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Comprehensive assessment following traumatic spinal cord injury (SCI) is needed
to improve prognostication, advance the understanding of the neurophysiology
and better targeting of clinical interventions. The International Standards for
Neurological Classification of Spinal Cord Injury is the most common clinical
examination recommended for use after a SCI. In addition, there are over 30
clinical assessment tools spanning across different domains of the International
Classification of Functioning, Disability, and Health that have been validated and
recommended for use in SCI. Most of these tools are subjective in nature, have
limited value in predicting neurologic recovery, and do not provide insights into
neurophysiological mechanisms. Transcranial magnetic stimulation (TMS) is a
non-invasive neurophysiology technique that can supplement the clinical
assessment in the domain of body structure and function during acute and
chronic stages of SCI. TMS offers a better insight into neurophysiology and help
in better detection of residual corticomotor connectivity following SCI
compared to clinical assessment alone. TMS-based motor evoked potential and
silent period duration allow study of excitatory and inhibitory mechanisms
following SCI. Changes in muscle representations in form of displacement of
TMS-based motor map center of gravity or changes in the map area can
capture neuroplastic changes resulting from SCI or following rehabilitation.
Paired-pulse TMS measures help understand the compensatory reorganization
of the cortical circuits following SCI. In combination with peripheral stimulation,
TMS can be used to study central motor conduction time and modulation of
spinal reflexes, which can be used for advanced diagnostic and treatment
purposes. To strengthen the utility of TMS in SCI assessment, future studies will
need to standardize the assessment protocols, address population-specific
concerns, and establish the psychometric properties of TMS-based
measurements in the SCI population.
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Introduction

Spinal cord injury

Spinal cord injury (SCI) is a life-altering event with

impairment of various neurological functions including motor,

sensory, and autonomic dysfunction. These changes almost

invariably result in a reduced quality of life. In the United States,

SCI affects over 17,000 individuals each year and it has a

prevalence of approximately 294,000 (1–3). The most common

cause for SCI is motor vehicle crashes, and males account for

78% of new SCI cases (3). Recovery of upper and lower

extremity function is a top priority for individuals with SCI (4,

5); however, the neurophysiological mechanisms underlying

movement impairments are poorly understood (6, 7). A better

understanding of the neurophysiological mechanisms underlying

movement impairments and recovery can help in better

prognostication and allow for more targeted and individualized

therapies to improve motor recovery.

Following acute traumatic SCI, clinical examination remains

the first and most important diagnostic approach to determine

the extent of motor and sensory deficits, and the level and

severity of injury, which can be used to characterize natural

neurological recovery (8). The information gleaned from the

examination and classification can inform the planning of

rehabilitation strategies (9). In the chronic stages of traumatic

SCI, usually defined as greater than 1-year post-injury,

spontaneous recovery is rare; however, newer rehabilitation

techniques (e.g., neuromodulation) are showing potential for

neurologic recovery in individuals with chronic SCI (10, 11).

There is a growing interest in advancing the use of

electrophysiology (e.g., transcranial magnetic stimulation,

somatosensory evoked potential, spinal reflexes) (12) and

neuroimaging (diffusor tensor imaging, spinal tractography)

(13) techniques to supplement the clinical assessments for

characterizing residual connectivity and neurological recovery

following SCI. Transcranial Magnetic Stimulation (TMS) is

one of the non-invasive electrophysiology techniques that has

been repeatedly proposed as a method to supplement clinical

assessment in individuals with SCI (12, 14, 15). TMS-based

measures assess the body structure and function domain of

the International Classification of Functioning, Disability, and

Health. Specifically, the TMS-based outcomes allow objective

assessment of corticomotor neurophysiology to help monitor

neurological changes following SCI.

In this review, we will briefly discuss the current best

practice clinical assessment tools within the body structure/

function and activity domains of the International

Classification of Functioning, Disability, and Health and

provide an in-depth review of the TMS-based measures that

may potentially aid better prognostication and advance the

understanding of neurophysiologic mechanisms underlying

impairments and functional recovery.
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Clinical assessments after spinal cord
injury

Clinical assessments in rehabilitation settings are often used

to guide the progression of therapy post SCI. Several outcome

assessment tools are designed to measure different domains

under the International Classification of Functioning,

Disability, and Health framework. Whereas these measures are

important for devising patient’s plan of care based on

prognosis for recovery, the individual measures usually do not

have any predictive value for long-term motor recovery.

Clinical prediction rules (CPR) have been developed

by researchers by combining clinical features, such as

demographics, symptoms, physical examination findings,

imaging results, and assessment scores (16–20). CPR may

provide an estimate of the probability of the presence of

disease (diagnostic CPR), the outcome (prognostic CPR), or

response to treatment (prescriptive CPR) in a given patient

(16, 17). A few prognostic CPR using logistic regression

analysis have been developed in SCI, more notably to predict

lower extremity/ambulatory recovery (18, 21–23). CPR may

assist in planning for lifestyle changes, treatment decisions or

help manage patient expectations and stratify patients for

therapeutic intervention trials (24). There are some CPR

methods that have prognostication value; however, they do

not identify the neurophysiological basis of the prognosis of

individuals with SCI (16). With a shift towards individualized

treatment plans, it becomes important to identify individual

patient’s prognosis in the acute stages, so that treatment plans

can be developed accordingly, and during chronic stages to

monitor improvements with newer therapies targeted at

neuro-restoration.

The Spinal Cord Injury Research Evidence (SCIRE) team

published a standardized set of outcome measures developed

in consultation with experts in SCI, for use in SCI clinical

practice (25). This set consists of 32 measures that have been

psychometrically validated in SCI population. Below we

discuss some of the outcome measures that are commonly

used both in clinical practice as well as in research in SCI

population.
International standards for neurological
classification of spinal cord injury

The International Standards for Neurological Classification

of Spinal Cord Injury (ISNCSCI) in association with the

American Spinal Injury Association (ASIA) Impairment Scale

(AIS) is the most commonly used neurological examination

and classification of severity of injury following traumatic SCI

(8). The ISNCSCI has evolved over time with many revisions

(26–28) and in its current form, offers clear instructions and

consistent terminologies related to the level and completeness

of SCI. The most recent revision from 2019 (28) incorporates
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two main changes including (a) a new taxonomy for systematic

documentation of clinical judgment in the presence of non-SCI

related conditions, and (b) a new definition of the zone of

partial preservation, which applies not only to neurological

complete but also to incomplete injuries with missing motor

or sensory functions in the lowest sacral segments (28–30).

The ISNCSCI is an impairment-based measure and assesses

function in the body structure/function domain of the

International Classification of Functioning, Disability, and

Health. It involves sensory and motor impairment

assessments in segments above and below the level of injury

to define the neurological level of injury and the neurological

“completeness” of injury based upon the sacral sparing

definition. In addition, the motor and sensory scores are also

used for stratification and prognostication purposes (14, 31).

Although the ISNCSCI is the most widely used standardized

clinical neurological assessment in SCI and has shown

relatively good psychometric properties, there are challenges

in its use for neurological classification and prognostication

(30, 32), and its utility as a measure to estimate prognosis is

debatable (33). The assessment is subjective and depends on

the experience and training of the assessor (34–36). Similar to

most clinical assessments, it relies on the participation of the
TABLE 1 Clinical measures of upper extremity function and their psychome

Outcome measure Primary construct

Spinal Cord Independence Measure
version III (SCIM III)—self-care and
grooming sub-scale

Independence level in ADLs, ICF domain: A

Capabilities of Upper Extremities
Questionnaire (CUE)

Proximal and distal upper extremity functio
domain: Activity

Graded Redefined Assessment of
Strength, Sensibility, and Prehension
(GRASSP)

Multidimensional—hand impairment and fu
ICF domain: Body structure/Function, Activ

Grasp and Release test Designed to measure function following FES
tendon transfer surgeries, assess lateral and
grasp. ICF domain: Activity.

Ashworth and Modified Ashworth Used to assess spasticity in SCI, ICF domain
structure and function

Sollerman Hand Function Test Designed to measure grips that are needed f
ADLs and considers the quality and level of
ICF domain- Activity

ADLs, activities of daily living; ASIA, American spinal injury association; ICF, internatio

Scale; ISNCSCI, The International Standards for Neurological Classification of Sp

Assessment Tool for Spastic Reflexes; SCIM, Spinal Cord Independence Measure ver
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patient and is affected by the heterogeneity of SCI (8). For

example, given the subjectiveness of certain components of

the scale, if sensory or motor scores are inaccurately assigned

as zero for sacral sparing, then a patient classifies as AIS A

(neurological complete injury) instead of AIS B (sensory

incomplete), or AIS C (motor incomplete). Moreover, the

scale has floor effects for AIS A and ceiling effects for mild

injuries (i.e., AIS D) (32, 37). The ISNCSCI, most commonly

the specific levels of injury (e.g., motor and neurological level

of injury), upper extremity motor scores and AIS, are often

used in clinical trials as an inclusion/exclusion criterion.

Overall, however, AIS grades are rarely used as a sole

outcome measure, likely due to the lack of sensitivity of this

measure alone.

Upper and lower extremity clinical measures
Other than ISNCSCI, there are specific tools for the

assessment of upper and lower extremity functional outcomes

(Tables 1, 2). The SCIRE published a set of measures

specifically designed for measuring upper and lower extremity

assessment (25). Tables 1, 2 include psychometric properties

of some of the upper and lower extremity measures that have

been used in individuals with SCI. There are other outcome
tric properties in individuals with spinal cord injury.

Psychometric properties

ctivity Inter-rater reliability: 71.6%–97.5% depending on item (100)
Construct validity: Correlated with the Functional Independence
Measure (r = 0.85) (100)

n, ICF Internal consistency: High (Cronbach’s α = 0.96) (101) Validity: High
Spearman’s ρ correlation with the Graded Redefined Assessment of
Strength, Sensibility, and Prehension measure ρ = 0.77–0.83 (102);
high correlation with ASIA Upper Extremity Motor Score: r = 0.78
(103)

nction,
ity

Inter-rater reliability: 0.84–0.96; test-retest reliability: 0.86–0.98 (102)
Construct validity: 50% more sensitive than the ISNCSCI when
defining sensory and motor integrity of the upper limb (102)
Concurrent validity: significantly correlated with the SCIM, SCIM-
self care, and CUE (102)

and
palmar

Test-retest reliability is high for all 6 items (ICC = 0.87–1.00) (104,
105) Validity: statistically significant and moderate to high
correlations between the 12-month Functional Independence
Measure and the fork item (r = 0.624), the can item (r = 0.700) and
the videotape item (r = 0.503) (104, 105)

- Body Reliability: moderate inter-rater reliability (for MAS): ICC = 0.56
(106) Validity: moderate to high correlation of Ashworth (hip, knee,
ankle) with SCATS (clonus, flexion, extension); moderate correlation
between Ashworth (hip, knee, ankle) and Penn Spasm Frequency
Scale (PSFS) (107)

or certain
difficulty.

Reliability: high inter-rater reliability (r = 0.98) (108, 109) Validity:
high correlation of the Sollerman Hand Function test with the
International Classification for Surgery of the Hand in Tetraplegia
(Pearson’s r = 0.88) and the Motor Capacities Scale (Spearman’s r =
0.959) (108, 109)

nal classification of functioning, disability and health; MAS, Modified Ashworth

inal Cord Injury; FES, functional electrical stimulation; SCATS, Spinal Cord

sion.
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TABLE 2 Clinical measures of lower extremity function and their psychometric properties in individuals with spinal cord injury.

Outcome measure Primary construct Psychometric properties

Walking Index for Spinal cord
injury II (WISCI II)

Amount of physical assistance, braces or devices
needed to walk 10 m, ICF domain- Body structure
\function

Reliability: very good inter-rater reliability (110); intra-rater reliability: >0.97
(111) Validity: concurrent validity: sensitive in patients with more impaired
gait, however inferior to 6MWT and 10MWT in patients with good
ambulatory function; poor correlation in patients with SCI who have poor
ambulatory function (WISCI II scores <10); positively correlated with
10MWT, 6MWT, TUG (111)

Spinal cord injury functional
ambulation inventory (SCI-FAI)

Gait is assessed in terms of gait parameters, assistive
device use, walking mobility, ICF domain- Body
structure\function

Reliability: inter-rater reliability: 0.703–0.840; intra-rater reliability: 0.850–
0.960 (112) Validity: construct validity: gait score positively correlated with
change in lower extremity strength (Pearson r = 0.58) (112); concurrent
validity: highly correlated with the BBS (113)

Spinal cord assessment tool for
spastic reflexes (SCATS)

Measures the primary spastic reaction in the SCI
population, ICF domain- Body function

Reliability: high inter-rater and test-retest reliability (114) Validity: high
correlation range with kinematic and electromyography = 0.69–0.94 (P <
0.01) (114)

Spinal Cord Independence
Measure SCIM III: Mobility
subscore

Measures the independence with transfers and
household as well as community ambulation

Reliability: inter-rater reliability: adequate to excellent for the mobility in
room and toilet transfers and excellent for the indoor and outdoor mobility
(kappa values: 0.631–0.823) (115)

6MWT, 6-minute walk test; 10MWT, 10-minute walk test; BBS, berg balance scale; ICF, international classification of functioning, disability and health; TUG, timed up

and go test.
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measures that were developed for other clinical populations,

have excellent validity, and have been recommended for use

in SCI population (e.g., berg balance scale, 10 MWT). It is

beyond the scope of this paper to discuss all the clinical

outcomes currently being used in SCI population. While these

clinical measures have been validated for the assessment of

upper and lower extremity function in individuals with SCI,

they are still limited in terms of subjectivity, insufficient

prognostic information, and lack of insight into the

neurophysiological mechanisms.
Transcranial magnetic stimulation-based
assessment of spinal cord injury

Transcranial magnetic stimulation is a non-invasive brain

stimulation technique that uses a rapidly changing magnetic

field to induce currents in the cortical structures (38). The

induced current can depolarize the cortical neural structures

and activate target muscles leading to motor evoked potentials

(MEP) or inhibit the ongoing muscle activity to a silent

period in the electromyographic (EMG) recordings (Figure 1).

The MEP and silent period provide useful information on the

excitatory and inhibitory pathways underlying motor

impairments and recovery after SCI. The TMS-based metrics

are associated with the extent of injury, and clinical-based

assessment of impairments and activity (14, 39, 40).

Residual corticospinal connectivity
In the simplest form, TMS can detect the presence or absence

of MEP in the muscles affected by SCI. Despite being diagnosed as

a motor complete SCI, presence of MEP has been reported in the

muscles with no detectable motor function, including abdominal,

lower extremity and pelvic floor muscles (41–43). The presence of
Frontiers in Rehabilitation Sciences 04
MEP in these muscles confirms residual connectivity in the

corticospinal pathways, which may otherwise go undetected

using clinical examination alone. MEP measurements can detect

changes in the residual function and recovery of SCI over time.

For example, a longitudinal study monitored MEPs from

abductor digiti minimi muscles in 305 individuals with complete

and incomplete SCI at 15 days, 1 month, 3 months, 6 months

and 12 months following an acute traumatic SCI (C2-C8/T1;

AIS A-E) (14). On the basis of MEP deterioration and evolution,

the authors categorized MEPs as Abolished (absent in all

assessments; 34%), Reappearing (absent initially, but consistent

reappearance in at least 1/4 sessions; 25%), Inconsistent

(occasionally present in at least 1/5 sessions; 4%), and Mildly

(always present with normal latencies; 19%) or Severely

deteriorated (always present with delayed latencies; 18%) (14).

Out of these 305 individuals, ∼16% were diagnosed with

clinically complete injuries (AIS A). Amongst those with AIS A,

only 37% had fully abolished MEPs, remaining 63% had some

presence of MEPs throughout the study. The findings suggest

MEP can be present below the level of lesion, and in cases when

absent, may evolve over time with spontaneous motor recovery

even in those with clinically complete injuries.

The motor threshold, defined as TMS intensity (expressed

as % maximum stimulator output; MSO) for eliciting

consistent MEP, is typically higher in muscles impaired from

SCI (40, 44–48). In some cases, the thresholds can be too

high to elicit MEP even with the maximum intensity (i.e.,

100% MSO). In some of these cases, there may be residual

connectivity which may go undetected, leading to false-

negative interpretation. In case of the absence of MEP with

the 100% MSO, neurological reinforcement such as target

and remote muscle contractions has been recommended to

minimize the risk of false-negative interpretations (43, 49).

For example, Williams et al. (2020) were able to obtain MEPs
frontiersin.org
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FIGURE 1

Single pulse transcranial magnetic stimulation. (A) Stimulation of primary motor cortex to activate corticospinal tracts and collection of responses
from the first dorsal interossei (FDI) muscle; (B) characteristics of motor evoked potential and silent period—amplitude, latency, and silent period
duration [Reprinted from Ni and Chen et al., 2015 (99); reprint permitted under Creative Commons Attribution 4.0 International License].
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in pelvic floor muscles of all nine participants with chronic

motor complete SCI (C6–T10 level) upon reinforcement using

six different maneuvers involving isolated or combined

contraction of abdominal, paraspinal, gluteal and pelvic floor

muscle contraction. Another way of studying residual

connectivity after SCI is through modulation of spinal reflexes

by TMS (49–51). For example, TMS can facilitate plantar (50)

or pudenda-anal reflexes (51), confirming preservation of

descending pathways in some individuals with SCI. The above

methods show that TMS is a useful tool to test the status of

corticospinal tracts and other descending inputs in individuals

with SCI. This is helpful in identifying “discomplete” SCI,

which refers to clinically complete injuries with

neurophysiological evidence of residual brain influence on

spinal cord function below the lesion (52).

MEP latency and central motor conduction time
MEP latencies (time from TMS to the earliest deflection of

the MEP) in individuals with SCI are typically delayed

(Table 3). A longitudinal study evaluated MEPs in thenar

muscles of individuals with SCI (C3–C7; AIS A–D) on

multiple occasions from 19 to 1,109 days post-injury and
Frontiers in Rehabilitation Sciences 05
found prolonged MEP latency throughout the follow-up

period (45). Similar results have been reported in several

studies for upper extremity (46, 53), lower extremity (39, 53,

54), and core muscles (42, 55) in individuals with SCI.

Changes in the MEP latency are thought to result from

axonal damage, demyelination and degeneration of the fast-

conducting corticospinal tracts (56).

Although MEP latency is indicative of central and peripheral

conduction, it can be combined with peripheral nerve conduction

measurements to calculate the central motor conduction time

(CMCT), which is an estimate of the conduction time of

corticospinal fibres from the motor cortex and spinal motor

neurons (57, 58). The CMCT is estimated by subtracting the

spinal motor neuron to muscle latency (peripheral conduction

time) from the cortex to muscle latency (MEP latency). The

peripheral conduction time can be calculated by using M-wave

and F-wave latencies that are elicited by stimulation of the

peripheral nerves (57, 58). M-wave is an early response to

peripheral stimulation resulting from a direct activation of the

target muscle, whereas F-wave is a smaller and more variable

later response resulting from activation of the α-motoneuron by

the antidromic volley (58). 1 ms is the estimated turnaround
frontiersin.org
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TABLE 3 Motor evoked potential latency in individuals with and without spinal cord injury.

Reference Muscle Test side Number of
participants

SCI (ms) Healthy controls (ms)

Davey et al., 1998
(46)

Thenar Muscles More Affected Side (lateralized
symptoms) OR ELSE Dominant
Side (Right)

SCI = 10 AB = 10 Rest = 27.7 (SE = 1.3) Active
= 27.6 (SE = 1.3)

Rest = 21.3 (SE = 0.5) Active =
19.8 (SE = 0.5)

Alexeeva et al.,
1998 (53)

Soleus SCI: Stronger Side AB: Left Side SCI = 10 AB = 20 42.5 (18.4) 34.0 (14.5)

Alexeeva et al.,
1998 (53)

Abductor
Hallucis

SCI: Stronger Side AB: Left Side SCI = 10 AB = 20 48.2 (24.1) 38.2 (19.0)

Smith et al., 2000
(45)

Thenar Muscles More Affected Side (lateralized
symptoms) OR ELSE Dominant
Side (Right)

SCI = 21 AB = 10 51–100 days post injury: Rest
= 27 (SE = 1.2) Active = 26

(SE = 0.8)

51–100 days post injury: Rest =
21 (SE = 0.6) Active = 20 (SE =

0.5)

Barthelemy et al.,
2015 (39)

Tibialis
Anterior

More impaired side based on LEMS SCI = 24 AB = 15 40.0 (6.0) 32.0 (2.0)

Squair et al., 2016
(41)

External/
Internal
Oblique

Right and Left side values collapsed SCI = 13 AB = 13 23.6 (3.2) 21.8 (2.9)

Squair et al., 2016
(41)

Sartorius Right and Left side values collapsed SCI = 14 AB = 14 27.8 (7.1) 23.4 (2.5)

Squair et al., 2016
(41)

Rectus Femoris Right and Left side values collapsed SCI = 5 AB = 5 31.3 (6.9) 22.8 (1.7)

Squair et al., 2016
(41)

Tibialis
Anterior

Right and Left side values collapsed SCI = 1 AB = 1 48.3 33.3

Squair et al., 2016
(41)

Soleus Right and Left side values collapsed SCI = 2 AB = 2 52.7 (9.1) 34.5 (3.3)

AB, Able-bodied; LEMS, lower extremity motor score; ms, milliseconds; SCI, spinal cord injury; SE, standard error of the mean.
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time for the stimulus through the cell body of the spinal motor

neuron (58) (see below Equation 1).

Central Motor Conduction Time CMCTð Þ
¼ MEP Latency � Peripheral Conduction Time�ð Þ (1)

�Peripheral Conduction Time

¼ M�max latency þ F�wave latency � 1ð Þ½ �=2:

CMCT is delayed in individuals with SCI compared to

healthy controls (Table 4). A study found delayed CMCT for

the first dorsal interosseous muscle in about half of the

individuals (55/113) who had consistent MEPs (14). The

CMCT values were delayed after acute SCI and remained

delayed for at least 12 months (14). These findings confirm

that TMS can be used to objectively measure the delay in

conduction time of corticospinal fibres. TMS in combination

with peripheral nerve stimulation has also been used to study

the influence of afferent input on motor cortex excitability in

individuals with SCI (54, 59). A study on 8 individuals with

tetraplegia (C3–C7; AIS B–D) reported reduced short-latency

afferent inhibition in the flexor carpi radialis muscle, which is

typically seen in healthy subjects at ∼15–18 ms following

median nerve stimulation (59). Another study in 22

individuals with SCI (C3–L5; AIS C–D) reported loss of
Frontiers in Rehabilitation Sciences 06
MEP facilitation in the tibialis anterior muscle by prior

(∼50–60 ms) conditioning stimulation of the tibial nerve, but

intact facilitation with conditioning stimulation of the

common fibular nerve (54). In addition, precise calculations

of the CMCT have been used to design targeted paired-

associative stimulation neuromodulation approaches to

facilitate functional recovery after SCI (Figure 2) (60–64). The

paired-associative stimulation approaches are based on the

Hebbian principle of associative plasticity, i.e., “neurons that

fire together, wire together” (65, 66). These studies support

the use of TMS in developing highly precise and targeted

non-invasive neuromodulation for rehabilitation.

Corticomotor output and gain: MEP amplitude,
area, and recruitment curve

The MEP amplitude (14) and area (48) are commonly used

measures of corticomotor output. Typically, MEP amplitude is

measured “peak-to-peak”, from negative to positive peak in

EMG activity. However, some studies have measured

amplitude from the baseline to the negative peak (14). The

MEP amplitudes at a given TMS intensity (absolute and

relative to motor threshold) are smaller in individuals with

SCI compared to healthy controls (14, 59).

MEP amplitudes at multiple TMS intensities from

subthreshold to suprathreshold levels result in sigmoid-shaped

stimulus-response, input-output, or recruitment curve (48, 54,
frontiersin.org
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FIGURE 2

Calculation of the conduction times for paired associative stimulation. Use of upper conduction time (central motor conduction time) and lower
conduction time (peripheral conduction time) for targeting the stimulation to lower limb motoneuron cell bodies. Use of latencies of MEP, F-
wave and M-wave for precise calculations of the conduction times [Reprinted from Fok et al., 2020 (64); reprint permitted under Creative
Commons Attribution License; CC BY].

TABLE 4 Central motor conduction time in individuals with and without spinal cord injury.

Reference Muscle Test side Number of
participants

SCI (ms) Healthy control
(ms)

Petersen et al.,
2017 (14)

Abductor digiti
minimi

Both Sides SCI = 305 15 days = 7.47 (SE = 0.46) 1 month = 7.04 (SE = 0.35)
3 months = 7.09 (SE = 0.33) 6 months = 7.14 (SE = 0.36)
12 months = 7.23 (SE = 0.39)

Not applicable

Nardone et al.,
2008 (74)

First dorsal
interosseous

Both Sides SCI = 1 AB = 10 Right = 6.1 Left = 6.4 Right = 6.1 (95% CI = 3.3)
Right = 6.2 (95% CI = 3.6)

Bunday et al.,
2018 (61)

First dorsal
interosseous

SCI: Less
affected AB:
Right

SCI = 17 AB = 14 6.2 (1.5) 3.5 (0.8)

AB, Able-bodied; CI, confidence interval; ms, milliseconds; SCI, spinal cord injury; SE, standard error of the mean.
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67, 68). This curve may be plotted with Boltzmann function,

and characteristics such as slope (rate of increase in MEP

amplitude with increasing TMS) and highest MEP amplitude

(MEPmax) are evaluated. The amplitudes at the suprathreshold

intensities including the MEPmax are smaller in individuals

with SCI compared to healthy individuals in the affected

upper (48, 68) and lower limb (54) muscles These studies

show that TMS can be used to capture reduced corticomotor

output in individuals with SCI.

Silent period
TMS can suppress ongoing muscle activities in the

target muscles, causing electrical silence in the surface

EMG (Table 5). This brief interruption can be observed at
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subthreshold (45, 46) and suprathreshold (40, 44, 69) intensities

and is termed the contralateral silent period (cSP). The early

part of cSP is thought to involve spinal inhibitory networks (70),

whereas the later part involves intracortical circuits (71). The

onset of cSP obtained using subthreshold TMS is delayed in

muscles impaired from SCI compared to those without SCI

(45, 46). A study found delayed cSP onset latencies in the thenar

muscles of individuals with SCI (C3–C7; AIS A–D) over

multiple occasions from 19 to 1,109 days post-injury (45). The

authors suggested the delay in cSP onset latency to be reflective

of reduced intracortical inhibition to facilitate movement

recovery (45). However, the delay in cSP onset may also be

reflective of changes in the early part of cSP, which involves the

spinal inhibitory mechanisms (70, 72, 73). The duration of cSP
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TABLE 5 Contralateral silent period latency and duration findings in individuals with and without spinal cord injury.

Reference Muscle Test side Number of
participants

Metric SCI
(ms)

Healthy
control (ms)

CSP definition +
findings

Davey et al.,
1998 (46)

Thenar More Affected Side (lateralized
symptoms) OR ELSE
Dominant Side (Right)

SCI = 10 AB = 10 Onset
Latency

51.8 (SE =
1.8)

33.4 (SE = 1.9) From the stimulus to the point in
the record where the EMG fell
consistently below mean
background levels using sub-
threshold TMS intensity

Smith et al.,
2000 (45)

Thenar More Affected Side (lateralized
symptoms) OR ELSE
Dominant Side (Right)

SCI = 21 AB = 10 Onset
Latency

50 (SE =
2.2)

32 (SE = 1.5) From the stimulus to the point in
the record where the EMG fell
consistently below mean
background levels using sub-
threshold TMS intensity +
Reported values at 51–100 days
post injury

Freund et al.,
2011 (40)

Extensor
Digitorum
Communis

Dominant side (9 = right; 1 =
left)

SCI = 9 AB = 14 Duration Median =
130 (IQR
= 60)

Median = 96
(IQR = 30)

From the time-point of TMS
stimulus artefact to the
resumption of sustained EMG
activity + CSP duration
negatively correlated with
cervical cross-sectional area

Sfreddo et al.,
2021 (44)

Abductor
Pollicis Brevis

Side with lower motor
thresholds and more consistent
central and peripheral
electrophysiological responses

SCI = 9 AB = 12 Duration Median =
102.5
(IQR =
76.3–
148.6)

Median = 95.4
(IQR = 86.6–
110.2)

From the end of MEP to the
earliest resumption of pre-TMS
EMG activity. Differences
between groups not significant

Nardone
et al., 2008
(74)

First Dorsal
Interossei

Both sides SCI = 1 AB = 10 Duration Right = 245
Left = 252

Right = 162.6
(95% CI = 82.2)
Left = 165.2 (95%
CI = 83.4)

From the end of the EMG
response to the return of
sustained poststimulus EMG
activity

AB, Able-bodied; CI, confidence intervals; CSP, contralateral silent period; EMG, electromyography; IQR, Interquartile range; MEP, motor evoked potential; ms,

milliseconds; SCI, spinal cord injury; SE, standard error of the mean; TMS, transcranial magnetic stimulation.
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is another parameter that changes following SCI. A study used

suprathreshold TMS intensities and reported prolonged cSP in

extensor digitorum communis muscle of 9 individuals with

chronic SCI at C5-C8 level (40). There are different explanations

for prolonged cSP duration after SCI. Firstly, SCI leads to

impairments in the corticospinal tracts leading to higher motor

thresholds, but the cortical inhibitory interneurons are spared.

Use of suprathreshold TMS requires higher absolute TMS

intensities (%MSO) that may activate more intracortical

inhibitory neurons (40). Secondly, the loss of inhibitory afferent

inputs due to SCI may lead to increased γ-aminobutyric acid

(GABA)-mediated intracortical inhibitory activity (74). A study

reported a loss of cSP in 3 individuals with clinically complete

SCI (2 non-traumatic causes) (75). The authors argued that

abnormal ascending impulses produced by the cervical cord

lesions might have induced motor cortical hyperexcitability,

resulting in loss of cSP (75). The changes in cSP have also been

reported in muscles above the level of lesion (69). Another study

reported prolonged cSP in the abductor pollicis brevis and

biceps brachii muscles in six individuals with thoracic or lumbar

level (one incomplete L1 lesion) injury (69). Since these muscles

were above the level of lesion, the changes in cSP duration were

due to reorganization of neural structures at a supraspinal level.

The above findings show that the TMS-based silent period
Frontiers in Rehabilitation Sciences 08
measurements provide an objective assessment of the inhibitory

networks after SCI.

Cortical muscle representations
There is spontaneous and treatment-induced corticospinal

reorganization following SCI (see reviews by Brown and

Martinez, 2019 (76); Oudega and Perez, 2012 (56)). TMS-

based motor maps have been used to study the cortical

reorganization following SCI (40, 77–81). For example, the

center of gravity (COG; the region thought to approximate

the location of the highest density of corticospinal

projections) of the cortical map for extensor digitorum

communis muscle shifted posteriorly towards the hand

representation in the anatomically defined hand knob in the

central sulcus in individuals with chronic SCI (40). A case

study in an individual with a transient (lasting ∼5 h) episode
of complete SCI at the C5 level found a posterior shift of the

COG for another hand muscle (abductor pollicis brevis) at 1-

day post-injury (79). Interestingly, there was a partial reversal

in the shift of COG within 10-days of the injury, and

complete reversal at a 2-year follow-up that corresponded

with functional recovery (79). The changes in motor map

from the resting state to an active state (during voluntary

contraction) also differ in individuals with SCI in comparison
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to healthy controls. A study of 22 individuals with chronic SCI

(C2–C8; AIS A–D) found the motor map area reduced upon

voluntary contraction of the target muscle (first dorsal

interossei) and other proximal muscles (biceps brachii),

whereas in healthy controls map areas increased upon

contraction of the same muscles (81). Another study reported

smaller motor map areas for severely impaired (motor power

1/5) forearm muscles in three (out of 10) participants with

chronic SCI (C4–C6; AIS A–C), whereas the remaining seven

participants had values comparable to healthy controls (47).

The authors suggested that severely impaired muscles with

normal motor maps (along with other TMS metrics) may

benefit from targeted rehabilitation programs even in the

chronic stage after SCI (47). These studies showed that the

TMS can be used to study corticomotor reorganization with

changes in cortical muscle representations following SCI.

Intracortical circuits
Paired-pulse TMS can be used to study the intracortical circuits

after SCI. Paired-pulse TMS paradigms involve delivering a

conditioning TMS pulse before a test TMS pulse (see review by

Chen, 2004) (82) (see Table 6 for common protocols). Some of

these measures such as short-interval intracortical inhibition

(SICI), long-interval intracortical inhibition (LICI), intracortical

facilitation (ICF), and short-interval intracortical facilitation

(SICF) have been used in individuals with SCI to study changes

at the cortical level (48, 83–85). A study found reduced SICI in

the tibialis anterior muscle in individuals with incomplete

chronic SCI (C3–T12) compared to healthy controls (83).

Moreover, SICI recorded from the first dorsal interossei muscles
TABLE 6 Protocols for the paired-pulse TMS paradigms used in individuals w

TMS
measure

Reference Muscle Conditioning
pulse intensity

Te

SICI Mi et al., 2015
(48)

Flexor Carpi
Radialis (active
15%–20% MVC)

60% AMT to 110%
AMT

MEPhalf
required
equal to

SICI Saturno et al.,
2008 (84)

Extensor
Digitorum
Communis

80% RMT 120% R

SICI Roy et al., 2011
(83)

Tibialis Anterior
(active 15%–20%
MVC)

60% AMT to 110%
AMT

½ * ME
set to th
recruitm
test ME

LICI Mi et al., 2015
(48)

Flexor Carpi
Radialis (active
15%–20% MVC)

90% AMT to 130%
AMT

MEPhalf
required
equal to

ICF Saturno et al.,
2008 (84)

Extensor
Digitorum
Communis

80% RMT 120% R

AMT, active motor threshold; ICF, intracortical facilitation; SICI, short-interval intraco

potential; MSO, maximum stimulator output; ms, milliseconds; MVC, maximum vol

stimulation; TS, test stimulus.
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was greater than that from the tibialis anterior muscle (83).

Another study reported reduced SICI and LICI in the flexor

carpi radialis muscle in individuals with incomplete chronic SCI

(C3–C7 level) (48). However, when individuals with motor

thresholds similar to healthy controls were included to control

for the differences in motor threshold, SICI was not different

between the groups (48) but LICI remained different, suggesting

that changes in LICI were not due to excitability differences (48).

Another study reported distinct modulation of different SICF

peaks following chronic incomplete SCI with reduced magnitude

for all SICF peaks, delayed latencies for second and third peaks,

and a longer duration for only the third peak in individuals with

chronic incomplete SCI (85). Using various TMS coil

orientations to induce current in different directions, a study

demonstrated that corticospinal responses elicited by targeting

different cortical circuits are affected to varying extent by SCI

(86). In a follow-up study that involved TMS during precision

and power grips, the authors found these cortical circuits were

engaged to a different extent in individuals with and without SCI

(87). These studies show that TMS can be used to study the

changes in the intracortical excitatory and inhibitory networks in

individuals with SCI.
Discriminative and predictive ability, and
clinical correlations of TMS measures

TMS-based measurement can differentiate between

individuals with different extent of motor impairments. For

example, a study found that individuals with greater severity
ith spinal cord injury.

st pulse intensity Inter-
stimulus

interval (ms)

Changes after spinal
cord injury

max [defined as the MSO
to elicit a rectified area
half of the maximum]

3 Decreased inhibition when
AMT not matched; no
differences in inhibition when
matched for AMT

MT 2, 3, 5 Absence of inhibition; no
control group

Pmax [The TS intensity was
e sensitive portion of the
ent curve (i.e., producing
Ps near ½ MEPmax).]

3 Inhibition in SCI group seen
only at CS of 80% AMT v/s
inhibition seen at 60%–90%
AMT in healthy controls

max [defined as the MSO
to elicit a rectified area
half of the maximum]

150 Decreased in individuals with
SCI with and without AMT
matching

MT 10, 15 Facilitation seen; no control
group

rtical inhibition; LICI, long-interval intracortical inhibition; MEP, motor evoked

untary contraction; RMT, resting motor threshold; TMS, transcranial magnetic
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of cervical SCI had smaller abductor digiti minimi MEP

amplitudes (14). In addition, the upper extremity motor

scores were different between the five categories (Abolished,

Reappearing, Inconsistent, Mildly deteriorated, or Severely

deteriorated) based on the consistency of MEP (14). In

individuals with consistent MEPs, the MEP amplitude

correlated with the upper extremity motor scores (14). Using

SICF, a study reported correlations between the upper

extremity reaction time (latency and its variability) and

amplitudes and latencies of later peaks of MEPs from the first

dorsal interossei muscle (85). Another study found negative

correlations between the cross-sectional area of the spinal

cord at the cervical level and TMS-based motor threshold and

cSP duration (40). These results suggest that greater atrophy

of the cervical cord is associated with reduced corticospinal

excitability and prolonged inhibition (40). In the lower

extremities, the MEP amplitude of the tibialis anterior muscle

showed good correlation with better performance in clinical

measures of gait including the Walking Index for Spinal Cord

Injury, the Timed-Up and Go, the 6-Min Walking Test, and

the maximal treadmill gait speed (39). In addition, smaller

MEP amplitudes were associated with greater atrophy in the

lateral–ventral quadrant of the spinal cord on the more

impaired side (39). TMS-based assessment of residual

connectivity after SCI has also shown to be correlated with

spasticity in the lower extremity muscles (88, 89). TMS

metrics are also sensitive to neurophysiological changes

following rehabilitation training. For example, rehabilitation

training was associated with anterior shift in COG, along with

an increase in the map area and volume for the biceps brachii

muscle in an individual with chronic complete C6 SCI (80).

Moreover, voluntary contraction-related decrease in motor

map area of the first dorsal interosseous muscle was

associated with the sensory deficits in the hand, and 10 min

of vibration over hand muscle-tendon increased the motor

map area during voluntary contraction (81). Improvements in

upper extremity strength following intensive training has

shown to correlate with excitability and motor map changes

in muscles with different extent of impairments following SCI

(90). Similarly, intensive locomotor training led to increased

MEP amplitudes and the slope of the recruitment curve in

individuals with SCI (91).
Conclusion and future directions

Currently, clinical assessments are the main forms of

evaluations during acute and chronic phases of SCI

rehabilitation. ISNCSCI is the most standardized and

commonly used clinical assessment following SCI. There are

over 30 other outcome measures that have been validated and

recommended for use in SCI. In addition, there are clinical

prediction rules that combine clinical features, such as
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demographics, symptoms, physical examination findings,

imaging results, and assessment scores for better prediction of

outcomes. Clinical assessments are valuable in understanding

recovery profiles and functional gains over the course of

rehabilitation. However, they are subjective and do not

provide information about the neurological processes

underlying SCI, which limits their prognostication value.

TMS is an objective neurophysiological assessment tool and

its different measures offer extensive information on

corticomotor function. TMS offers a better insight into

residual corticomotor connectivity, which may go undetected

with the clinical scores of sensory and motor assessment. Due

to this, TMS can be used to identify discomplete SCI. The

TMS-based insights into neurophysiology can also be

combined with the anatomical findings that are obtained

using other techniques, such as diffusor tensor imaging or

spinal tractography for more comprehensive understanding of

corticomotor impairments and residual connectivity. However,

whether the individuals with discomplete injuries would

benefit from a different course of rehabilitation than those

with complete injuries is a topic that needs to be investigated

by future studies. TMS-based investigation of MEP and cSP

characteristics (amplitude, latency, duration) provides insights

into excitatory and inhibitory pathways following SCI. TMS-

based motor maps allow study of corticomotor reorganization

following SCI. Displacement of motor map COG or changes

in its size following SCI or rehabilitation reflect neuroplastic

changes following SCI. Paired-pulse TMS measures (SICI,

LICI, ICF, SICF) help understand the compensatory

reorganization of the cortical circuits following SCI. TMS can

be combined with peripheral stimulation to study the central

motor conduction time and modulation of spinal reflexes, that

can be used for more advanced diagnostic and treatment

purposes. Different TMS-based measures are able to

differentiate between individuals with different severity levels

of SCI, and correlate with the extent of injury and clinical

scores. Lastly, TMS requires lesser time and training, has a

higher temporal resolution and is more cost-effective than

many neuroimaging techniques. Based on the above discussed

advantages, TMS can be used to supplement clinical

assessments in acute and chronic stages of SCI.

Future studies are needed to strengthen the use of TMS for

clinical assessments in individuals with SCI. There are

discrepancies in the findings of TMS studies, for example,

delayed (41, 45) vs. non-delayed (42, 47) MEP latencies,

smaller (14, 48) vs. larger (67) MEP amplitudes, absent (75)

vs. similar (44) vs. prolonged (40) cSP, smaller (47) vs. large

motor maps (81). The factors leading to these discrepancies

need to be addressed. Methodological differences (e.g., sample

size, target muscles, active vs. resting muscle state, extent of

background contraction, type of TMS coils, coil orientation,

stimulation intensities, definitions for MEP/cSP onset and

offset) can contribute to these differences. Some of the
frontiersin.org

https://doi.org/10.3389/fresc.2022.1005111
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Arora et al. 10.3389/fresc.2022.1005111
differences can be addressed by standardizing the protocols. For

example, selecting and reporting the appropriate coil orientation

to target different cortical pathways (86, 87). Similarly, selecting

suitable coil type for targeting of different muscles, for example

double-cone (39, 92) or specialized batwing coil (54) for the

lower extremity muscles and figure-of-eight coil (60) for the

upper extremity muscles. Issues related to the study

population may be more challenging to address. For example,

early fatigue in muscles affected by SCI may make it

challenging to maintain sustained background contraction

throughout the testing, especially in severely impaired

muscles. Antispastic medications (e.g., baclofen) that are

commonly prescribed in individuals with SCI may affect TMS

measures (93, 94). It has been suggested that the effects of

antispastic medications on MEP are overridden by the

volitional excitatory drive when testing the actively

contracting muscle (49), but this needs to be tested with more

extensive studies. Peripheral afferents input affect cortical

excitability, and hence TMS measures (54, 59). Therefore, it is

important to understand that changes in TMS measures may

not always reflect changes in corticomotor transmission, but

may also result from other sources such as afferent-based

modulation of cortical pathways. Lower motor neuron lesions

influence TMS measures and should be taken into

consideration by use of F-waves (14), H-reflexes or lower

motor neuron integrity tests (95). The psychometric

properties of any technique are population specific, and

currently only a few studies have investigated the

psychometric properties of TMS-based measures in

individuals with SCI (44, 96, 97). The smallest detectable

change (SDC; the smallest change that is above the

inherent measurement error and can be reliably detected)

of TMS-based measures in proximal arm muscles is

typically high for individuals with SCI (96). Changes in

TMS measures should exceed these high SDC values to be

considered as real change, which makes it challenging to

use TMS measures as individual biomarkers. There is

upcoming work addressing the feasibility and relevance of

TMS-based assessment after SCI in the rehabilitation

settings, and validating their use (along with imaging

assessments) as predictive markers (98). The clinically
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meaningful difference of TMS-based metrics have yet to be

established for individuals with SCI.

In conclusion, TMS allows detection of residual corticospinal

connectivity following SCI. The measurement of MEP, cSP,

cortical muscle representations, and intracortical circuits allows

better understanding of the neurophysiology of corticomotor

impairments and recovery following SCI. Due to its objectivity

and ability to probe into neurophysiological mechanisms, TMS

can supplement clinical assessments after SCI and help in

devising targeted and individualized therapies for movement

recovery. Studies with larger sample size and standardized

protocols are needed to improve consistency in TMS-based

findings in individuals with SCI. More research is needed to

establish the psychometric properties of TMS-based

measurements in the SCI population.
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