively through cell
death/damage or actively through cell stress or minor injury
(2, 18). IL-33 may be released as either a full-length protein
or in processed shorter forms. Several proteases have been
shown to cleave IL-33 within its central domain, including serine
proteases from neutrophils and mast cells (21, 27) and allergen
proteases (28). Although full-length IL-33 displays cytokine
activity, the processed forms of IL-33 containing the cytokine
domain are functionally 10–30 times more active (27). Caspases
have been shown to cleave IL-33 within its cytokine domain and
subsequently inactivate IL-33 (29). These studies suggest that
proteases play an important role in regulating IL-33 function.

Following extracellular release, IL-33 binds to its receptor
ST2 on target cells and regulates cellular function. ST2 is
a member of the IL-1 receptor family and has two major
isoforms: transmembrane ST2 (ST2L) and soluble ST2 (sST2)
(30). ST2L is a membrane bound receptor that binds to
and transmits IL-33 signals in target cells. ST2L contains an
extracellular domain consisting of three linked immunoglobulin-
like motifs, a transmembrane domain, and a cytoplasmic Toll/IL-
1 receptor domain. In comparison, sST2 is generated by
alternative mRNA splicing and lacks the transmembrane and
cytoplasmic domains of ST2L. Rather, sST2 is secreted into the
extracellular milieu where it binds IL-33. As such, sST2 may
function as a decoy receptor to inhibit IL-33 activity via IL-33
sequestration, thereby preventing IL-33 from binding to ST2L on
the cell membrane. Further, whereas basal expression of ST2L is
constitutive, sST2 expression is primarily inducible (30). ST2 is
predominantly expressed by immune cells, including mast cells,
ILC2s, macrophages, dendritic cells, eosinophils, basophils, NK
cells, NK T cells, CD4+ T cells, and CD8+ T cells (2), (18). ST2
is also expressed at low levels by non-hematopoietic lung cells
under basal conditions (see sections below). In both immune cells
and non-hematopoietic lung cells, ST2 expression is increased
by cell activation after pro-inflammatory stimulation (11, 31–33).
Enhanced levels of sST2 in biological fluids, such as sputum and
serum, have been detected in patients with asthma (9), COPD
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FIGURE 1 | IL-33 in the lung. Infection, allergens, and environmental factors induce IL-33 production and release from resident lung tissue cells. Extracellular IL-33

activates immune cells and non-hematopoietic lung cells to promote immune responses, airway hyperresponsiveness and airway remodeling: aspects relevant to

diseases such as asthma.

(34), and idiopathic pulmonary fibrosis (35), and sST2 levels
have been shown to correlate with acute exacerbations in these
patients (35–37).

IL-33 binds to ST2L with subsequent recruitment of a co-
receptor, IL-1 receptor accessory protein (IL1RAcP). In most
cell types, this ternary IL-33-ST2L-IL1RAcP complex leads
to the recruitment of adaptor proteins including myeloid
differentiation primary response protein 88 (MyD88), IL-1R-
associated kinases (IRAKs) and tumor necrosis factor (TNF)
receptor associated factor-6 (TRAF6) (19, 38). The signaling
complex promotes several downstream pathways particularly
phosphorylation of inhibitor of κB (IκB)α and mitogen-activated
protein kinases (MAPKs) including extracellular signal-regulated
kinase (ERK)1/2, p38, and c-Jun N-terminal kinases (JNK)
(19). Activation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NFκB) and MAPK signaling pathways then
drives cellular responses such as proliferation and cytokine
production (Figure 2). In addition to activating the MAPK
signaling pathway, IL-33 can activate other signaling molecules
including phosphoinositide-3-kinase, Janus kinase 2, tyrosine-
protein kinase SYK, phosphatases, and GTPases cdc42/Rho (39–
41), although these effects are probably cell-type specific and the
pathways are not as well-characterized.

At baseline, IL-33 protein is predominantly expressed in
non-hematopoietic lung cells but not in immune cells. In
humans, bronchial epithelial and endothelial cells are the major
IL-33-expressing cell types (10, 42). In mouse lung, IL-33 is
mainly expressed by alveolar type II epithelial cells (17). With
inflammation or stress, IL-33 expression is broadly upregulated
in non-hematopoietic lung cells as well as immune cells (2, 18,
43). Since IL-33 is constitutively and abundantly expressed at
basal conditions, IL-33 is thought to function as an “alarmin”

cytokine that is released quickly to alert the immune system
in response to cellular damage or tissue injury (42). IL-33-
deficient mice are fertile and display no gross abnormalities in
tissue morphology or development under basal conditions. Upon
allergen/antigen exposure, however, IL-33-deficient mice show
attenuated airway immune responses (44, 45).

The following sections describe in detail how the IL-33/ST2
axis is regulated specifically in respiratory epithelial cells,
endothelial cells, smooth muscle cells and fibroblasts.

IL-33 AND AIRWAY EPITHELIAL CELLS

In human airways, nasal, and bronchial epithelial cells are
the primary cell types expressing IL-33 at baseline (10, 46).
IL-33 expression in these cell types is substantially increased
in patients with allergic asthma, allergic rhinitis, aspirin-
exacerbated respiratory disease, and COPD (10, 47–50). In
healthy bronchial epithelium, IL-33 is localized primarily to
basal cells of the epithelial tract, but expression becomes more
widespread in asthmatic bronchial epithelium (10). Moreover,
allergen airway challenge further increases IL-33 expression
in bronchial epithelium of asthmatic patients (51). In COPD,
lung IL-33 expression is increased specifically in a subset of
epithelial progenitor basal cells present in regions of epithelial
hyperplasia and mucous cell remodeling (50). In contrast to
humans, mouse bronchial epithelial cells do not express IL-
33 at baseline, while alveolar type II epithelial cells (type 2
pneumocytes) are the major sources of IL-33 (17). Alveolar
epithelial IL-33 is upregulated by a number of pathologic stimuli
including nematode or viral infections, and exposure to cigarette
smoke, ozone, cysteine proteases, uric acid, bleomycin, or
allergens (15, 52–56). Moreover, with viral infection or cigarette
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FIGURE 2 | IL-33 signaling pathways. Full-length pro-IL-33 or protease-cleaved IL-33 are released from IL-33 producing cells. Full-length IL-33 consists of a nuclear

domain, a central domain and a cytokine domain. Extracellular IL-33 binds to ST2L on target cells, leading to recruitment of the co-receptor IL1RAcP to form an

IL-33-ST2L-IL1RAcP complex. After recruiting MyD88, IRAKs and TRAF6, this signaling complex activates NFκB and MAPK family members to induce downstream

cellular responses that are cell- and context-dependent.

smoke exposure, mouse bronchial epithelial cells start to express
IL-33 (50, 54).

In addition to being sources of IL-33, human airway epithelial
cells also express ST2 (57). Interestingly, ST2 expression is
extremely low at baseline, but is significantly increased in nasal
epithelium of allergic rhinitis patients (47), and in bronchial
epithelium of severe asthma patients (58). In mouse, baseline ST2
expression in alveolar type II epithelial cells is detectable by flow
cytometry (43).

The presence of ST2 in airway epithelial cells suggests
autocrine effects such that IL-33 can self-regulate its signaling.
Indeed, IL-33 stimulation of human airway epithelial cells
in vitro induces IL-33 mRNA upregulation, although ST2
expression is not affected (11, 57). In mouse models, airway
administration of IL-33 enhances both IL-33 and ST2 expression
in lung epithelial cells (11, 43, 59). Moreover, IL-33 and IL-13

work synergistically to enhance IL-33 expression in bronchial
epithelial cells (11).

In addition to self-regulation, IL-33 induces production of
inflammatory cytokines including IL-8, granulocyte-macrophage
colony-stimulating factor and IL-17F in human nasal and
bronchial epithelial cells, acting via MAPKs (47, 57, 60, 61).
Notably, type 2 immunity-associated cytokines, such as IL-4, IL-
5, IL-10, and IL-13, are not induced in epithelial cells by IL-
33 under the same culture conditions. IL-33 also has a role in
promoting rhinovirus-induced chemokine CXCL10 production
in human bronchial epithelial cells (62).

A known prominent function of IL-33 is to induce immune
cells to secrete type 2 cytokines such as IL-5 and IL-13 (1–3). IL-
13 is a strong inducer of both IL-33 and ST2mRNA expression in
human bronchial epithelial cells. Moreover, IL-33 and IL-13 work
synergistically to enhance IL-33 expression in bronchial epithelial
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cells (11). Based on these observations, it has been suggested
that IL-33 and type 2 cytokines can form feed-forward circuits
to sustain lung inflammation (11).

IL-33 also plays a role in epithelial repair and remodeling
following injury. In influenza infection mouse models, IL-33
promotes production of amphiregulin, a tissue remodeling-
associated protein, by innate lymphoid cells and T regulatory
cells to maintain epithelial integrity (63, 64). Although airway
epithelial cells have been shown to produce amphiregulin (65),
it is unknown whether IL-33 can induce amphiregulin in these
cells. The IL-33/ST2 axis also seems to have a protective effect
in ozone-induced lung injury where tight junction protein
reductions are exaggerated in IL-33- or ST2-deficient mice (53).
However, it is unknown whether the protective effect of IL-33
occurs through direct stimulation of lung epithelial cells or via
indirect influences of surrounding cells.

In summary, given that the airway epithelium is the first
line of defense, predominant expression in this layer makes
IL-33 an important cytokine for initiation and modulation of
immune responses to environmental pathogens or insults (2,
3, 18). Although limited information is available, the effects of
IL-33 on airway epithelial cells per se are likely important in
chronic lung inflammation. With ST2 expression in epithelial
cells upregulated during chronic lung inflammation, IL-33 may
amplify inflammatory responses. Moreover, IL-33 is critically
involved in the maintenance of epithelium integrity after
respiratory insults, although the direct IL-33 effects on airway
epithelial cells in this process are not well-understood.

IL-33 AND ENDOTHELIAL CELLS IN THE
LUNG

In humans, IL-33 is abundantly expressed in healthy vascular
endothelium of large and small blood vessels (42, 66). In
contrast, IL-33 is generally not expressed in the mouse vascular
endothelium at baseline, as demonstrated in an Il-33–LacZ
gene trap reporter mouse strain (67). ST2 expression in lung
endothelium has not been well-studied. One report indicated that
healthy pulmonary vascular endothelium expresses ST2 protein
at very low levels in both mouse and human (68). Additional
work has shown that IL-33 and ST2 expression in pulmonary
vascular endothelium is increased under certain pathological
conditions, such as bronchiectasis and pulmonary hypertension
in humans (68), allergen airway challenge in asthmatic patients
(51), and after in vivo exposure to hypoxia or cigarette smoke
in mice (68, 69). Interestingly, IL-33 expression is markedly
decreased in blood vessels of patients with idiopathic pulmonary
arterial hypertension (70), suggesting that IL-33 plays a dynamic
role in lung diseases.

Besides vascular endothelial cells, some lymphatic endothelial
cells in the lung also express IL-33 under inflammatory
conditions. IL-33+ lymphatic endothelial cells have been found
in mouse lungs after ovalbumin (OVA) exposure and in nasal
polyps of patients with eosinophilic chronic rhinosinusitis. These
cells seem to play an important role in maintenance of memory
Th2 cells in chronic allergic airway inflammation (71).

Much information regarding IL-33 biology in endothelial cells
is derived from in vitro studies using isolated human primary
endothelial cells, including human pulmonarymicrovascular and
arterial endothelial cells, and human umbilical vein endothelial
cells (HUVECs). Although not lung-derived, HUVECs have
been widely used for IL-33 studies and are briefly reviewed
here. HUVECs express both IL-33 and ST2, with expression
associated with cell proliferation (57, 66). IL-33 is generally
expressed in resting non-proliferative HUVECs whereas ST2 is
preferentially expressed in non-quiescent proliferating HUVECs
(66, 72, 73). IL-33 expression in HUVECs can be induced by
Notch-signaling and inhibited by treatment with TNF, IL-1β
or vascular endothelial growth factor (VEGF) (66, 72). Using a
global proteomic approach, IL-33 stimulation of HUVECs has
been found to induce the expression of many inflammatory
proteins, including cell adhesion receptors involved in
leukocyte/endothelium interactions, inflammatory chemokines
and cytokines, proteins involved in antigen processing and
presentation, and NFκB-signaling molecules (25). Several
other studies have shown that IL-33 stimulation of HUVECs
induces upregulation of nitric oxide, IL-6, IL-8, monocyte
chemoattractant protein-1, CXCL1, granulocyte-macrophage
colony-stimulating factor and macrophage colony-stimulating
factor, tissue factor, E-selectin, intercellular adhesion molecule-1,
and vascular cell adhesion molecule-1 (73–81). Functionally, IL-
33 stimulation of HUVECs induces cell proliferation, migration
and microvessel formation (76, 82). IL-33 also decreases cell
integrity and increases barrier permeability in HUVECs (76, 83).
These findings suggest that IL-33 may play an important role in
both angiogenesis and in endothelial barrier function.

A limited number of studies have explored the IL-33/ST2
pathway in human pulmonary vascular endothelial cells. These
studies have shown that such cells express both IL-33 and ST2,
and that their expression is increased by IL-4 treatment and by
pathological conditions such as hypoxia (57, 68). In response
to IL-33 stimulation, human pulmonary vascular endothelial
cells produce IL-6, IL-8 and monocyte chemoattractant protein-
1 via activation of ERK and p38 MAPK pathways (57).
IL-33 stimulation also enhances cell proliferation, adhesion,
spontaneous angiogenesis, and expression of remodeling-
associated proteins hypoxia-inducible factor-1α, VEGFA, and
VEGF receptor-2 (68).

Several in vivo mouse studies suggest that IL-33 plays an
important role in pulmonary vascular remodeling during chronic
airway inflammation. Long-term IL-33 airway administration
induces pulmonary arterial hypertrophy in mice that is
dependent on IL-5-producing ILC2s and eosinophils (84). It is
unknown whether the direct action of IL-33 on endothelial cells
contributes to development of pulmonary arterial hypertrophy in
this model. Using a similar mouse model, another group found
that chronic IL-33 airway administration induces angiogenesis
in the lung with increased expression of angiogenic factors,
including amphiregulin, angiogenin, endothelin-1, epidermal
growth factor, and insulin-like growth factor-1 (82). IL-33 has
also been shown to promote vascular remodeling in hypoxic
pulmonary hypertension (68). Administration of IL-33 in vivo
exacerbates hypoxia-induced pathological changes associated
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with pulmonary hypertension in wild type mice. Conversely,
hypoxia-induced pathological changes are diminished in ST2−/−

mice. Hypoxia increases IL-33/ST2 expression in human
pulmonary arterial endothelial cells both in vivo and in vitro.
Knockdown of either the Il33 or st2 genes attenuates hypoxia-
induced adhesion and tubule formation in human pulmonary
arterial endothelial cells (68). Thus, hypoxia-induced IL-33/ST2
upregulation may form a positive feedback loop to drive chronic
vascular remodeling in the lung.

In summary, pulmonary vascular endothelium is one of the
major cell sources for IL-33 production in the human lung.
Endothelial cells may play important roles in the early responses
against pathogens circulating in the blood stream by releasing IL-
33 to alarm the immune system. Pulmonary endothelial cells also
can respond to IL-33 to promote pulmonary inflammation and
tissue remodeling, likely in autocrine and paracrine manners.

IL-33 AND AIRWAY SMOOTH MUSCLE
(ASM) CELLS

Human ASM cells have been found to express IL-33 mRNA
at relatively high levels in vitro (19). However, ASM bundles
in healthy human bronchial biopsies show little to no IL-33
protein expression (85, 86). IL-33 protein expression in ASM
bundles is significantly increased in asthmatic patients compared
with healthy controls (85, 86). In primary human ASM cells,
IL-33 mRNA expression is enhanced by in vitro inflammatory
stimulation, such as TNF-α, interferon-γ, double stranded RNA,
ATP, and rhinovirus infection (85, 87). Both human and mouse
ASM cells have been shown to express very little ST2 protein at
steady-state, with expression increased by IL-33 stimulation in
vitro or intranasal exposure to OVA in vivo (86, 88).

Mouse experiments suggest that IL-33 is involved in
development of airway hyperresponsiveness (AHR), a hallmark
feature of asthma. Intranasal IL-33 administration induces
AHR in mice (12, 86, 89). Conversely, ST2-deficient mice
show a severely compromised allergen-induced airway resistance
response (12, 89). Since ASM cells play critical roles in AHR (90),
the direct action of IL-33 on ASM cells has been investigated
in vitro. IL-33 stimulation induces calcium influx in ASM
cells, suggesting increased contractility (86). However, this
idea is supported by some, but not all, studies. First, IL-33-
pretreated human ASM cells contract similarly to untreated
ASM cells in collagen gels (86). Second, IL-33 does not cause
bronchoconstriction in mouse precision-cut lung slices (PCLS)
(86). Third, pretreatment of mouse PCLS with IL-33 has no
effect on cholinergic agonist carbachol-induced luminal diameter
changes (86). In contrast to these findings, pretreatment ofmouse
PCLS with IL-33 has been found to increase methacholine-
induced luminal contraction, with this effect absent in PCLS
from mice deficient in IL-4, IL-5, IL-9, or IL-13 (89). Since IL-13
can directly stimulate airway contraction (91) and IL-33-induced
AHR is IL-13-dependent (12, 86, 89), IL-33 likely induces AHR
in vivo by stimulating IL-13 production in immune cells, such as
ILC2s andmast cells, and subsequently IL-13 promotes increased
airway contraction (12, 86, 89), i.e., an indirect effect of IL-33. It

remains unclear whether the direct action of IL-33 on ASM cells
has a role in AHR.

IL-33 has also been shown to be involved in ASM remodeling
and wound healing. Long-term IL-33 intranasal administration
induces ASM hypertrophy and hyperplasia in mice (92). IL-33
also increases smooth muscle thickening in OVA-sensitized mice
(93). However, an in vitro study showed that IL-33 does not affect
proliferation or survival of primary human ASM cells, suggesting
that IL-33 may regulate ASM remodeling by an indirect
mechanism in vivo (86). IL-33 seems to have a role in ASM
wound repair as shown in studies using an IL-33-neutralizing
antibody following mechanical injury in vitro (86), although the
underlying mechanism for this effect remains unknown.

ASM cells can produce a broad class of chemokines/cytokines,
eicosanoids, and prostaglandins under inflammatory conditions
(94). However, it is largely unknown whether IL-33 stimulates
ASM cells to produce these molecules. So far, only one study
has shown that IL-33 induces keratinocyte-derived chemokine
production in murine ASM cells in vitro (88).

In summary, current evidence suggests that IL-33 plays a
role in AHR development, ASM remodeling and wound healing.
However, many of these effects appear to be mediated by IL-33
indirectly regulating ASM cells via immune cells, such as mast
cells and ILC2s. The detection of increased IL-33 expression in
asthmatic ASM cells indicates that ASM cells may serve as an
important cell source for IL-33 under inflammatory conditions.
How this increased IL-33 expression in asthmatic ASM cells
affects airway structure or function requires further study.

IL-33 AND LUNG FIBROBLASTS

Historically, ST2 was first identified in 1989 as a serum-
responsive protein in murine fibroblast BALB/c-3T3 cells (95).
Later studies found that lung fibroblasts express both IL-33 and
ST2. At baseline, IL-33 and ST2 mRNA and protein expression
levels are very low in both human andmouse lung fibroblasts (19,
96, 97). IL-33 expression in lung fibroblasts can be upregulated
in vitro by stimulation with TNF-α, TNF superfamily member
14 (also known as LIGHT), IL-1β, and second messenger cyclic
GMP-AMP (19, 97, 98) and downregulated by interferon-γ (99).
In vivo, IL-33 expression in lung fibroblasts is increased in
mice with bleomycin-induced pulmonary fibrosis (56), and in
patients with idiopathic pulmonary fibrosis (100). Similar to IL-
33 expression, ST2 expression in lung fibroblasts is upregulated
in vitro by stimulation with inflammatory cytokines, including
IL-1β, IL-4, IL-13, and TNF-α (96, 101) and by OVA airway
administration in vivo (96).

Extensive studies have demonstrated that IL-33 plays an
important role in lung tissue remodeling and fibrosis (102,
103). In mouse models, IL-33 intranasal administration induces
deposition of extracellular matrix proteins in the lung, including
collagen I, III, V and fibronectin, and increased expression of
fibrosis-associated molecules, including connective tissue growth
factor and fibroblast growth factor receptor 4 (12, 104). IL-33
airway administration also potentiates bleomycin-induced lung
fibrotic changes in mice (56, 100). In contrast, ST2 deficiency or
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anti-IL-33 antibody treatment attenuates lung tissue remodeling
after intranasal exposure to bleomycin, house dust mite, OVA, or
influenza virus (12, 56, 63, 104, 105). Proposed mechanisms by
which IL-33 regulates lung tissue remodeling include activation
of several cell types, including macrophages, T regulatory cells
and ILC2s, to produce tissue remodeling-associated factors such
as amphiregulin, IL-13 and transforming growth factor-β1 (56,
63, 64) with these factors activating lung fibroblasts and other
tissue cells to promote tissue repair and remodeling.

Considering that lung fibroblasts upregulate ST2 expression
under inflammatory conditions, IL-33 may directly stimulate
lung fibroblasts to promote lung tissue remodeling in an
autocrine/paracrine fashion. For example, IL-33 stimulation
of primary human or murine lung fibroblasts increases cell
proliferation and production of tissue remodeling-associated
factors, including collagen I, III, IV, fibronectin 1, matrix
metallopeptidase 9, tissue inhibitor of matrix metalloproteinases
1, TRAF6, NFκB, α-smooth muscle actin, and eotaxin (104,
106–108). Interestingly, IL-33 stimulation increases collagen
production only in lung fibroblasts from children with severe
therapy-resistant asthma but not in lung fibroblasts from healthy
adults (12). These results suggest that IL-33 may directly activate
lung fibroblasts to participate in the tissue remodeling/fibrosis
process, at least under inflammatory conditions.

In summary, lung fibroblasts express very low levels of IL-33
and ST2 at steady state and the expression levels are increased
under inflammatory conditions. IL-33 possibly regulates lung
tissue remodeling and fibrosis by both direct and indirect
activation of lung fibroblasts.

CONCLUSIONS AND PERSPECTIVES

Accumulating evidence suggests that non-hematopoietic lung
cells play important roles in IL-33-mediated biological responses.
At baseline, epithelial cells, and endothelial cells appear to
be the predominant cellular sources of IL-33 in the lung,
with generally low levels of ST2 expression. Thus, the main
function of non-hematopoietic lung cells appears to be to
serve as producers of IL-33, rather than as responders, in
the early response phase (acute response) to any pathologic
stimulation. Under either inflammatory or stress conditions,
however, the expression of both IL-33 and ST2 is increased
in non-hematopoietic lung cells, a response which may
amplify IL-33/ST2 signaling in an autocrine and/or paracrine
manner, ultimately leading to amplification of chronic airway
responses. Thus, non-hematopoietic lung cells likely participate
in chronic airway responses as both producers of, and
responders to, IL-33.

IL-33 functions in both immune cells and non-hematopoietic
lung cells. Although the roles of IL-33 in regulating immunity
have been extensively studied, many questions remain to be
answered regarding how IL-33 regulates non-hematopoietic
lung cells. Available in vitro data suggest that IL-33 can
directly promote cell proliferation and production of tissue
remodeling factors in non-hematopoietic lung cells. However,
it is unknown whether this occurs in vivo. The importance

of IL-33 effects on non-hematopoietic lung cells in disease
processes therefore needs to be determined. It is expected
that studies with tissue- or cell-specific ST2 knock-out mice
will facilitate answering these questions. Such tools have been
successfully used to discern the functional roles of IL-33 and
ST2 in the cardiac response to pressure overload (109), but
there is currently no data in the lung tissue cells. However,
these mouse studies may need to be cautiously interpreted due
to species differences in IL-33 and ST2 expression, particularly
mouse vs. human. Considering that IL-33 is a strong activator
of immune cells, it is possible that many IL-33 effects are
mediated through cross-talk between immune cells and non-
hematopoietic lung cells in vivo. Cross-talk between lung
epithelial cells and immune cells through IL-33 and IL-13 has
been suggested to be important in chronic lung inflammation
(11). Future studies are required to identify cross-talk signaling
cascades between immune cells and other types of non-
hematopoietic lung cells in chronic lung inflammation and
tissue remodeling.

As a multifunctional cytokine, IL-33 appears to have
both beneficial and pathological roles in lung responses to
pathogens or insults. While IL-33 can cause inflammation-
induced airway tissue damage, it can also promote tissue repair
after injury. The underlying mechanisms for both of these
responses appear to involve immune cells as well as non-
hematopoietic lung cells. Existing evidence suggests that IL-
33 may engage in different signaling pathways in different
cell types (110), and thus understanding how IL-33 dictates
beneficial vs. pathological responses may necessitate identifying
differential signaling pathways. From a therapeutic perspective,
identification of detrimental signaling cascades and targets
becomes important. Some important additional questions which
remain to be answered are: (1) How do different co-stimulation
signals (environmental cues) modify the final outcomes of
IL-33-mediated cellular responses; (2) How does IL-33 or
receptor expression and downstream signaling differ between
cell types, and how are they modulated by natural factors
such as age or sex; (3) Relevant to sex, is there a role
for sex steroids in modulating IL-33 biology, or vice versa,
toward explaining sex differences in diseases such as asthma
or COPD (4, 111) What are the factors that modulate IL-
33 biology in airway disease, and how do such effects change
with the duration and/or extent of disease given IL-33’s role as
an alarmin?

Evidence that the IL-33/ST2 pathway plays a crucial role
in the development of asthma and other lung diseases has
resulted in investigations to determine whether targeting this
pathway is of therapeutic value. Reagents have been developed
to block the binding of IL-33 to ST2, including anti-IL-33
and anti-ST2 receptor antibodies and soluble decoy receptors,
with several clinical trials for patients with asthma and COPD
currently underway (112, 113). Given that IL-33 has both
beneficial and pathological roles in lung responses, our ability
to better understand the mechanisms of these complex IL-
33 functions will ultimately benefit future efforts to develop
more effective and targeted strategies for the treatment of
chronic human lung diseases that leverage differences between
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the expression and roles of IL-33 in immune cells vs.
non-hematopoietic cells.
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