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Abstract: Periodontology is a newer field relative to other areas of dentistry. Remarkable progress has
been made in recent years in periodontology in terms of both research and clinical applications, with
researchers worldwide now focusing on periodontology. With recent advances in mass spectrometry
technology, metabolomics research is now widely conducted in various research fields. Metabolomics,
which is also termed metabolomic analysis, is a technology that enables the comprehensive analysis
of small-molecule metabolites in living organisms. With the development of metabolite analysis,
methods using gas chromatography–mass spectrometry, liquid chromatography–mass spectrometry,
capillary electrophoresis–mass spectrometry, etc. have progressed, making it possible to analyze
a wider range of metabolites and to detect metabolites at lower concentrations. Metabolomics is
widely used for research in the food, plant, microbial, and medical fields. This paper provides an
introduction to metabolomic analysis and a review of the increasing applications of metabolomic
analysis in periodontal disease research using mass spectrometry technology.

Keywords: periodontitis; periodontal disease; metabolomics research; proteomic analysis; LC-MS/MS;
GC-MS

1. Introduction

Periodontal disease includes any disorder occurring in periodontal tissue, consisting
of the gingiva, cementum, periodontal ligament, and alveolar bone (Figure 1) [1–7]. The
main periodontal diseases are gingival lesions and periodontitis, but also include non-
plaque gingival lesions, gingival proliferation, necrotizing periodontal disease, abscesses of
periodontal tissue, periodontal and endodontic lesions, gingival recession, and occlusal
trauma [8–14]. Periodontal disease is one of the two major dental diseases, along with
dental caries, and is the most significant cause of tooth loss. Recently, it has also become
clear that periodontal disease is associated with systemic diseases, such as diabetes and
aspiration pneumonia, and is now addressed as a lifestyle-related disease.

Recently, metabolome analysis has made rapid progress. It is an analytical method
that comprehensively searches for metabolites in cells and biological samples to elucidate
the interaction between biomacromolecules and metabolites, novel metabolic pathways,
unknown metabolic regulatory mechanisms, and unknown gene and protein functions. It
has become widespread. The contribution of mass spectrometry is also considered signifi-
cant. Mass spectrometry and metabolome analysis are indispensable in basic research on
periodontal diseases, and are now being applied to periodontal diseases. Metabolomics is
a tool of personalized medicine and is applicable to several diseases, from autoimmune
to chronic diseases, and lately it has found utility in diagnosing and treating periodontal
disease. The correct diagnosis and treatment of periodontal disease are crucial for prevent-
ing tooth loss and improving the patient’s quality of life. Metabolomics, also known as
metabolomic analysis, is a technology used to comprehensively analyze small-molecule
metabolites in living organisms [15,16].
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Mass spectrometry is a method for identifying (finding out what something is) or
quantifying (measuring the amount of) a substance by measuring its mass and number of
ions, which are made into minute ions at the atomic and molecular levels using various
ionization methods. With the development and improvement of metabolite analytical
methods using mass spectrometry (MS), such as gas chromatography–mass spectrometry
(GC-MS) and liquid chromatography–mass spectrometry (LC-MS), it has become possible
to analyze various metabolites and to detect metabolites at lower concentrations [17–20].

MS introduction in clinical settings is expected to increase further, enabling the con-
tinuous collection of data on periodontal diseases while researchers strive to update tech-
nology and accumulate more information. It is expected that the use of metabolomics
will contribute toward improving research outcomes and the treatment of periodontal
diseases. Recently, metabolomics has been applied in periodontology. This review intro-
duces metabolomics research and provides an overview of its increasing applications in
periodontal disease using MS technology.

2. Periodontal Disease

Periodontology is a new field relative to other areas of dentistry. In recent years,
there has been remarkable progress in research, clinical practice, and education related to
periodontology [21–23]. As suggested by the term “periodontal medicine,” it is associated
with systemic diseases. Metabolic disease groups that have been reported to be associated
with periodontal disease include diabetes, obesity, nonalcoholic steatohepatitis (NASH),
dyslipidemia, and osteoporosis (Figure 2). Therefore, overcoming periodontal disease
through appropriate treatment can help preserve teeth and contribute significantly to
improving patients’ quality of life.
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Figure 1. Periodontal tissue and other important factors. Periodontal tissue refers to the tissue that
surrounds the teeth and supports their function. Periodontal tissue comprises cementum, gingiva,
alveolar bone, and periodontal ligament. Periodontal disease is a general term for diseases that
develop in periodontal supporting tissue. GCF, which is the fluid that exudes into the gingival sulcus
and periodontal pockets, is thought to reflect the pathology of periodontal disease.
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Figure 2. Relationship between periodontal disease and metabolic diseases. Metabolic disease
groups that have been reported to be associated with periodontal disease include diabetes, obesity,
nonalcoholic steatohepatitis (NASH), dyslipidemia, and osteoporosis.

A periodontal examination, which is also called a periodontal histology examination,
is used to determine the progress and causes of periodontal disease and to formulate a
diagnosis and treatment plan. It is also used to evaluate the response of the periodontal
tissues and modify the treatment plan accordingly. The examination includes the exami-
nation of gingival inflammation, pocket depth, attachment level, oral hygiene, and root
bifurcation lesions [24–26]. Furthermore, a periodontal precision examination includes the
pocket measurement of at least six points per tooth, measurement of tooth mobility, and
measurement of plaque adhesion using a plaque chart [27–30].

Bacteria are involved in the development or progression of periodontitis and are
often found at active sites of periodontitis [31–35]. Generally, Koch’s principle must be
considered for an infection to be considered to have occurred from a specific pathogenic
bacterium [36]. However, since this principle was initially intended for severe infections
and is difficult to apply to periodontal disease, Socransky et al. reported a modified version
of this principle as a criterion for identifying the source of periodontal disease [37]. Subse-
quently, in 1996, the American Academy of Periodontology summarized the conditions
of periodontopathogenic bacteria and classified most of them as a red or orange complex,
except for A. actionmycetemcomitans, and bacteria belonging to the red complex are now
classified as severely periodontal [38]. These bacteria are associated with inflammation.
Periodontopathic bacteria are Gram-negative rods that essentially possess endotoxin as
a virulence factor. All bacteria belonging to the red complex metabolize trypsin-like en-
zymes. The elimination of these bacteria can stop periodontitis progression. Bacteria
such as Porphyromonas gingivitis, Tannerella forsythia, and Treponema denticola are commonly
detected in chronic periodontitis, whereas Aggregatibacter actinomycetemcomitans and oth-
ers are often detected in invasive or juvenile periodontitis [39–42]. Hundreds of bacteria
present in the oral cavity have been classified in relation to their relevance to periodontal
disease [37,43–45]. Tannerella forsythia (P,g, T,d, and T,f) are believed to have the largest
influence on severe periodontitis [46–48].

3. Mass Spectrometry of Metabolomics Analysis

In recent years, metabolomic analysis has become widely used and can indicate the
presence of various factors that influence the results of metabolite analysis related to
the processes of sample collection before metabolite analysis, sample pretreatment, and
post-analysis data processing [16,49–51].

With recent advances in MS technology, metabolomics research is now widely con-
ducted in various research fields [52–54]. Recent advances in MS technology have resulted
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in discovering novel markers and diagnostic biomarker candidates for various diseases.
MS-based diagnostic tests could thus be clinically implemented in the future. Areas where
MS technology is used in clinical laboratories are listed in Table 1 by procedure, indicating
considerable progress [55–88]. We indicated the characteristics of typical mass spectromet-
ric methods, MALDI-TOF MS, LC-MS, and GC-MS, in Table 1. As the practical applications
of matrix-assisted laser desorption/ionization MS have progressed, the combination of
electrospray ionization and LC-MS/MS has rapidly emerged as a popular method for
determining low molecular weight compounds.

Developments in metabolite analysis methods using GC-MS, LC-MS, and capillary
electrophoresis-MS have made it possible to analyze various metabolites and to detect
metabolites at lower concentrations [89–92]. Metabolomics has been extensively used
for research in the food, plant, microbial, and medical fields. Since in vivo metabolites,
which are the targets of metabolomics, are located downstream of the central dogma that
operates biological activities, quantifying in vivo metabolites can provide a more detailed
understanding of cellular functions [93,94]. Furthermore, changes in in vivo metabolites
are thought to closely reflect changes in the phenotype of an organism [95,96].

Depending on the metabolomics approach, metabolite analysis is conducted on the
obtained extracts using various analytical techniques [97,98]. Among the various tech-
niques, MS is currently the mainstay of metabolomics analysis, as it is the most sensitive
method and can obtain more information from a smaller sample volume [57,99]. To per-
form a comprehensive analysis of metabolites, it is important to analyze the maximum
possible number of metabolites simultaneously. A wide range of metabolites can be an-
alyzed by combining several methods of MS analysis to compensate for the limitations
of each approach [17,100–102]. GC-MS is the most common combined form of MS anal-
ysis. Recently, there has been increasing interest in using two-dimensional GC-MS to
perform a more sensitive analysis [103–105]. In addition to GC-MS, LC-MS, which is
a combination of high-performance liquid chromatography and MS, is widely used in
metabolomics [57,106,107].
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Table 1. Characteristics of typical mass spectrometry methods.

Common
Instrument Names Overview Analysis Target Feature Preprocessing Applications-Clinical

Laboratory [Ref]

GC-MS; GC-MS/MS

Consists of two instruments with
distinct separation methods: a gas
chromatograph (GC) for
chromatographic separation and a
mass spectrometer (MS) for mass
separation

Gas
Thermostable volatile substances
or those that can be converted to
thermostable volatile substances
by derivatization. Used to
estimate organic acids and
steroids.

1 

 

〇 Effective for the analysis of relatively
small molecular weight and high-volatility
compounds.

1 

 

〇 Capable of qualitatively and
quantitatively analyzing trace amounts of
organic compounds.

1 

 

〇 Various introduction methods can be
chosen according to sample conditions and
objectives.

1 

 

〇 Extensive libraries enable the structural
estimation of a wide range of organic
compounds.

Liquid–liquid extraction.
This technique is rather
complicated.

1 

 

〇 Metabolome analysis [55–59]

1 

 

〇 Pharmaceutical and toxicological
analysis [60–63]

LC-MS; LC-MS/MS

LC-MS/MS stands for Liquid
Chromatograph—Mass Spectrometry,
which combines high-performance
liquid chromatography (HPLC) and
triple quadrupole mass spectrometry
(MS/MS). By combining the two
methods, it separates the organic
compounds in a liquid and analyzes
them by mass.

Liquid
Available for both fat- and
water-soluble compounds and
low to high molecular weight
molecules.Drugs, catecholamine
metabolites, fatty acid fractions,
vitamin B1, carnitine,
mucopolysaccharides, etc. can be
estimated.

1 

 

〇 Identification and quantification of
non-volatile organic components.

1 

 

〇 Identification and quantification of
pyrolysable organic components.

1 

 

〇 Determination of the molecular structure
of unknown organic components (*should
be utilized in combination with other
instruments).

Pretreatment with
solid-phase columns.
The technique is
relatively simple.

1 

 

〇 Screening of congenital metabolic
disorders [64–68]

1 

 

〇 Method toxicology, TDM [69–72]

1 

 

〇 Clinical chemistry (small
molecules, amino acids, peptides,
and proteins) [73–76]

1 

 

〇 Genotyping [77–79]

MALDI-TOF MS

Matrix-Assisted Laser
Desorption/Ionization-Time-of-
Flight type mass spectrometer
(MALDI-TOF MS): This is a type of
mass spectrometer that combines
MALDI as the ionization method and
TOF as the analyzer.

Solid
As there is no separation required
prior to ionization, it can be
targeted in solid form without
dissolution or homogenization.

1 

 

〇 High resolution and accurate mass
estimation.

1 

 

〇 Ionization of high molecular weight
samples is possible.

1 

 

〇 Primarily, monovalent ions are observed
in the mass spectrum.

1 

 

〇 High sensitivity and measurement is
possible with a small sample (a few µL).

Matrix application.
The technique is simple.

1 

 

〇 Rapid identification of bacteria
and fungi [80–83]

1 

 

〇 Mass spectrometry
imaging [84–88]
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4. Applications of Metabolomics Research in Periodontal Disease Using MS

Metabolomics can be made more effective by combining omics evaluation (genomics
and proteomics) with other MS technologies. There are several instances of MS and related
techniques being used in the metabolomic analysis of periodontal disease (Table 2 and
Figure 3).
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Kuboniwa et al. examined the relationship between salivary metabolites to reflect
periodontal inflammation severity using a recently proposed parameter (PISA) and salivary
metabolic profiles; metabolic profiling of saliva was performed using gas chromatography
coupled with time-of-flight MS, followed by multivariate regression analysis with orthogo-
nal projections to latent structures (OPLS) [108]. Based on the variable importance in the
projection values obtained via OPLS, eight metabolites were identified as potential indica-
tors of periodontal inflammation, of which the combination of cadaverine, 5-oxoproline,
and histidine yielded a satisfactory accuracy for periodontitis diagnosis [108]. In particular,
the suggested involvement of 5-oxoproline (pyroglutamic acid) in periodontal disease is
considered interesting. Pyroglutamic acid is an amino acid in which the carboxyl and
amino groups of glutamic acid undergo an intramolecular condensation reaction to form a
lactam. Increased pyroglutamic acid (5-oxoproline) excretion suggests an abnormality in
the metabolic pathway involved in response to oxidative stress and the synthesis of the
intracellular reducing agent, glutathione.

Liebsch et al. described the clinical attachment level, periodontal probing depth,
supragingival plaque, supragingival calculus, number of missing teeth, and removable
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denture as oral parameters using a large set (284) of salivary metabolites obtained by
LC-MS/MS from a subsample of 909 nondiabetic participants from the Study of Health
in Pomerania [109]. The metabolites associated with periodontal disease were suggested
to be related to tissue destruction, host defense mechanisms, and bacterial metabolism,
with the bacterial metabolite, phenylacetae, being significantly associated with periodontal
disease variables [109]. Thus, bacterial metabolites, such as phenylacetate, are expected to
be deeply involved in periodontal disease. In another study, Huang et al. combined mass
spectrometry (ICP–MS system, GC-MS, LC-MS)-based ionomics and targeted lipidomics
on fatty acid metabolites [110]. Ionomics identified decreased salivary levels of Mn, Cu,
and Zn in periodontal patients. SOD levels were reduced in saliva and serum in the
periodontal group. Elevated levels of cyclooxygenase (COX) products (PGE2, PGD2, and
PGF2α and TXB2) in periodontal saliva indicate an enhanced inflammatory response. An
increased level of lipoxygenase (LOX) products 5-Hydroxyeicosatetraenoic acid (5-HETE).
The oxidative stress marker F2-isoprostane was significantly increased in periodontal
saliva [110]. Cyclooxygenase (COX) is a functional molecule that influences inflammatory
responses’ induction in vivo [111,112]. Lipoxygenases (LOD) are of interest in inflammatory
diseases, such as atherosclerosis [113,114]. It is now known that molecules altered by
oxidative stress accumulate in various diseases. For example, in diabetes mellitus, oxidized
sugars bind to proteins, increasing abnormal glycated proteins. Therefore, research on COX
products, LOX products’ oxidative stress, and their involvement in periodontal disease is
expected to continue gaining attention.

Ozaki et al. investigated the usefulness of GC-MS, which could be used for the
onsite analysis of metabolites in gingival crevicular fluid (GCF), to objectively diagnose
periodontitis at the molecular level [115]. GCF is the proximal fluid closest to the lesion site,
and best reflects the condition of periodontal tissue (Figure 1). GCF contains many enzymes
and proteins related to periodontal tissue metabolism and is considered a significant
indicator of its progression [116]. Although the number of enzymes and proteins in GCF
is minimal, MS can be used to analyze these trace amounts [117–119]. GCF is expected to
contain candidate periodontal disease markers that could be assessed by metabolomics
analysis. Thus, metabolomics is considered a crucial approach for understanding GCF.
In a study by Ozaki et al. using GCF and GC-MS, the peak areas of putrescine, lysine,
and phenylalanine were significantly higher in the group of deep-pocket sites than in
healthy and moderate sites [115]. Furthermore, ribose, taurine, 5-aminovaleric acid, and
galactose were significantly higher in the group of deep-pocket sites compared to healthy
and moderate-pocket sites. Lactic acid, benzoic acid, glycine, malic acid, and phosphate
gradually increased from healthy to moderate-pocket to deep-pocket sites [115]. GCF
successfully detected several metabolites using GC-MS.

Recently, Chen et al. characterized the gingival metabolome of mice with high-fat diet
(HFD)-induced obesity with and without periodontitis [120]. The gingival metabolome
and arginine metabolism were analyzed by nontargeted/targeted LC-MS. They concluded
that the obese population fed an excessive HFD displayed an amplified metabolic response
to periodontitis, exhibiting metabolic susceptibility to exacerbated periodontal destruc-
tion [120]. This study indicated the use of gingival metabolome based on MS technology
nontargeted/targeted LC-MS in periodontal disease research and potential applications.

Furthermore, it can determine the total number of caries and bacteria related to pe-
riodontal disease. Focusing on saliva, Schulte et al. developed three complementary
LC-MS/MS approaches, namely targeted multiple reaction monitoring (MRM) LC-MS/MS,
nontargeted quantification by data-independent acquisition (DIA, SWATH), and identi-
fication and relative quantification of unknown metabolites related to HIV infection and
periodontitis by data-dependent acquisition [121]. The PHIV discovery-based dataset iden-
tified 564 endogenous peptides in which proteolytic processes and amino acid metabolism
occurred [121]. The association with HIV infection was examined for the first time. The
salivary metabolite profile was rich in cadaverine, a metabolite known to be associated
with periodontitis. It is known that the odoriferous gases in halitosis are volatile amine



Molecules 2022, 27, 2864 8 of 14

gases (volatile nitrogen compounds) caused by cadaverine and putrescine [122]. Therefore,
it has a significant effect on halitosis in periodontal disease. Further analysis is expected to
clarify the mechanisms of periodontal disease and HIV infection.

Table 2. Summary of important findings of these studies.

Authors Mass Spectrometer Used in
the Analysis

The Following Are Those Suggested to Be Involved with
Periodontal Disease References

Kuboniwa et al. GC-MS Cadaverine, 5-oxoproline, histidine [108]
Liebsch et al. LC-MS/MS Phenylacetae [109]

Huang et al. ICP–MS system, GC-MS,
LC-MS

PGE2, PGD2, PGF2α, TXB2, PGI2, 5-HETE, 13-HODE,
9-HODE, F2-isoprostane [110]

Ozaki et al. GC-MS
Putrescine, lysine, phenylalanine, ribose, taurine,
5-aminovaleric acid, and galactose, Lactic acid, benzoic acid,
glycine, malic acid, phosphate

[115]

Chen et al. Nontargeted/targeted LC-MS Gingival metabolome and arginine metabolism of mice with
high-fat diet (HFD)-induced obesity [120]

Schulte et al.
Targeted multiple reaction
monitoring (MRM)
LC-MS/MS

Cadaverine [121]

Overmyer et al. GC-MS, LC-MS/MS
Phosphatidylcholines, plasmenyl phosphatidylcholines,
ceramides containing non-OH fatty acids, host proteins
related to actin filament rearrangement

[123]

Overmyer et al. conducted 16S rDNA sequencing as well as metabolomics, lipidomics,
and proteomics analyses, including GC-MS and LC-MS/MS, on supragingival dental
plaque collected from individuals with prediabetes and type 2 diabetes (Pre-DM/DM),
Pre-DM/DM and periodontal disease (PD), PD alone, or neither [123]. Phosphatidyl-
cholines, plasmenyl phosphatidylcholines, ceramides containing non-OH fatty acids, and
host proteins related to actin filament rearrangement were elevated in plaques from PD
versus non-PD samples [123]. The strong association between Lautropia and monomethyl
phosphatidylethanolamine (PE-NMe) is striking because PE-NMe synthesis is uncommon
in oral bacteria [123]. Using omics and 16S rDNA sequencing, a novel microbial metabolic
pathway and significant associations of host-derived proteins with PD were observed.
It is known that people with diabetes have a high incidence of periodontal disease, and
diabetes has been viewed as a risk factor for periodontal disease [124–126]. Research has
also been conducted on the effect of periodontal disease on glycemic control with diabetes
itself, and the bidirectional relationship between diabetes and periodontal disease has been
emphasized; additionally, metabolome analysis based on MS, which has further advanced,
will continue to be an essential tool to elucidate the mechanism.

New treatments may be developed by elucidating the function of proteins that serve
as diagnostic markers for the inflammation of periodontal tissues to control periodon-
topathogenic bacteria, which may further contribute to periodontal disease. Studying
periodontal metabolite biomarkers involves several challenges. Therefore, when initiating
research on metabolite biomarkers, it is essential to examine how specimens should be
collected and analyzed and what evaluation method should be used. These questions
should be addressed as the use of metabolomics increases in periodontology and other
research fields.

5. Future Directions

The oral microbiome is the focus of increasing attention in periodontal research.
The results of an analysis comparing the oral microbiomes at multiple sites (saliva and
dental plaque) in a sample of 1000 people from the Japanese population were recently
published [127]. The analysis revealed “differences in community structure between
the microbiomes” of the saliva and dental plaque and showed that microbial diversity
correlated with the severity of periodontal diseases [127]. Moreover, numerous studies
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on periodontal diseases have combined the microbiome and metabolome to elucidate the
pathogenesis of periodontal diseases, such as the functional diversity of the microbial
community in healthy participants and patients with periodontitis based on sole carbon
source utilization by Zhang et al. [128]. Pei et al. reported a microbial and metabolomic
analysis of GCF in patients with chronic periodontitis in relation to lessons for a predictive,
preventive, and personalized medical approach [129]. In a cross-sectional observational
study, Na et al. reported a molecular subgroup of periodontitis through an integrated
analysis of the microbiome and metabolome [130].

The researchers report that they will make the results of their microbiome analysis
widely available on the Internet without personal identifiers, and detailed results will be
distributed for use by researchers nationwide. In the future, MS-based oral microbiome and
metabolome analyses may be used to elucidate the pathogenesis of periodontal diseases.

6. Conclusions

It is expected that new treatments and drugs that can control the function of pro-
teins and metabolites will be found. Biomolecules associated with inflammation, immune
response, and tissue destruction in periodontal disease are expected to be valuable biomark-
ers for assessing periodontal disease activity and the response to diagnostic treatment.
GCFs collected from the gingival sulcus and periodontal pockets contain biomarkers that
reflect inflammation, immune response, and tissue destruction at the site of periodontal
lesions, making metabolomic analysis using MS an essential tool for evaluation and diag-
nosis. Additionally, it is hoped that the analysis of many protein metabolites will clarify the
functional links between metabolites whose expression fluctuates in relation to diseases,
drugs and other protein metabolites and elucidate the mechanisms of periodontal disease
development.
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