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Inflammation is a physiological response of the immune system to injury or infection but may become chronic. In general,
inflammation is self-limiting and resolves by activating a termination program named resolution of inflammation. It has been
argued that unresolved inflammation may be the basis of a variety of chronic inflammatory diseases. Resolution of inflammation
is an active process that is fine-tuned by the production of proresolving mediators and the shutdown of intracellular signaling
molecules associated with cytokine production and leukocyte survival. Apoptosis of leukocytes (especially granulocytes) is a key
element in the resolution of inflammation and several signaling molecules are thought to be involved in this process. Here, we
explore key signaling molecules and some mediators that are crucial regulators of leukocyte survival in vivo and that may be targeted

for therapeutic purposes in the context of chronic inflammatory diseases.

1. Introduction

Inflammation is a reaction of an organism to cell and
tissue damage caused by various types of agents (sterile
or not, including autoimmune events). Inflammation may
also be physiological and is thought to be crucial for the
maintenance of tissue homeostasis [1-5]. Important micro-
circulatory events occur during the inflammatory process,
including vascular permeability, changes in the movement,
recruitment and accumulation of leukocytes, and the release
of inflammatory mediators [6]. After elimination of the
harmful agent, the inflammatory process is usually resolved,
as seen by the reduction in the number of leukocytes in
the inflammatory site and the reversal of vascular changes.
Resolution is necessary to restore the original architecture

and function of a given tissue. Failure to resolve can cause
persistent inflammation with consequent maintenance or
increase of tissue destruction [3]. It has been argued that
unresolved inflammation or excessive initial inflammation
may be the basis of a variety of chronic inflammatory diseases
[7].

The resolution of inflammation is an active process that
is coordinated and controlled by a variety of extracellular
and intracellular molecules [4]. With the termination of the
inflammatory stimulus, the reduction of proinflammatory
mediators occurs at the site through the decreased syn-
thesis and increased catabolism of these molecules [4, 8].
The release of proresolving mediators also occurs which
prevents further migration and increases apoptotic events
of leukocytes (primarily granulocytes) [9]. In parallel, some
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proresolving molecules are able to induce the incoming of
nonphlogistic macrophages to further perpetuate efferocy-
tosis of apoptotic granulocytes. In doing so, proresolving
molecules reprogram macrophages to perform more restora-
tive and resolutive roles, thus amplifying the production of
proresolving molecules and promoting resolution [10, 11].
These events mark the beginning of the resolution process,
which is essential to reestablish tissue homeostasis [4, 8, 10,
12].

Some leucocytes, such as granulocytes (mainly neu-
trophils and eosinophils) and macrophages, are profoundly
involved in the inflammatory response. Granulocytes release
toxic compounds and also act as phagocytes together with
macrophages to remove the agent causing inflammation.
However, for the inflammatory process to be successful and
self-limiting (with the goal of restoring tissue homeostasis),
the actions of neutrophils and eosinophils must be finely
regulated [3, 4, 8]. Thus, apoptosis of granulocytes followed
by the efferocytosis (phagocytosis of apoptotic cells) by
macrophages and an active resolution process are obvious
avenues to achieve this goal [6, 10, 12].

Several signaling molecules, including PI3K/Akt, NF-
«B, MAPKs, and CDKs, have been shown to be involved
in enhancing granulocyte survival in vivo and in vitro [13-
16]. The rationale behind enhanced granulocyte survival
involves delaying death of these cells to enable efficient
effector function, such as bacterial killing. However, if not
finely controlled, prolonged activation of survival pathways
and prevention of apoptosis in granulocytes may eventually
delay inflammation resolution. In contrast with the molecules
described above, proresolving mediators, including Annexin
Al (AnxAl), hydrogen peroxide (H,0,), cyclic adenosine
monophosphate (cAMP), TNF-related apoptosis-inducing
ligand (TRAIL) elevating agents (see Figurel), and other
specialized lipid mediators (lipoxin A,, resolvins, maresins,
and protectins), perform the opposite action; that is, they
induce granulocyte apoptosis. Recent studies have shown that
strategies that modulate apoptosis-controlling proteins may
promote the resolution of the inflammatory process [17-22].
Therefore, potential therapeutic strategies that modulate the
resolution pathways may further represent a useful pharma-
cological arsenal for the treatment and prevention of various
acute and chronic inflammatory diseases. Here, we discuss
some aspects of the complex signaling network and some
interventions that interfere with key signaling molecules
associated with leukocyte survival and consequently con-
tribute to inflammation resolution and return to homeostasis.

2. Signaling Molecules as Crucial Regulators of
the Resolution of Inflammation

2.1. Cyclin-Dependent Kinases. Cyclin-dependent kinases
(CDK) are serine/threonine protein kinases that bind to
cyclin to mediate the phosphorylation reactions that are
associated with the progression and regulation of the cell
cycle [23]. Surprisingly, terminally differentiated cells, includ-
ing neutrophils, also express CDKs [24]. Previous studies
have demonstrated that human neutrophils express CDK
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isoforms and their activity is associated with neutrophil
lifespan [24-28]. More recent data have shown that CDK
inhibitors (CDKi) drive granulocyte apoptosis and resolve
inflammation by downregulating Mcl-1 and upregulating
proapoptotic proteins such as Bim [24, 26, 27, 29-31]. In
several models of inflammation, including passively induced
arthritis, bleomycin-induced lung injury, and carrageenan-
elicited acute pleurisy, R-roscovitine, a selective inhibitor of
cyclin-dependent kinases CDK2, CDK5, CDK?7, and CDKO9,
enhanced the resolution of established inflammation. This
resolution was associated with an increase in neutrophil
apoptosis in a caspase-dependent manner [24]. In murine
models, it has also been reported that the induction of
neutrophil apoptosis with R-roscovitine in conjunction with
antibiotic therapy reduces markers of neuronal damage of
pneumococcal meningitis [30]. Moreover, neutrophil clear-
ance mediated through CDK inhibition reduced the lung
inflammation induced by lipoteichoic acid, Streptococcus
pneumonia, and bleomycin-induced lung injury models
[26, 32]. R-roscovitine inhibits the CDK7- and CDK9-
dependent phosphorylation of RNA polymerase II to block
the transcriptional capacity of neutrophils, which can be a
key mechanism associated with neutrophil apoptosis after
CDK inhibition [26]. The studies discussed above clearly
demonstrate that CDK inhibitors induce apoptosis and in
vivo clearance of nonproliferating cells, such as granulocytes.
AT7519 is a more recently investigated CDK inhibitor that has
been evaluated in clinical trials for anticancer therapy [33]. A
study by Alessandri et al. demonstrated that AT7519 induced
eosinophil apoptosis and enhanced the resolution of allergic
pleurisy [31]. AT7519 was also capable of inducing neutrophil
apoptosis and accelerating the resolution of inflammation
induced by LPS or Escherichia coli without the impairment
of bacterial clearance [34]. Importantly, AT7519 has already
been tested to treat patients with refractory solid tumors
[33]. Altogether, these findings suggest that CDK may be a
useful therapeutic strategy for the treatment of inflammatory
diseases.

2.2. Mitogen-Activated Protein Kinases (MAPK) and
Extracellular-Signal-Regulated Kinase (ERK). The mitogen-
activated protein kinases (MAPK) represent a family
of serine threonine kinases that phosphorylate and
activate transcription factors present in the cytoplasm
or nucleus to drive the expression of genes and consequently
biological responses. There are three main MAPK-activated
signaling cascades that lead to differential gene expression:
extracellular-signal-regulated kinase ERK1/2, p38 MAP
kinase, and c-Jun N-terminal kinases (JNKs); these cascades
are activated by several stimuli to regulate proliferation,
differentiation, cell survival, mitosis, apoptosis, and other
cell functions [35, 36]. The MEK/ERK signaling pathway
has been targeted in an attempt to promote resolution
of acute inflammation. Thus, it has been demonstrated
that treatment with U0126, a potent and selective MEK1/2
inhibitor (a kinase upstream ERKI1/2), was able to reduce
inflammatory parameters in a murine model of allergic
asthma [37] and LPS-induced lung injury [38]. Additionally,
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FIGURE 1: Targets to promote granulocyte apoptosis and inflammation resolution. During early phase of inflammation production of
proinflammatory mediators and activation of signal survival pathways (PI3K/Akt, NF-«B, MAPKs, and CDKs) promotes leukocyte
accumulation and survival in the inflammatory site. While inflammatory response evolves, local activation/release of proresolution mediators

occurs and pathways (H,O,, AnxAl, and cAMP) that control further g
molecules, in addition to proresolving lipid mediators which are not hi
an apoptosis-associated program in granulocytes. Resolution molecule
of macrophages. These events will reestablish tissue homeostasis.

the use of a specific ERK1/2 inhibitor (PD98059) augmented
the resolution of inflammation in a pleurisy model;
this was associated with the inhibition of the production of
neutrophil survival factors at the site of inflammation and the
increased neutrophil apoptosis [39]. A recent study in vitro
demonstrated that MSK1/2 (mitogen- and stress-activated
protein kinase 1 and 2)—two kinases phosphorylated by
both ERK1/2 and p38 MAPK—are associated with control
on the induction of cyclooxygenase- (COX-) 2 mRNA and
the IL-10 production through CREB (cAMP responsive
element-binding protein) in macrophages stimulated or not
with LPS [40]. However, there is no evidence that MSK1/2
are relevant for resolution of inflammation in vivo. Therefore,
although the anti-inflammatory effects of MAPK inhibitors
have been clearly defined, the potential of these inhibitors to
promote inflammation resolution needs to be better clarified
using other models of in vivo inflammation.

2.3. Cyclic Adenosine Monophosphate. Cyclic adenosine
monophosphate (cAMP) is a ubiquitous second messenger

ranulocyte ingress and turn on a resolution program. These resolution
ghlighted in this cartoon, downregulate survival pathways and activate
s are also able to promote efferocytosis and coordinate reprogramming

produced after adenylate cyclase activation that has been
shown to play an important role in modulating the activity
of cells involved in the inflammatory process, primarily
through PKA activity [41]. Intracellular levels of cAMP
are physiologically modulated by agonist ligands (such as
PGE,, adenosine, and p-adrenergic) and are fine-tuned
and controlled by phosphodiesterases (PDEs), which are
intracellular enzymes that hydrolyze cAMP [41, 42]. In
addition to known anti-inflammatory proprieties of cAMP-
elevating agents [41-44], emerging data support a role for
cAMP in some steps of the resolution process [20, 45-47].
Our research group demonstrated an important role for
cAMP in inducing the resolution of acute inflammation by
modulating the apoptosis of granulocytes in vivo [20, 45].
cAMP elevation, which is mimicked by the administration
of cAMP mimetic compounds or promoted by rolipram (a
PDE4 inhibitor), induced the resolution of both eosinophilic
[45] and neutrophilic inflammation [20], which was
mediated by PKA and dependent on granulocyte apoptosis.
The resolution induced by increasing cAMP levels has
been associated with the modulation of several molecular



pathways, which are important for leukocyte survival.
For example, it has been shown that high concentrations
of cAMP decrease prosurvival intracellular molecules,
including MCL-1, PI3K, and NF-xB and increase levels
of proapoptotic molecules: BAX and cleaved caspase-3
[20]. Lower levels of cAMP may account for the lack of
resolution of inflammation in a murine model of chronic
granulomatous disease [48].

Emerging concepts about the role of cAMP in inflam-
mation resolution came first from Bystrom and cols [46],
who demonstrated the participation of cAMP in repro-
gramming inflammatory macrophages to resolution-phase
macrophages. In agreement with these findings, a recent
paper showed that cAMP contributes to resolution by
polarizing M1 to M2 macrophages [49]. In addition to
inducing macrophage reprogramming, enhanced levels of
cAMP induced by binding to lysophosphatidylserine (lyso-
PS) expressed on apoptotic neutrophils are also involved in
efferocytosis [50, 51]. Lyso-PS acts on the macrophage G2A
receptor and enhances the clearance of these neutrophils
by signaling through the PKA-dependent increase of Racl
activity via an increased production of PGE, and cAMP
[52]. However, whether the above-described mechanisms of
cAMP may be applied in in vivo situations of inflammation
remains to be determined.

cAMP may function as an intermediate of the effects of
certain proresolutive molecules. For example, one study sug-
gests that RvD1 is able to increase intracellular levels of cAMP
and rescue macrophage apoptosis in a cAMP-dependent
manner [47]. A recent study by our group demonstrated
that treatment with a PDE4 inhibitor, which enhances cAMP,
induced resolution of inflammation that was associated with
increased levels of AnxAl [21]. Altogether these data suggest
that cCAMP is a crucial control molecule in the resolution of
inflammation. Not only is cAMP induced by proresolving
molecules but it may also induce the release of proresolving
molecules, thus acting at multiple regulatory levels to induce
resolution. Therefore, cAMP-elevating drugs may represent
a useful therapeutic strategy to induce the resolution of
inflammation.

2.4. Phosphoinositide 3-Kinases. Phosphoinositide 3-kinases
(PI3Ks) are a family of intracellular lipid kinases that phos-
phorylate the 3-OH group of inositol membrane lipids,
thus regulating many aspects of cell function, including cell
metabolism, survival, and polarity. This family can be divided
into three main classes (I, II, and III) based on structural and
biochemical characteristics [53, 54]. In mammals, isoforms
of PI3K are related to signal transduction, and each isoform
plays a different role [53]. Class I is subdivided into two
subclasses, IA and IB. PI3Ky is the only member of class
IB and is the most highly expressed in cells of the immune
system. This isoform is composed of the pll0y catalytic
subunit and the p101 regulatory subunit and is activated by
the Gy subunits of G proteins [55, 56]. PI3Ks are known to
be important in many cell processes related to the immune
system, including cell activation, migration [55, 57, 58], and
cell survival, via the phosphorylation of Akt/protein kinase B
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(PBK) [20, 45]; PI3Ks are also activated by antigen, cytokine,
and chemokine receptors [59].

Our group has evaluated the role of PI3Ky in inducing
and maintaining the inflammatory process in experimen-
tal models. In a model of allergic pleurisy in mice, the
inhibition of PI3K cleared accumulated eosinophils and
increased the number of apoptotic events. Experiments using
adoptive transfer of bone marrow cells showed that PI3Ky on
leukocytes was required for the maintenance of eosinophil
influx at the later stages of eosinophilic inflammation [17].
These studies suggest that PI3Ky on leukocytes is relevant
for the maintenance of inflammation and that inhibitors
of these enzymes could potentially impart on resolution of
inflammation.

However, there are no published studies demonstrating
that selective blockade of PI3Ky is really proresolutive in
vivo. Blockers of PI3Ky may have anti-inflammatory effects
in vivo, as we have shown in a model of bleomycin-induced
pulmonary inflammation [19]. However, a definite demon-
stration that these enzymes are relevant in vivo is lacking
as most published studies have only studied the effects of
pan PI3K inhibitors, especially wortmannin and LY294002,
in preclinical models of inflammation resolution. There are
now many new selective PI3K inhibitors in development [60].
Whether such drugs with greater selectivity and safety profile
will resolve inflammation in vivo needs to be studied.

2.5. Nuclear Factor Kappa B. Nuclear factor kappa B (NF-xB)
is a transcription factor that regulates immune response to
both injury and infection [61, 62]. NF-«B is a convergence
point of several signal transduction pathways by conveying
the signals of these molecules to the nucleus and promoting
transcriptional activation of genes associated with inflam-
mation and cell survival [62]. The activity of NF-«B is
primarily regulated through interactions with inhibitory IxB
proteins. The phosphorylation of I«B results in its proteasome
degradation and the release of NF-«xB (usually composed of
p50/p65 heterodimers) for nuclear translocation and activa-
tion of gene transcription [61, 62]. Over 750 inhibitors of
the NF-«B pathway have been identified, including a variety
of natural and synthetic molecules. These molecules act by
inhibiting NF-«B nuclear translocation/or transactivation or
through IxB super repression [63-67].

Recently, numerous investigations have supported the
role of miRNAs in the regulation of NF-xB. miRNAs
have been found to be involved in NF-«xB signaling by
targeting NF-«xB regulators and effectors [68, 69]. Recent
studies have shown that NF-«B inhibitors may attenuate
inflammatory parameters in different experimental models
of inflammation [70]. For example, NF-xB inhibitors possess
anti-inflammatory effects in models of lipopolysaccharide-
induced lung injury [71], traumatic brain injury [72], col-
itis [73], and pulmonary arterial hypertension [74]. Fewer
studies have evaluated the effects of NF-«B inhibitors in
the resolution of inflammation. Our research group showed
that inhibition of NF-xB promotes resolution in established
murine models of neutrophilic and eosinophilic inflamma-
tion [22, 45]. The resolution of inflammation induced by
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NF-xB inhibitors in the models of arthritis [22] and allergic
pleurisy [45] was associated with enhanced apoptosis of
inflammatory cells.

NEF-«B activation usually results in the upregulation of
antiapoptotic genes that may lead to cell survival [64].
However, NF-xB may also control genes associated with
survival and anti-inflammation [70, 75]. In this sense, a few
studies have shown that NF-xB inhibitors failed to promote
the resolution of inflammation [20] and actually prolonged
the inflammatory response by preventing leukocyte apoptosis
[70, 76]. Greten and cols also described that NF-xB could
also function as a negative posttranslational regulator of
inflammasome activation. Therefore, it is clear that NF-xB
may have dual role, both pro- and antiresolution, in models of
inflammation. This duality of function of NF-«B is likely the
result of the central role of this molecule in the convergence
of several inflammatory signals [70]. Whether manipulating
NF-«B in inflammation will ultimately result in beneficial
functions clearly deserves further investigation.

The discussion above suggests that several signaling
pathways have been implicated in leukocyte survival during
inflammatory response. It is important to note that each
specific molecule associated with a signaling pathway cascade
may not work in a disconnected manner. Crosstalk between
signaling pathways is likely to be essential for leukocyte
survival and much more work is needed to understand the
interaction between potential resolution inducing pathways,
especially in the context of the complex in vivo situation
of an inflammatory response. However, as demonstrated
above, there are molecules which are crucial for resolution
of inflammation and whose effects may be indeed exploited
therapeutically [77, 78].

3. Molecules Involved in Apoptosis
of Granulocytes and Resolution of
the Inflammatory Response

3.1. Annexin Al Annexin Al (AnxAl) is a 37kDa
glucocorticoid-induced  protein firstly identified by
its action on phospholipase- (PL-) A2 inhibition and
prevention of eicosanoid synthesis [79]. AnxAl is a protein
member of the annexin superfamily, which exerts its
anti-inflammatory activity by binding to receptor ALX
(named FPR2, formyl peptide receptor-2, murine), which
is also shared with lipoxins [80]. During the initial steps
of acute inflammation, AnxAl limits the recruitment
of leukocytes and the production of proinflammatory
mediators [80]. During the resolution phase, AnxAl acts
by inducing the apoptosis of neutrophils and this effect is
associated with increased expression of cleaved caspase-3
and BAX and decreased expression of pERKI1/2, NF-xB,
and MCL-1 [21, 81-83] and increasing efferocytosis by
macrophages [83-85]. Interestingly, activation of FPR2 by
AnxAl and LXA4 skewed M1 macrophages to M2-like cells
[86]. In this context of macrophage modulation, it was
demonstrated that AnxAl released from apoptotic cells
contributed to the immunomodulatory effect of these cells
on inflammation cells by damping inflammatory monocyte

activation [87]. Additionally, AnxAl may induce indirectly
the chemoattraction of monocytes [88]. These effects—
migration of monocytes and skewing towards a M2-like
phenotype—may be relevant in the context of inflammation
but remain to be determined in vivo.

The N-terminal region of AnxAl is the major effector
portion responsible for the anti-inflammatory action of the
protein [80]. However, once in the extravascular space,
the major part of the active AnxAl (37kDa) contained
in neutrophils is cleaved by proteases, particularly elastase
and proteinase-3, yielding the inactive AnxAl (of 33kDa
form) [89, 90]. As a strategy to deliver anxAl in vivo, we
and others have explored the therapeutic potential of an
AnxAl peptidomimetic Ac2-26, which retains the biological
activity of the entire protein. In a model of acute inflam-
mation triggered by LPS, the administration of Ac2-26 at
the peak of inflammation resolved inflammation by inducing
caspase-dependent apoptosis of inflammatory cells [21]; this
mechanism was also demonstrated using a longer peptide,
AnxAl, 5, [83]. An AnxAl cleavage-resistant protein and
an AnxAl, 5, peptide with a mutation on the cleavage site
were demonstrated to be more effective in improving several
parameters of inflammation compared with a full length
protein and a peptide that was not mutated at the sites of
proteases action [83, 90].

One intriguing characteristic of the FPR receptor is that
it recognizes both proinflammatory and proresolving signals,
thus integrating contrasting cues to determine the course
of inflammation [91, 92]. Cooray and cols revealed this
intriguing receptor characteristic and showed that the anti-
inflammatory signal triggered by AnxAl (Ac2-26 peptide)
and LX A4 promotes FPR2 homodimerization and resolution
activities by inducing p38-induced IL-10 production; this
stands in contrast with proinflammatory signals, such as
SAA, that bind to the receptor alone. Interestingly, Ac2-
26 peptide, which is a nonselective FPR ligand (binding to
both FPR2 and FPRI), is able to promote the dimerization
of FPR1 and FPR2 and change the proinflammatory nature
of FPRI by transducing JNK/caspase-3 proapoptotic signal
and promoting resolution of inflammation [93]. These latter
findings would help explain the restorative role of Ac2-26
peptide by acting through FPR1 and orchestrating epithelial
repair in a model of mucosal inflammation [94]. Thus,
AnxAl, its peptidomimetics, or AnxAl-inducer drugs may
have great therapeutic potential as resolution inducing drugs
in vivo.

3.2. Hydrogen Peroxide. The nicotinamide adenine dinu-
cleotide phosphate oxidase (NADPH oxidase) expressed in
phagocytes is a multisubunit enzyme complex that generates
hydrogen peroxide (H,0O,) and other reactive oxygen species
(ROS) [95]. Accumulating data has suggested that ROS are
not merely injurious but can also downregulate inflammation
and contribute to the maintenance of tissue homeostasis
[96, 97]. Consistent with this observation, various lines of
evidence have indicated a critical role of H, O, for the natural
resolution of inflammation and regeneration/repair of tissue



by inducing apoptosis in different cell types such as neu-
trophil [22], hepatocyte [98], myocytes [97], and endothelial
[99] and lymphoma cells [100].

Our group has investigated the effects of H,0, in the
context of the resolution of inflammation. Lopes et al. demon-
strated that H,O, resolves neutrophilic inflammation by
activating BAX and caspase-3 and the shutting down NF-«B
and PI3K pathways. Consistently with the latter observation,
deficiency of the gp91P™* component of NADPH oxidase
was associated with increased inflammation in a model of
antigen-induced arthritis. In vitro, H,O, has been shown to
induce programmed cell death in various cell types, including
leukocytes. In these cells, H,O, appears to decrease survival
signaling pathways, including PI3K/Akt, the transcription
factor NF-xB, and mitochondrial pathways [22, 101-104].
The situation in vivo is much less well known and studies
will be needed to determine the precise molecular pathways
that control H,O, production and the extracellular and
intracellular signaling mechanisms through which H,O,
promotes resolution of inflammation. In this sense, a recent
study showing that H,O, may induce the expression of
AnxAl raises the hypothesis that AnxAl could be involved
in the proresolving abilities of this molecule [105]. Therefore,
although the proresolving role of H,O, is of great interest,
further studies on its source and mechanisms of action are
clearly needed.

3.3. TNF-Related Apoptosis-Inducing Ligand. The TNF-
related apoptosis-inducing ligand (TRAIL) is a cytokine that
belongs to the TNF superfamily that was discovered in 1995
[106-108]. TRAIL is able to interact with two proapoptotic
death receptors, TRAIL-RI/DR4 and TRAIL-R2/DR5, as
well as three decoy receptors without functional death
domains [109, 110]. The role of TRAIL in biological systems
is complex. Several studies have demonstrated a key role
of TRAIL in controlling a number of different types of
cancer [109-115]. However, some studies have shown that
TRAIL has important functions in the immune system,
including an immunoregulatory function [116-120]. TRAIL
is also involved in the control of some autoimmune diseases
[121, 122]. For example, the neutralization of endogenous
TRAIL may prevent the resolution of granulomatous
experimental autoimmune thyroiditis [123].

A few studies have demonstrated that TRAIL is able to
promote apoptosis of human and murine neutrophils [108,
124] and may, hence, promote inflammation resolution. In
this regard, it has been shown that the duration of neu-
trophilic inflammation is enhanced in TRAIL-deficient mice
[108]. In addition, TRAIL-deficient mice showed an aberrant
inflammatory response associated with reduced apoptosis
of inflammatory cells and increased collagen deposition
in a model of chronic pulmonary inflammation induced
by bleomycin [125]. TRAIL was also found to modulate
allergic inflammation. The treatment with antiTRAIL anti-
body blocked apoptosis of T helper type 2 (Th2) cells and
eosinophils and enhanced the inflammatory response [126].
Although conclusive evidence is lacking for a role of TRAIL
in the resolution of inflammation [127], the effects of TRAIL
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are associated with the apoptosis of leukocytes, suggesting
TRAILSs potential therapeutic use for the treatment of estab-
lished inflammatory diseases. Agonistic antibodies have been
produced to treat many cancers; the monoclonal antiTRAIL-
Rl antibody (mapatumumab) [128] is currently in clinical
development, and five antiTRAIL-R2 antibodies are also
being tested (lexatumumab, Apomab, TRA-8, AMG 655, and
LBY135) [129-133]. Thus, these antibodies could potentially
be explored in the context of inflammation resolution.

4. Concluding Remarks

Given the importance of inflammation and its resolution,
many studies have sought to better understand the molec-
ular scenario involved in these processes. Some of the
actors involved in the resolution of inflammation were
mentioned in the present review and were demonstrated
to be potential targets of therapeutic approaches. The res-
olution of inflammation is a vital process that enables
the return to homeostasis of the immune system and the
organ affected by inflammation, avoiding the development of
chronic and autoimmune diseases [8, 134]. In vitro studies
provide essential information about molecular machinery
that helps to elucidate how different intracellular molecules
control leukocyte survival in inflammatory sites. However,
they do not cover the entire complexity of in vivo settings,
which include intracellular pathways and molecules that
are interrelated or codependent [78]. Moreover, resolution
of inflammation, an in vivo phenomenon, is much more
complex than simple apoptosis of leukocytes and includes
switching off proinflammatory pathways, efferocytosis, and
the function of cells other than leukocytes. For example,
some proresolving mediators act in macrophages by rescuing
from apoptosis and by activating them to induce phagocytosis
of apoptotic leukocytes (efferocytosis) [53]. There is also
evidence to suggest that nonhematopoietic cells may be
involved in the context of the resolution of inflammation
[135]. However, studies evaluating the role of epithelial cells
and other nonprofessional phagocytic cells in the resolution
of inflammation are lacking.

Future studies should try to integrate current findings
with single signaling molecules with more complex signaling
pathways and how they interact with each other, all of these
in the complex in vivo situation. Consideration should be
given not only to pathways associated with apoptosis of
leukocytes but also to molecules and pathways associated
with triggering efferocytosis. One must also keep in mind
that cells other than leukocytes may respond to resolution
inducing molecules in vivo by releasing secondary mediators
which themselves could be more relevant as final mediators
of resolution. New animal models in which natural resolution
of inflammation does not occur are clearly needed, especially
in models accompanied by a degree of chronic fibrosis. Most
reported studies have been performed in systems in which
resolution eventually occurs. Whether strategies which speed
the resolution of inflammation will also resolve inflammation
and prevent or reverse fibrosis in a nonresolving chronic
model needs to be determined. Finally, one will also need
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to take the difficult task of translating experimental findings
into human diseases. Whether proresolving strategies will be
accompanied by significant degree of immunosuppression is
currently not known and will need to be addressed in the
future.
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