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Lung cancer is the leading cause of cancer deaths globally, and lung

adenocarcinoma (LUAD) is the most common type of lung cancer. Gene

dysregulation plays an essential role in the development of LUAD. Drug

repositioning based on associations between drug target genes and LUAD

target genes are useful to discover potential new drugs for the treatment of

LUAD, while also reducing the monetary and time costs of new drug discovery

and development. Here, we developed a pipeline based on machine learning to

predict potential LUAD-related target genes through established graph

attention networks (GATs). We then predicted potential drugs for the

treatment of LUAD through gene coincidence-based and gene network

distance-based methods. Using data from 535 LUAD tissue samples and

59 precancerous tissue samples from The Cancer Genome Atlas,

48,597 genes were identified and used for the prediction model building of

the GAT. The GAT model achieved good predictive performance, with an area

under the receiver operating characteristic curve of 0.90. 1,597 potential LUAD-

related genes were identified from the GAT model. These LUAD-related genes

were then used for drug repositioning. The gene overlap and network distance

with the target genes were calculated for 3,070 drugs and 672 preclinical

compounds approved by the US Food and Drug Administration. At which,

bromoethylamine was predicted as a novel potential preclinical compound for

the treatment of LUAD, and cimetidine and benzbromarone were predicted as

potential therapeutic drugs for LUAD. The pipeline established in this study

presents new approach for developing targeted therapies for LUAD.
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Introduction

Lung cancer is one of the most common cancers globally. In

2020, approximately 2.21 million people had lung cancer, and

there were 1.8 million lung cancer-related deaths, which was the

highest cancer mortality rate in that year (World Health

Organization, 2021). Lung adenocarcinoma (LUAD) belongs

to the non-small cell lung cancer (NSCLC) family, which

accounts for 40% of all lung cancer types. LUAD is the most

common type of lung cancer (Zappa and Mousa, 2016). It has

unique cellular and molecular characteristics compared with

other lung cancer subtypes. Previous studies have shown that

high or low expression levels of certain genes in cancer tissues

play a vital role in the development of LUAD (Chen et al., 2019).

The dysregulation of these genes provides an opportunity for

targeted therapy. Targeted therapy is currently one of the options

for the postoperative treatment of patients with LUAD. For

example, the epithelial growth factor receptor (EGFR)

inhibitors, gefitinib, and erlotinib are already used to treat

LUAD patients (Janku et al., 2010; Pao and Chmielecki,

2010). Due to the large number of genes involved in the

development of LUAD, the therapeutic effects of inhibiting

only a single gene may be limited. Therefore, it is necessary to

discover potential genes related to LUAD and identify drugs that

target these genes (Cho, 2013).

Targeted therapy refers to a treatment targeting previously

defined carcinogenic sites at the cellular and molecular levels.

The site may be a protein, a gene, or a gene fragment inside the

tumor cell (American Cancer Society, 2021). Targeted therapies

interfere with cancer-causing or tumor growth-promoting

molecules or genes to treat cancer. The development of new

drugs based on cancer-related genes is time-consuming and

labor-intensive, and it takes an average of 13 years and

$870 million from development to market (Paul et al., 2010;

Sertkaya et al., 2016). Therefore, repurposing drugs that have

already been approved is a more cost-effective approach.

Hundreds of drugs have been retargeted, and new uses have

been found using algorithms that integrate genomic and

phenotypic data (Cheng et al., 2019; Kenneth and Cho,

2022). Most existing drug repositioning methods are limited

to drug similarity networks and disease similarity networks,

which do not account for information about cancer-related

genes themselves or topological information between different

biological networks (Cheng et al., 2019; Kenneth and Cho,

2022).

With the recent development of artificial intelligence and big

data disciplines, an increasing number of machine learning (ML)

and deep learning (DL) networks are being developed and used

to analyze highly nonlinear network structures, such as gene,

protein, disease, and drug networks (Angermueller et al., 2016;

Ching et al., 2018). Using a network analysis model based on ML

and DL, the combined analysis of genomics and systems biology

networks makes it possible to identify druggable targets and

perform drug repositioning while predicting cancer-related

genes.

In this study, a target gene prediction–drug repositioning

pipeline was constructed for LUAD. To more accurately predict

potential drugs for the treatment of LUAD, target genes

associated with LUAD were identified before drug prediction.

Due to the complex network relationship between genes and the

wide range of characteristics of the genes themselves, a graph

neural network (GNN)-based graph attention network (GAT)

model was built to be a gene classifier, which can predict genes

that currently have unconfirmed relationship with LUAD are in

fact associated with LUAD or not. Other models including a

GNN-based graph convolutional network (GCN) model, a DL-

based TabNet model, an ML-based random forest (RF) model

(Ho, 1995), an Adaptive Boosting (AdaBoost) model (Freund

et al., 1999), and an XGBoost classifier model (Chen and

Guestrin, 2016) were built to compare their performances

with the GAT model. The drug prediction performed in this

study was based on the assumption that the target genes of a drug

for the treatment of LUAD are related to the genes associated

with LUAD. Under this assumption, two drug prediction

methods, network overlap-based, and network distance-based

methods were used to predict potential drugs for the treatment

of LUAD.

Materials and methods

Data collection and pre-processing

Gene expression data were collected for 594 samples from

The Cancer Genome Atlas (TCGA, https://www.cancer.gov/

tcga) (Cancer Genome Atlas Research Network et al., 2013),

of which 59 were precancerous tissue (normal) samples, and

535 were tumor samples. Genes were extracted from TCGA. To

define LUAD-related target genes, the fragments per kilobase of

exon per million mapped fragments (FPKM) values from the

transcriptome profiling data were downloaded from TCGA. To

further group genes and to identify genes that have statistically

significant differences in expression in cancer tissue compared to

normal tissue, differential expression analysis was performed.

Specifically, fold change was calculated by dividing the mean

FKPM in cancer tissue by the mean FPKM from normal tissue,

thereby providing the fold change value for each gene. To

facilitate differential expression analysis, log fold change was

converted to log2fold change (log2FC), and adjusted p-value

(false discovery rate, FDR) was calculated by limma package (v3.

38.3) (Ritchie et al., 2015). Genes with an FDR ≥0.05 were

excluded from the study. Genes with log2FC > 2 were

classified as up-regulated genes, whereas those with

log2FC < −2 were classified as down-regulated genes. Both

up-regulated, and down-regulated genes were considered to be

associated with LUAD. These LUAD-related genes were added to
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‘‘positive’’ gene lists to facilitate subsequent model building. On

the contrary, genes with log2FC > −0.3 and log2FC < 0.3 were

considered not to be statistically differentially expressed in cancer

tissue compared to normal tissue and were added to the

“negative” genes list in the study. A Bayesian information

criterion (BIC) method-based sensitivity analysis was

performed to illustrate the rationale for the Log2FC threshold

used in this study (Supplementary Material SB). The remaining

genes were having an unconfirmed relationship with LAUD, and

thus were added to the “ambiguous” genes list in the study.

Positive and negative gene lists were used for GAT model

training, validation, and testing, and the ambiguous gene list

was used for potential LUAD-related target prediction. The

model was designed to predict the association of genes with

ambiguous relationships to LUAD (classified as LUAD-related

or not).

To verify the predictive ability and validity of the model, a

subset of genes was obtained from the Comparative

Toxicogenomics Database (CTD) (Davis et al., 2020). The

criteria of LUAD-related genes were: 1) Reported to have

direct evidence of “marker/mechanism; ” 2) Had an Inference

Score greater than 11.09 (75% quantile) or a Reference Count

greater than 6 (75% quantile). The same number of genes that

were reported to other diseases from CTD were randomly picked

with the following criteria: 1) Not included in the training set or

validation set of GAT; 2) Not included in LAUD-related gene list

from CTD.

Gene function annotation analysis was performed using

Gene Analytics (https://ga.genecards.org/) (Ben-Ari Fuchs

et al., 2016) and VarElect (https://varelect.genecards.org/).

p-values, matching scores, and average disease-causing

likelihoods of gene-related tissues, systems, diseases, and

pathways; gene ontology information; and human phenotype

ontology information were collected, with a threshold p-value of

0.05. For convenient data processing, the original p-values were

replaced by −log10 (p-values). Missing values were imputed with

zeros to indicate that there was no association.

Gene function annotation features with greater than 40% of

values missing, those with absolute Pearson’s correlation

coefficient values greater than 0.98, and those that did not

contribute to cumulative importance of 0.99 were excluded

from the analysis. Samples were divided into training (80%),

validation (10%), and testing sets (10%) using a stratified

sampling method. The imputation of missing values and data

normalization were performed on the training, validation, and

testing sets separately after dataset division to avoid data leakage.

Gene-gene interaction information was collected from the

Human Reference Interactome (http://www.interactome-atlas.

org/) (Luck et al., 2020) ,RNAInter v4.0 (http://www.rnainter.

org/) (Kang et al., 2022), and the human protein-coding Gene

Functional Association Network. The high-confidence gene

associations from different databases were merged, and gene-

gene interaction subgraphs were constructed according to the

genes required for the study. Functionally related protein-

coding genes, RNA-RNA associations, and RNA-protein

associations were recorded as the background gene-gene

interaction network of this study. As the interaction edges from

the Human Reference Interactome were un-weighted, the

unweighted interactions were replaced by the average edge

weight of the subgraph. The weights of all edges are input into

the network as initial values. During the learning process of the

network, the weights of each edge are iteratively updated. Drug

target genes were collected from PharmGKB (https://www.

pharmgkb.org/) (Whirl-Carrillo et al., 2021), the Binding

Database (https://www.bindingdb.org/) (Liu et al., 2007), and

DrugBank (https://go.drugbank.com/) (Wishart et al., 2018).

Data from human subjects collected and used in this research

project have been approved by the University’s Research Ethics

Subcommittee. Data is available at: https://github.com/Clement-

HUANG/LUAD-Drug-Repositioning. The hyperparameters and

sought ranges of trained models in this study are available in the

Supplementary Table S1.

Target gene prediction model
development and evaluation

A GAT model was developed for LUAD-related target gene

prediction. During the construction of the graph, genes were

input as nodes, and the features of the nodes were high-

dimensional gene function annotation features. The edges of

the graph were the gene-gene associations, and the weights of the

edges were the weights of the association. The three-fold cross-

validation method was used to obtain optimal model parameters,

and “auc” was used as the model metric. The random search

method was applied for the approximate range of

hyperparameters, and the grid search method was applied

afterward to search for the best hyperparameters in a small

range. The trained GAT model was used to analyze the

“ambiguous” gene list for the final LUAD-related target gene

prediction. ML-based models, including RF, AdaBoost, and

XGBoost classifier models; a DL-based TabNet model; and a

GNN-based GCN model were built to compare their

performance with the GAT model. A support vector machine

classifier and a logistic regression model were also built but were

excluded from the comparison as they were time-consuming to

execute, and they showed low precision for processing high-

dimensional data. Gene enrichment analysis was applied for

LUAD-related genes identified by differential gene expression

analysis and LUAD-related genes predicted by the GAT model.

To extend the GAT model established in this study, additional

experiments were applied to test the ability of the GAT model to

predict genes associated with enriched GO terms and KEGG

pathways. In addition, the gene interaction networks of BioGRID

(Stark et al., 2006), BioSNAP (PP-Pathways), and BioSNAP

(TFG-Ohmnet) (Leskovec and Sosič, 2016) were collected to
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test the sensitivity of the GATmodel to different gene interaction

networks. The GAT-trained gene-gene interaction network was

derived, and the genes were clustered using the K-mean

clustering method. This method’s optimal K value (the

number of clusters) was determined by the silhouette index

(Rousseeuw, 1987), which described the node’s association

and its corresponding cluster. To better interpret this network,

gene enrichment analysis using the DAVID online database

(Huang Da et al., 2009; Sherman et al., 2022) was applied to

the genes of each cluster.

Drug repositioning module

The drug repositioning module was based on the LUAD-

related gene interaction network and drug-gene interaction

network. Among them, the LUAD-related gene network was

built according to LUAD-related genes and their associated genes

from the original gene-gene interaction network; and the drug-

gene network was constructed according to drug target genes and

their directly related genes from the original gene-gene

interaction network. The module was mainly composed of the

network overlap-based drug prediction model, the network

distance-based drug prediction model, and the summary

model. The Jaccard score is a statistic that measures the

similarity between two sample sets. In the network overlap-

based drug prediction model, the similarity between the

LUAD-related target gene networks and the drug target gene

networks was calculated using the Jaccard score as the measure

(Bass et al., 2013). The Jaccard score between the LUAD-related

target gene networks and lists (Ng) and the ith drug target gene

network (Ndi) was calculated according to Eq. 1.

J(Ng ,Ndi) �
∣∣∣∣Ng ∩ Ndi

∣∣∣∣∣∣∣∣Ng ∪ Ndi

∣∣∣∣
�

∣∣∣∣Ng ∩ Ndi

∣∣∣∣∣∣∣∣Ng

∣∣∣∣ + |Ndi| −
∣∣∣∣Ng ∩ Ndi

∣∣∣∣
(1)

The network distance-based drug prediction model

calculated the length of the shortest path (d) from the genes

(g) in the LUAD-related target gene network (Ng) to the ith drug

(Ndi) in the target gene network (Nd) according to Eq. 2.

d(Ng ,Ndi) � 1

||Nd|| ∑Ndi
mindistance(g ,Ndi) (2)

The z-score was used to standardize the distance between Ng

and Ndi. It was calculated based on the shortest path length (d)

and it’s mean (μi) and the standard error (σ i) of the null

distribution according to Eq. 3.

z − score � d(Ng ,Ndi) − μi
σ i

(3)

Jaccard scores and z-scores for the drugs were calculated

using the online tool PharmOmics (http://mergeomics.research.

idre.ucla.edu/) (Chen et al., 2022) and were included in the final

summary model. Drugs with a Jaccard score more than the mean

value of all the drugs, and a z-score less than −2 were output as

potential therapeutics for LUAD (one side p-value < 0.05). Based

on the difference between the values for Ng and Ndi, drugs with

an overlap (overlapped genes/Ndi) < 50% were excluded.

In-silico validation of predicted drugs

To validate the affinities of potential drugs, and preclinical

compounds predicted from this study with their target proteins,

the half-maximal inhibitory concentration (IC50) values were

collected from Binding Database. The drug-target protein pairs

with median IC50 values less than 10,000 nM were considered as

having physical drug-target interactions (Cheng et al., 2019).

Results

The target gene prediction–drug repositioning pipeline is

shown in Figure 1. LUAD target gene prediction was based on

genes, gene interaction networks, and functional annotation data.

Through the established GAT, potential LUAD-related target

genes were predicted. The target genes were passed into the drug

repositioning module as the input of the drug redirection

network. The module was a double-layer structure. The first

layer was composed of a network overlap-based drug prediction

model and a network distance-based drug prediction model, and

the second layer was a summary of the results of the two models.

Data pre-processing

Genes were extracted from TCGA. The FPKM data for the

genes were used for differential gene expression analysis

(Figure 2). Of the 48,597 genes (19,054 protein-coding genes;

29,543 non-coding genes) included in the analysis, 19,730 had an

FDR <0.05, 1,119 were upregulated, and 1,064 were

downregulated. After excluding pseudogenes, the remaining

1,946 dysregulated genes were classified as positive genes

(LUAD-related target genes) for model training. The absolute

value of log2 fold change (log2FC) was <0.3 for 1,379 genes, and
these genes were considered to be irrelevant to LUAD and thus

were used as negative genes for training. The remaining

13,062 genes were classified as having an unclear relationship

with LUAD, awaiting prediction by the model.

One hundred and fifty functional annotation features

(tissues, systems, diseases, and pathways; gene ontology

information; and human phenotype ontology information) of

the genes were collected, and suitable features were selected to

train the model. Features with greater than 40% of values missing

and those with absolute Pearson’s correlation coefficient values

greater than 0.98 were removed from the analysis due to low
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quality and high redundancy, respectively. Sixty-eight features

were selected and used for subsequent model training. The

15 most significant prediction features with their normalized

importance scores and the number of features with a cumulative

importance score greater than 0.99 are shown in Supplementary

Figure S1. Of all the gene functional annotation features, the

importance score of gene enrichment significance was highest in

the nervous system (normalized importance coefficient >0.05).
The enrichment significance of genes in lung, brain, blood,

kidney, and epithelial cells also had a high ranking (>0.03). In
terms of disease enrichment features, genes were more

significantly enriched in breast cancer than in lung cancer.

The enrichment significance of pathways and gene ontologies

related to lung cancer did not rank within the top 15.

Performance of the GAT model

The models’ power to predict LUAD-related target genes was

determined based on the area under the receiver operating

characteristic curve (AUROC), as shown in Figure 3. The

GAT model achieved the best prediction performance in the

FIGURE 1
Lung adenocarcinoma target gene prediction–drug repositioning pipeline. (A) data collection and pre-processing; (B) graph attention network
(GAT)model building and lung adenocarcinoma (LUAD)-related target gene prediction; (C) potential LUAD drug prediction. FDR, false discovery rate;
TCGA, The Cancer Gene Atlas.
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internal data tests, reaching the highest AUROC value (0.90). The

GNN-based GCN, ML-based RF, XGBoost, and Adaboost

models also achieved good prediction performance

(AUROC = 0.87, 0.81, 0.83, and 0.85, respectively). However,

the DL-based TabNet model did not show good performance,

with an AUROC value of less than 0.8. The external validation

dataset from CTD achieved an AUROC of 0.82. In addition to

AUROC, model evaluation metrics such as precision, recall, and

F1-score were also used to measure the predictive ability of the

model (Table 1). GNN-based GAT and GCN models achieved

above 0.80 in precision, recall, and F1-score, which were better

FIGURE 2
Analysis of differentially expressed LUAD-related genes. FDR, false discovery rate.

FIGURE 3
Areas under the receiver operating characteristic curves of
the models. AUROC, area under the receiver operating
characteristic curve; GAT, graph attention networks; GCN, graph
convolutional network.

TABLE 1 Model evaluation metrics: AUROC, precision, recall, and
F1 score.

Model name AUROC Precision Recall F1-score

GAT 0.90 0.85 0.85 0.85

GCN 0.87 0.82 0.82 0.82

Adaboost 0.85 0.79 0.79 0.79

XGBoost 0.83 0.77 0.76 0.76

Random forest 0.81 0.77 0.74 0.74

TabNet 0.78 0.75 0.75 0.75

CTD validation 0.82 0.78 0.78 0.78
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than DL-based TabNet, ML-based XGBoost, RF, and Adaboost.

GAT achieved the highest precision, recall, and F1-score

(precision = 0.85, recall = 0.85, F1-score = 0.85), indicating its

strong classification ability for positive and negative samples. The

precision, recall, and F1-score of the external validation dataset

from CTD all achieved 0.78. 134 GO terms and KEGG pathways

were enriched by LUAD-related genes (FDR<0.05), including
69 GO biological process terms, 27 GO cellular component

terms, 28 GO molecular function terms, and 10 KEGG

pathways. The top 5 terms of each category, together with the

prediction AUROC and AUPRC, were reported according to the

order of FDR (Supplementary Table S2).

The prediction of LUAD-related genes in this study was

sensitive to the gene interaction network. The results and

prediction performance of loading different gene interaction

networks into the GAT model were not completely consistent,

which might be caused by various gene interaction network

sources. In addition to the results reported in Table 1, the

GAT model achieved an AUROC of 0.85 using the gene

interaction network from the Biogrid database; an AUROC of

0.87 using the gene interaction network from the BioSNAP

database; and in particular, an AUROC of 0.85 using the lung

tissue-related gene interaction network from the BioSNAP

database (Supplementary Table S3). Although good LUAD-

related gene prediction ability can be achieved using lung

tissue-related gene interaction networks, it might be a risk to

be applied in drug repositioning analysis, because drug genes are

not necessarily associated with lungs only and vice versa.

Newly predicted LUAD-related target
genes

After training the GAT model, genes with ambiguous

relationships with LUAD were input into the trained GAT

model to identify more LUAD-related genes. The output of

the GAT model was the likelihood (probability) that a gene

was a LUAD-related target gene, with values ranging from 0 to 1.

Genes with an output probability value closer to 1 had a stronger

association with LUAD. The Youden index of AUROC was

calculated to find the optimal threshold for the model. The

genes with an output higher than the optimal threshold can

be considered to be associated with LUAD. The optimal

threshold of the GAT model was 0.664, and genes with

scores >0.664 were all potential LUAD-related genes

originally. To simplify the complexity of the drug prediction

network and improve the computational speed, the genes with

output scores higher than 0.9 were used as the predicted LUAD-

related genes for subsequent drug prediction. Using a threshold

between 0.664 and 0.9 increased the complexity of the drug

prediction network and the computation time of the Jaccard

score and z-score, but not able to identify more drugs that

reached a statistically significant level. Of the 10,858 genes

identified as having an ambiguous relationship with LUAD,

1,597 genes had an output score >0.9 and were considered to

be potential target genes for LUAD treatment.

Based on the results of GAT model training, the interaction

network between genes was drawn (Figure 4). Among them, the

blue nodes are LUAD-related genes identified by the gene

differential expression analysis, the red nodes are LUAD-

related genes predicted by the GAT model, and the grey

nodes are LUAD-unrelated genes. The distance between nodes

is determined by the strength of the interaction between genes,

and two nodes with close distances indicate strong interactions

between the two genes. In the gene-gene interaction network,

8 clusters of genes were found. The number of clusters is

determined from the optimal silhouette index of the K-mean

clustering method. Among the 8 clusters, the 7th cluster

contained more LUAD-related genes (>50%). To further

investigate the genes network, gene enrichment analysis using

the DAVID online tool was applied to the genes of each cluster.

The enrichment of genes in each cluster was assessed according

to the top 5 GO terms from low to high FDR (threshold

FDR <0.05), and the enriched KEGG pathways are reported

(Supplementary Table S4).

Prediction of potential therapeutic drugs
for LUAD

The original positive samples and the potential target genes

for LUAD treatment predicted by the GAT model were

integrated and input into the drug prediction module, along

with 3,070 drugs approved by the Food and Drug Administration

and 672 preclinical compounds for use in humans. In the

overlap-based drug prediction network, Jaccard scores were

calculated to represent the degree of overlap between drug

target genes and LUAD-related genes. The Jaccard scores for

all drugs were generally normally distributed (Supplementary

Figure S2A), with a mean of 0.036 and a standard deviation of

0.011. In the network distance-based drug prediction network,

the z-score of each drug was calculated to represent the distance

between the drug target gene network and the LUAD target gene

network. A smaller z-score represented a closer distance. The

z-score distribution of the individual drugs was not normal

(Supplementary Figure S2B), with a mean of -3.848 and a

standard deviation of 2.951. In total, 1,855 drugs and

preclinical compounds from the overlap-based network had

Jaccard scores higher than the mean Jaccard score, and

35 drugs or preclinical compounds had z-scores less than

-2 and were thus considered to be potentially associated

with LUAD.

The prediction results of the two networks were summarized,

and drugs with a drug-gene overlap rate of less than 50% were

eliminated. Ten drugs or compounds met all the requirements

and were predicted to be potential drugs for preclinical studies of
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LUAD (Table 2). The predicted results were compared with data

from the DrugBank database, the CTD, and literature searches of

PubMed. Of the ten predicted drugs and preclinical compounds,

three were new findings and had not previously been reported. Of

the remaining seven, five were in the laboratory stage (in vitro),

one was entering the clinical trial stage (phase 2), and one was

FIGURE 4
Gene-gene interaction network trained by GAT model. Blue nodes: LUAD-related genes determined by gene enrichment analysis; red nodes:
LUAD-related genes predicted by GAT model; grey nodes: genes with no obvious association with LUAD.

TABLE 2 Potential drugs or preclinical compounds for lung adenocarcinoma.

Drug/preclinical compound Jaccard score Z-score Validation Reference

Chlorpromazine 0.059 −2.371 In Vitro (Zhu et al., 1991; Ogretmen et al., 2002)

Bromoethylamine 0.057 −2.476 NA -

Azathioprine 0.054 −3.848 Reported (McAdam et al., 1974; Lazarev et al., 2012; Baik et al., 2018)

Ethanol 0.050 −2.310 In Vitro Chen et al., 2012

Papaverine 0.044 −3.345 In Vitro Gomes et al., 2021

Fluoxetine 0.043 −3.516 Phase 2 Yang et al., 2021

Cimetidine 0.040 −2.125 NA -

Benzbromarone 0.039 −2.325 NA -

Rotenone 0.038 −3.437 In Vitro Shi et al., 2014

Sulfasalazine 0.038 −2.663 In Vitro Hu et al., 2020
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reported to be discovered (reported) with experiments under

preparation.

There were 47 binding target proteins from the three

potential drugs predicted from this study, and 14 of them

were identified from GAT and with an IC50 value less than

10,000 nM, which presents the physical interaction between

drugs and targets (Table 3). The proteins and genes that were

not found by GAT or IC50 larger than 10,000 nM were listed in

(Supplementary Table S5).

Discussion

In this study, a LUAD-related target genes and drug

prediction pipeline was developed. A GAT model was used

for target gene prediction, and an overlap-based network and

a network distance-based methods were used for LUAD drug

prediction. Using this pipeline, together with FPKM data from

TCGA, a gene interaction network, gene function annotation

features, and drug target gene information, 1,597 potential

LUAD-related target genes and 10 potential drugs or

preclinical compounds for the treatment of LUAD were

predicted. The AUROC of the GAT model developed in this

study reached 0.89, which indicates the robust prediction of

LUAD-related target genes.

Due to the absence of standard datasets of LUAD-related and

-unrelated genes (Schulte-Sasse et al., 2021), we used a more

stringent log2FC criterion than conventional studies. An absolute

value of log2FC greater than 2 was required for a gene to be

considered to be related to LUAD, while traditionally, an absolute

value of log2FC greater than 1 is used as the threshold. A stricter

threshold selection is beneficial to reduce the error of the sample

data in the training set and thus achieve more accurate

predictions. As few datasets reported genes unrelated to

cancer, genes with an absolute value of log2FC close to 0 were

classified as unrelated genes.

We also compared the prediction performance of the GAT

model with the prediction performance of traditional ML and DL

models. Compared with the TabNET model, the ML-based

decision tree model had better prediction performance. There

are two possible reasons for this. First, the training sample size

and the number of features were small (Kotsiantis, 2007). There

were only approximately 3,000 genes and less than 100 features in

the training set. Within the scope of this analysis, ML-based

decision trees had obvious advantages. Second, the TabNet

model is not a GNN-based model, and therefore, it is not

conducive to summarizing topological information from gene

interaction networks. Compared with ML-based decision trees,

deep learning models (GAT and GCN) based on GNN had better

prediction performance. GNNs are applied to graphs in the non-

Euclidean space. Non-Euclidean spaces represent more arbitrary

spaces than Euclidean spaces due to arbitrary connections

between nodes, thus allowing GNNs to obtain topological

information more effectively. For feature extraction, the

analytical ability of the GNNs was close to that of the ML-

based decision tree. Both GCN and GAT are types of GNNs, and

both methods aggregate the features of neighboring vertices to

the central vertex and use the local stationary points on the graph

to learn new vertex feature expressions. The difference is that

GCN uses the Laplacian matrix, whereas GAT uses the attention

coefficient. To a certain extent, GAT models are more precise as

the correlation between vertex features is better incorporated into

the model (Li et al., 2015). Due to the difference in the vertex

operation mode, changing the structure of the graph in the test

task has little impact on the GAT. In the training process of most

graph neural networks, the training set is only a subgraph of the

TABLE 3 Physical drug-target interaction pairs and IC50 values.

Drugs Target name Gene symbol IC50 (nM) Cell line

Benzbromarone Cytochrome P450 2C9 CYP2C9 41.00 Cebus apella, and HRPTEpiC cells

Aldo-keto reductase family 1 member C1 AKR1C1 48.00 BAOEC cells

Solute carrier family 22 member 6 SLC22A6 4,600.00 Drosophila S2 cells

Cimetidine Histamine H2 receptor HRH2 500.00 U2OS cells

Bromoethylamine Neuropeptide Y receptor type 1 NPY1R 0.06 SK-N-MC cells

G protein-coupled receptor kinase 5 GRK5 11.80 In-silico study (3D-QSAR)

Matrix metalloproteinase-9 MMP9 26.00 Kinetic study

Anoctamin-1 ANO1 156.50 FRT, and U251 cells

Protein farnesyltransferase chain B FNTB 180.00 NIH3T3 cells

Delta-type opioid receptor OPRD1 362.00 CHO cells

DNA repair protein RAD51 homolog 1 RAD51 370.00 HEK293 cells

ATP-binding cassette sub-family G member 2 ABCG2 527.50 H460/MX20 cells

Thymidylate synthase TYMS 1,288.00 In-silico study (3D-QSAR)

Dihydrofolate reductase DHFR 5,010.00 HL-60, Bel-7402, BGC823, KB, Hela, and SK-OV-3 cells
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whole graph, and the testing set is a new subgraph for the model.

GCN is a calculation method for the entire graph, and the node

features of the entire graph are updated in one calculation, which

makes the GCNmodel inefficient and poor in handling unknown

subgraphs (Kipf and Welling, 2016). The learned parameters in

GCNs are primarily related to the graph structure. On the other

hand, for the GAT model, the new subgraph only affects the

relationship matrix of nodes to feature mapping. The dimension

of this matrix is determined at the beginning of the model

establishment and is only related to the number of features of

each node. Therefore, GATs are more effective than GCN at

inductive tasks, such as supervised learning (Hamilton et al.,

2017).

In the drug prediction module, overlap-based and network

distance-based networks are commonly used prediction

methods, and several drug prediction models have been built

using similar theories (Tu, 1996; Huang et al., 2016; Li et al., 2020;

Jain et al., 2021). As there are no data on which type of predictive

model is more reliable, both predictive models were used in this

study and then summarized to predict potential drugs for the

treatment of LUAD.

Among the ten predicted drugs or preclinical compounds,

three were newly discovered using this prediction pipeline. The

remaining eight drugs have been previously identified as

potential drugs for the treatment of LUAD, and some are

already in the laboratory testing stage or clinical trial stage.

Bromoethylamine is a new potential preclinical compound for

LUAD treatment identified in this study (Jaccard score = 0.057,

z-score = -2.476). An association between bromoethylamine and

LUAD has not been reported in DrugBank, the CTD, or in

previous studies. Notably, in the CTD, bromoethylamine is

reported to interact with hepatitis A virus cellular receptor

1 and natriuretic peptide receptor 1, which coincide with the

genes predicted in this study. Additionally, both genes are

associated with fibrosis (Cherngwelling et al., 2021; Priego

et al., 2021), which is an important phenotype that occurs

throughout the progression of LUAD (Angel et al., 2020).

Moreover, these two genes also show strong associations with

kidney-related diseases (Kanki et al., 2014).

Bromoethylamine is used to synthesize anti-radon, a brain

drug. Anti-radon has a central excitatory effect. It promotes

the release of active sulfhydryl groups in the body and

participates in the redox process of brain cells, thereby

promoting and restoring the metabolism of brain cells to

enable the rapid restoration of brain function in traumatic

coma patients. In addition, there are anti-central nervous

system depressant drugs that are clinically suitable for

traumatic coma, coma caused by other reasons, the

sequelae of traumatic brain injury, carbon monoxide

poisoning, cerebral hypoxia, and sleeping pill poisoning

(Sun and Li, 2008). Cimetidine (Jaccard score = 0.040,

z-score = −2.125) was also predicted to be a potential

treatment for LUAD. Although the use of cimetidine for

the treatment of NSCLC has been assessed in clinical trials,

it did not appear directly as a LUAD-related drug. However, it

was used as an allergy prevention drug in a clinical trial of

paclitaxel for the treatment of NSCLC (Hainsworth and

Greco, 1994). Currently, cimetidine is used to treat

gastroesophageal reflux disease, peptic ulcer disease, and

dyspepsia. It is also being tested in clinical trials for the

treatment of chronic obstructive pulmonary disease and

community-acquired pneumonia. The target genes of

cimetidine include Epidermal Growth Factor Receptor

(EGFR) and Aryl Hydrocarbon Receptor (AHR), both of

which are LUAD-related genes. Benzbromarone is another

drug newly identified in this study as having potential for the

treatment of LUAD (Jaccard score = 0.039, z-score = −2.235).

Benzbromarone has been studied for its effects on the

development of hepatoma and metabolic pathways of

lipids, proteins, amino acids, and their derivatives (Calvisi

et al., 2011). It has also been used in trials studying the basic

science and treatment of heart failure, hyperuricemia, chronic

kidney disease, abnormal renal function, gout, and

asymptomatic hyperuricemia. Benzbromarone is currently

being assessed in the clinical trials for the treatment of

heart failure/hyperuricemia, type 2 diabetes, and pulmonary

idiopathic arterial hypertension. No previous studies have

linked benzbromarone with LUAD.

The seven remaining drugs have previously been reported to

be LUAD-related or have entered clinical trials for LUAD

treatment. For example, chlorpromazine, which was predicted

in this study (Jaccard score = 0.059, z-score = −2.371), is a

phenothiazine anti-psychotic used to treat nausea, vomiting,

preoperative anxiety, schizophrenia, bipolar disorder, and

severe behavioral problems in children. Chlorpromazine has

been reported to modulate the metabolism of papillary lung

adenocarcinoma cells by targeting c-Myc (Ciribilli et al., 2016). In

addition, in cell line experiments, chlorpromazine has been

shown to be effective at inhibiting the growth of lung tumor

cell lines (the human small cell carcinoma-derived cell line IRSC-

10M and the adenocarcinoma-derived cell line A549) (Zhu et al.,

1991). Fluoxetine (Jaccard score = 0.043, z-score = −3.516) was

originally developed as an anti-depressant in the selective

serotonin reuptake inhibitor class (March et al., 2004). It is

commonly used to treat depression and sometimes obsessive-

compulsive disorder and bulimia (Husted et al., 2007). In

addition, fluoxetine is also a promising drug for treating

patients with depression and NSCLC (Yang et al., 2021). The

use of this drug for the treatment of a variety of disorders may be

related to the significant expression levels of LUAD-related genes

in the nervous system (Hsu et al., 2020), which was also partially

confirmed by the feature selection in this study. This finding of

nervous system-related drugs, including selective serotonin

reuptake inhibitors, being potentially suitable for treating lung

cancer is not an independent event, as aducanumab, a drug for

Alzheimer’s disease (Schneider, 2020), has also been
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experimentally tested for lung cancer and encouraging results

were observed (Morrison, 2016).

Azathioprine has previously been reported to be used for

treating patients with LUAD, but its effect and mechanism of

action are unknown (McAdam et al., 1974; Lazarev et al., 2012;

Baik et al., 2018). Ethanol has the potential to suppress CL1-5

human LUAD cell migration, and it inhibits matrix

metalloproteinase-2/9 via the extracellular signal-regulated

kinase, c-Jun N-terminal kinase, p38, and phosphatidylinositol

3-kinase/Akt signalling pathways (Chen et al., 2012). A clinical

trial of ethanol for the treatment of LUAD is currently in the

recruiting stage. Papaverine may be used to treat various types of

smooth muscle spasms, including vasospasm and visceral spasm

associated with acute myocardial infarction and angina pectoris. It

is currently being assessed in a clinical trial for the treatment of

NSCLC. Rotenone has the potential to sensitizeNSCLC cell lines to

tumor necrosis factor-related apoptosis-inducing ligand-induced

apoptosis (Shi et al., 2014), but it has not been assessed in a clinical

trial, possibly because of its potent toxicity. Sulfasalazine is an anti-

inflammatory drug used to treat Crohn’s disease and rheumatoid

arthritis. Previous studies have shown that sulfasalazine abolishes

the phosphorylation of AXL and other receptor tyrosine kinases,

thereby reducing LUAD metastasis and drug resistance (Lay et al.,

2007). No clinical trials using sulfasalazine for the treatment of

LUAD have been conducted.

The present study has some limitations. The drug prediction

pipeline is not able to distinguish between drugs that are used to

relieve the symptoms of LUAD and those that eradicate LUAD.

The reason is that the GAT model established in this study only

screens out the genes related to LUAD, and it cannot determine

whether the abnormal expression of genes occurs before or after

the onset of LUAD. Therefore, it cannot be determined whether

the predicted drug targets a gene involved in the development of

LUAD, a gene that is abnormally expressed after the

development of LUAD, or both. However, if LUAD-related

oncogenes can be identified using statistical-based Mendelian

randomization analysis or cellular or biological assays, potential

drugs for the treatment of LUAD may be more targeted. In

addition, the node attention coefficients in the GATmodel of this

study and the weights of edges between nodes may have potential

implications for the prediction of new gene associations.

Conclusion

In this study, a GAT-based target gene prediction–drug

repositioning pipeline was constructed for LUAD. Using this

pipeline, 1,597 genes were predicted as potential target genes for

LUAD, bromoethylamine was predicted as a novel potential

compound for the treatment of LUAD, cimetidine and

benzbromarone were predicted as potential therapeutic drugs for

LUAD. In the future, it is a potential research direction to use the

attention coefficients and edge weights obtained in the GAT model

to predict new gene-gene interaction relationships. Introducing cell

line experiments and animal experiments to verify the efficacy of

treating LUAD with bromoethylamine, cimetidine, and

benzbromarone will also be a key research direction.
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