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Abstract: With the development of flexible electronics, flexible microheaters have been applied
in many areas. Low power consumption and fast response microheaters have attracted much
attention. In this work, systematic thermal and mechanical analyses were conducted for a kind of
flexible microheater with two different wire structures. The microheater consisted of polyethylene
terephthalate (PET) substrate and copper electric wire with graphene thin film as the middle layer.
The steady-state average temperature and heating efficiency for the two structures were compared
and it was shown that the S-shaped wire structure was better for voltage-controlled microheater
other than circular-shaped structure. In addition, the maximum thermal stress for both structures
was from the boundary of microheaters, which indicated that not only the wire structure but also
the shape of micro heaters should be considered to reduce the damage caused by thermal stress.
The influence resulting from the thickness of graphene thin film also has been discussed. In all, the
heating efficiency for flexible microheaters can be up to 135 ◦C/W. With the proposed PID voltage
control system, the response time for the designed microheater was less than 10 s. Moreover, a feasible
fabrication process flow for these proposed structures combing thermal analysis results in this work
can provide some clues for flexible microheaters design and fabrication in other application areas.

Keywords: microheater; heating wire structure; PID control; graphene thin film; fast response

1. Introduction

Compared with a hotplate or Peltier elements, microheaters with thermal mass and
power consumption reduced, are more effective for portable applications [1]. Microheaters
have been widely applied in various applications including gas sensors [2,3], microcalorime-
ters [4], gas flow meters [5], infrared sources [6,7], and thermal management [8]. Various
structure designs of microheaters have been proposed for different applications. Zhou, Q.
et al. designed a floating microheater composed of 72 heating units based on semiconductor
oxide (SMO), and the total size was 3.2 mm × 3.0 mm [9]. Solzbacher, F. et al. designed a
suspended gas chamber micro heating plate using metal oxide for the gas sensor [10]. The
size of the heating film was 100 µm × 100 µm with the heating wires’ shape and width
optimized. The reported maximum heating temperature of the heating film was 700 ◦C.
Krishna, R.M. et al. designed an integrated photonic resonant wavelength tuning device
based on a polysilicon microheater, which has a wide tunable range and can be applied to
provide efficient and high-speed tuning wavelength for resonant devices [11]. Cho, J. et al.
proposed a microheater for carbon monoxide (CO) detectors to enhance the sensitivity by
more than 20%, and reduce response time to less than half [12].

Moreover, as the essential component in gas sensors [13] and biological sectors [14],
different kinds of research about the structures and materials of microheaters have been
done. Waghmare, S. et al. optimized the temperature uniformity and stability of the micro-
heater considering the influences of the wire structure and applied voltage with COMSOL
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Multiphysical software [15]. Hasan, M.H. et al. discussed a microheater with platinum (Pt)
for gas sensing applications using COMSOL Multiphysics [16]. Prajesh, R. et al. depicted
the benefit of low thermal conductivity of substrate by comparing three different rigid
materials (silicon, alumina, and glass) [17]. Tiwari, S.K. et al. demonstrated a flexible
microheater with Polyethylene terephthalate (PET) substrate and the influence of supply
voltage and time on heater temperature profile was analyzed using COMSOL Multiphysics
software [18].

In this paper, we proposed a type of flexible microheaters combining a classical wire
design and graphene sheet for gas sensing applications in wearable devices. Recently,
with the development of flexible electronics, low power consumption and fast response
microheater are desired in many areas [6,19]. Because of the unique electrical and thermal
conductivity, the graphene-based electrothermal heater has shown the properties of fast
response, flexibility, and high-efficiency energy conversion [20–23]. Graphene-based typical
structures fabricated with different methods are shown in Figure 1. However, limited by
fabrication techniques of graphene, it is not convenient to get the required wire. Combined
with a classical wire design with a graphene sheet, we proposed a structure type for a
flexible microheater. For low-power consumption and fast response flexible microheater
design, different substrate material, wire structure, and electric control system influences
were discussed in this paper. These results can provide guidelines to get high-efficiency
flexible microheaters for different applications.
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Figure 1. Structures of microheaters based on graphene fabricated with (a) inkjet-printed method [21],
(b) laser-induced method [22], and (c) ultrafast laser ablation method [23]. Reprinted with permission
from MDPI, ACS, and ELSEVIER.

2. Models and Methods

Heat conduction, heat convection, and heat radiation are the three different heat
transfer types between the chip and the air layer involved in the working process of a
microheater. However, their effects on heater performance are varied.

2.1. Heat Transfer Models

To describe the electric heating and heat transfer process of the microheater, we applied
the following formula for this model.

ρCPu∇T = ∇·(k∇T) + Qε

Qε = J·E
(1)

where ρ is the density of the material, CP is the constant pressure-specific heat of the
material, k is the thermal conductivity coefficient, Qε is the Joule heating power, J is the
density surface current, E is the applied voltage.

Heat conduction has a significant influence on the performance of microheaters,
Fourier’s law was applied to quantitatively describe the heat conduction process:

q
′
x = −k

∂T
∂x

(2)

where q
′
x is the heat flux density, k is the thermal conductivity, T is the absolute tem-

perature; x is the heat conduction distance. The thickness of the substrate is the key
parameter for the heat conduction process following the Fourier law. Under the same
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condition, the chip temperature will change significantly as long as the thickness of the
substrate is adjusted. In this study, we set the material and size of the substrate to optimize
the thickness.

For convection without considering external interference, Newton’s law can be applied
as follow.

q = hA
(

Tw − Tf

)
(3)

where q is the convection heat flux, h is the convective exchange coefficient, A is the area
of the heat exchange area, Tw is the solid surface temperature, Tf is the fluid temperature.
In this study, convection mainly occurs between the air and the microheater, we set the
thermal convection coefficient as 5 W/(m2·K).

Thermal radiation refers to the thermal energy radiated by objects. we used the
following formula to describe the radiation process.

ϕ = ε1δA1

(
T4

2 − T4
1

)
(4)

where ε is the emissivity of the object, σ is the Stefan- Boltzmann constant which is
5.67 × 10−8 W/(m2·K4), A1 is the radiation surface area, T2 is the surface temperature of
the object and T2 is the ambient temperature. Through preliminary analysis, the thermal
radiation power of the design target in this study is around 10−5 W, which is negligible
compared with two the other heat transfer models having power levels of around 10−3 W.

2.2. Materials

To get a low-power consumption, high-efficiency flexible microheater, we proposed a
type of structure using Polyethylene terephthalate (PET) as substrate. Due to its anisotropic
thermal conductivity [24], graphene thin film was applied to enhance the temperature
uniformity of the microheater. We applied copper wire for the electric heater. The material
properties used in this study are summarized in Table 1.

Table 1. Material properties used in this study.

Material PET Graphene [24] Copper

Young’s modulus (Pa) 4.00 × 109 1.00 × 1012 1.278 × 1010

Poisson’s ratio 0.125 0.160 0.326
Thermal expansion coefficient (1/K) 3.30 × 10−5 2.90 × 10−5 1.890 × 10−5

Thermal Conductivity (W/(m·k)) 0.14 x: 3000, y: 3000, z: 6.1 380
Constant pressure heat capacity (J/(kg·K)) 1100 1365 390

Density (kg/m3) 1370 2330 8960

In this study, COMSOL Multiphysics 5.5 was used to analyze the performance of
the flexible micro heater, which can solve Maxwell’s equations, magnetic field equations,
and boundary conditions simultaneously with the finite element method [25,26]. All the
abbreviations used in this paper are summarized in Table 2.

Table 2. List of abbreviations used in this paper.

Abbreviations Meaning

SMO semiconductor oxide
CO carbon monoxide

MEMS micro-electromechanical Systems
LPCVD low-pressure chemical vapor deposition

PET polyethylene terephthalate
Pt platinum

PID proportional-integral-derivative



Micromachines 2022, 13, 1037 4 of 10

3. Results and Discussion
3.1. Structure Design and Analysis

Different wire geometries applied for microheaters have been widely discussed [16,27–29].
It was reported that less inner thermal stress was generated with circular-type wire struc-
tures [1]. In this study, two typical structures with different wire geometries selected for
flexible microheaters were discussed, as shown in Figure 2.
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Figure 2. Two kinds of heating structures were studied in this study, (a) the Circular-shaped structure,
and (b) the S-shaped structure.

In this study, the thickness of the substrate (t) was 150 µm, and the sample size was
1 cm × 1 cm. To compare the heating efficiency resulting from different wire structures,
circular-shape, and S-shape structures were discussed as shown in Figure 1. For these
wire structures, the width of the wire (w) was fixed as 200 µm and the distance (d) was
700 µm. Additionally, we fixed the thickness of the graphene thin film for both structures
as 50 nm and the input voltage 1.5 V. Furthermore, we set the default temperature for the
simulation analysis as 20 ◦C. To set up the finite element methods (FEM) analysis mode,
multi-physical field coupling modules including “structural mechanics”, “heat transfer”
and “AC/DC” modules were considered simultaneously with COMSOL Multiphysics
5.5. The air environment with the heat transfer coefficient of 5 W/(m2·K) was set as the
boundary condition of microheaters. The sweep mesh method was used for microheaters
and free tetrahedron mesh was used for the other regions. The surface temperature
distribution of the two shape structures was simulated as in Figure 3. The steady-state
average temperature of the S-shape structure, shown in Figure 3a, was higher than that of
the Circular-shaped structure, shown in Figure 3b, under the same input voltage condition.
The higher average temperature should result from its lower electrical resistance.
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steady-state.

With different input voltages, we evaluated the heating performance of the two
structures as in Figure 4a. It was shown a non-linear quadratic relation between the steady-
state average temperature and input voltage. Considering the same initial temperature
Tini in this model, the average temperature Tfin of microheaters results from the Joule heat
Qin generated by electrical power and heat dissipation Qout to environment. Meanwhile,
Qin can be expressed as in Equation (6) which is quadratically related to the input voltage.
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These results indicated that the average temperature of microheaters is mainly influenced
by input electrical power other than the heat dissipation part. We found that the resistance
of the Circular-shaped structure was 92.4 Ω, which was 25.0 Ω of the S-shaped structure for
the same size substrate. The reason is that the total length of the Circular-shaped structure
wire is longer than that of the S-shaped structure wire under the same condition.

Qin −Qout = Cm
(

Tf in − Tini

)
(5)

Qin =
Vin

2

R

∫
tdt (6)

where C is the specific heat capacity of the microheater, and m is the mass of the microheater.
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Circular-shaped structure with different input voltage.

To compare the heating efficiency of the two structures, we proposed a factor named
heating efficiency to get a quantitative analysis which was calculated as below:

η =
∆T
P

(7)

where η is heating efficiency, ∆T is the temperature increased under the input electrical
power of P. The heating efficiency of microheaters with two types of wire structures was
calculated as in Figure 4b. The heating efficiency of the Circular-shaped structure was
slightly lower than that of the S-shaped structure, which should be caused by higher heat
dissipation with a longer heating wire. Based on the analysis results, it is better to choose
an S-shaped structure for voltage-controlled heater design other than a Circular-shaped
wire structure.

The main stress of this type of microheater is caused by inner thermal stress between
different material layers. To further evaluate the influence of different wire structures on the
heater’s internal thermal stress, we compared their internal thermal stress under the same
steady-state average temperature for both structures with different input voltages. The
simulated internal stress distribution was calculated and shown in Figure 5. The greatest
stress for both structures was from the edges of the device which should be carefully
considered to construct a robust flexible heater. These simulation results provided a clue
that to reduce the damage caused by thermal stress, not only the heating wire structure but
also the shape of the microheater should be considered. In addition, we also noticed the S-
shaped structure showed less generated internal stress compared with the Circular-shaped
and it should be better to choose this structure for square type microheater.
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structure with the same steady-state average temperature of 80 ◦C.

Usually, temperature uniformity is a key factor to evaluate the performance of a heater,
we choose the temperature distribution along the center line to get a quantitative evaluation.
As shown in Figure 6, the temperature uniformity of the S-shaped structure in Figure 6a is
better than that of the Circular-shaped in Figure 6b. We noticed that there was temperature
fluctuation of the Circular-shaped wire structure along the center line. In addition, these
fluctuation-generated positions were exactly the positions of the heating wires. Considering
the shape of the Circular-shaped wire structure, the fluctuation should result from the heat
accumulation near the heating wire with large curvature.
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Figure 6. The surface temperature distribution along the center line for (a) the Circular-shaped
structure, and (b) the S-shaped structure with different input voltages, with structure indicated as in
the inserted picture.

In summary, we found that for voltage source powered square-type microheater
design, it is more appropriate to use an S-shaped wire structure to get a better heating
efficiency, less internal thermal stress, and better temperature uniformity compared with
the Circular-shaped wire structure.

Other than the wire shape design, the thickness of the graphene thin film also has a
certain influence on the heating efficiency of the microheater. The steady-state average
temperature for the S-shaped structure corresponding to different voltage and different
thickness of the graphene thin film was evaluated as in Figure 7. Graphene thin film can be
beneficial to the heating efficiency of the microheater, but they are not a linear relationship.
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nesses of graphene thin film.

For the real application of the proposed microheaters, we proposed a feasible prepa-
ration method for the designed microheaters. The preparation process flow was shown
in Figure 8. With a suitable PET substrate as in Figure 8a, low-pressure chemical vapor
deposition (LPCVD) can be applied for graphene middle layer deposition as in Figure 8b.
After that, copper wire can be directly deposited with the evaporation method using a
shadow mask as in Figure 8c. Finally, the proposed microheater can be fully fabrication as
in Figure 8d.
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3.2. Proportional-Integral-Derivative (PID) Control for Flexible Microheater

To reach the set temperature as soon as possible, we designed the PID control model
with COMSOL software. For the PID control model, the input voltage was the controlled
parameter and the average temperature of the heater was applied as a feedback factor. With
an optimized PID control model for a microheater with an S-shaped structure and 50 nm
thickness of graphene thin film, we can get the target temperature within 10 s which is more
than 60 s without a PID control model as in Figure 9. The optimized PID values would be
related to the heat dissipation environment which should be designed for real application.
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4. Conclusions

In this paper, we proposed structure designs for flexible microheaters. Polyethylene
terephthalate (PET) was chosen as the substrate material with a graphene thin film middle
layer. Moreover, S-shaped and circular-shaped copper heating wire structures were pro-
posed and systematically analyzed. The size of the heater unit was 1 cm × 1 cm, which can
achieve heating efficiency up to 135 ◦C/W. Compared with the S-shaped wire structure,
under the same wire width and space distance, the total resistance of the circular-shaped
wire structure was higher. Meanwhile, the average temperature of a microheater with
an S-shaped structure was higher with the same input voltage. In addition, the heating
efficiency of the Circular-shaped structure was slightly lower than that of the S-shaped
structure, which may be caused by higher heat dissipation with a longer heating wire. The
thermal stress of two-wire structures under the same temperature was also calculated. It
was shown that the maximum thermal stress from the boundary of microheaters. Moreover,
we noticed there was temperature fluctuation of the Circular-shaped wire structure along
the center line. Considering the shape of the Circular-shaped wire structure, the fluctuation
should result from the heat accumulation near the heating wire with large curvature. Based
on the internal stress and heating efficiency analysis results, it should be better to choose
an S-shaped wire structure for a square-type microheater. The influence resulting from the
thickness of graphene thin film was discussed and it was shown that graphene thin film
can be beneficial to the heating efficiency of the microheater. In addition, a PID control
system was also discussed to get a fast heating response and the analysis results indicated
the response time was less than 10 s for the targeted temperature of 80 ◦C.
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