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The proposed algorithm of inverse problem of computed tomography (CT), using
limited views, is based on stochastic techniques, namely simulated annealing (SA). The
selection of an optimal cost function for SA-based image reconstruction is of prime
importance. It can reduce annealing time, and also X-ray dose rate accompanying better
image quality. In this paper, effectiveness of various cost functions, namely universal
image quality index (UIQI), root-mean-squared error (RMSE), structural similarity index
measure (SSIM), mean absolute error (MAE), relative squared error (RSE), relative
absolute error (RAE), and root-mean-squared logarithmic error (RMSLE), has been
critically analyzed and evaluated for ultralow-dose X-ray CT of patients with COVID-
19. For sensitivity analysis of this ill-posed problem, the stochastically estimated
images of lung phantom have been reconstructed. The cost function analysis in
terms of computational and spatial complexity has been performed using image
quality measures, namely peak signal-to-noise ratio (PSNR), Euclidean error (EuE), and
weighted peak signal-to-noise ratio (WPSNR). It has been generalized for cost functions
that RMSLE exhibits WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB for 8 × 8
and 16 × 16 lung phantoms, respectively, and it has been applied for actual CT-
based image reconstruction of patients with COVID-19. We successfully reconstructed
chest CT images of patients with COVID-19 using RMSLE with eighteen projections,
a 10-fold reduction in radiation dose exposure. This approach will be suitable for
accurate diagnosis of patients with COVID-19 having less immunity and sensitive to
radiation dose.

Keywords: inverse problem, simulated annealing, cost functions, COVID-19 patients, Radon transform, ultralow
dose CT
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INTRODUCTION

The COVID-19, a pandemic declared since March 11, 2020,
emerging from China, has seriously affected 213 countries and
territories. According to WHO, mild symptoms have been
observed in 80% of the patients with COVID-19 with mortality
rate reported to be higher than 6% (Mahase, 2020). Immunity
and radiation sensitivity during the COVID-19 diagnosis is the
major challenge which is indirectly dependent on cost function
selection for image reconstruction. The death toll till today
is 3,955,972 with coronavirus reported cases as 1,82,686,233.
COVID-19 affects the lungs, causing symptoms primarily such
as pneumonia, resulting in diffused damage to both lungs of the
patient necessitating the prompt action for its obliteration (Pan
Y. et al., 2020). In this context, there are two alternatives for
early diagnostic of COVID-19: first, real-time RT-PCR of viral
nucleic acid in COVID-19 diagnosis having varying turnaround
times with false-negative results, and second, the computed
tomography (CT) imaging (Qureshi and Ul Rehman, 2020). The
former approach has low sensitivity (59%) in comparison with
the CT scan (88%) to diagnose the suspected subjects (Ai et al.,
2020; Fang et al., 2020; Li and Xia, 2020). CT examination
not only helps in diagnosis of COVID-19 disease but also
in monitoring the development and evaluation of therapeutic
efficacy. Ground glass opacities (GGO) bilateral distribution with
or without consolidation in posterior and peripheral lungs is the
cardinal hallmark of COVID-19 (Pan F. et al., 2020; Zhao et al.,
2020). However, crazy paving pattern, airway changes, reversed
halo sign, etc. (Dai W. C. et al., 2020; Smith et al., 2020; Ye
et al., 2020) may shed light on the possible mechanism of lung
injury in patients with COVID-19. For radiologists and other
healthcare professionals, methods such as artificial intelligence-
based volume segmentation may help by providing a faster way
of objectively evaluating the radiological CT images.

Tomography refers to exposure of an object to the radiations
in different orientations, and the transmitted data are used as
an estimation of the object cross-section (Kak et al., 2002). The
inversion problem for image reconstruction uses the numerical
relationship between variations in a physical property in the
area of interest. This is carried out by inverting the set
of measurements, sinogram, with the approximation as the
reconstructed image. It is conventionally estimated with filtered
back-projection (FBP) that is accompanied by high dose rate
with poor detectability as the absorption coefficient is low with
other imperfections such as high noise and streak artifacts
(Kak et al., 2002; Nelson et al., 2011). The risk prediction
models for carcinogenesis (radiation-induced) have revealed that
approximately 2% of the cancers in the US are thought to be
linked with CT scans in a few decades (Brenner and Hall, 2007).
General principles of dose reduction and optimization include
adopting optimal number of projections, angle of projection
(Sagara et al., 2010), tailoring a scan to a patient, minimizing
scan length, minimizing tube voltage and current, iterative image
reconstruction, and periodic review of CT studies (McCollough
et al., 2009; Trattner et al., 2014). Landweber iterative algorithm
is also used which calculates the quality of image reconstruction
in terms of mean absolute error and correlation coefficient

(Nagarajan and Kumar, 2020). Efforts have also been made to
obtain better image quality using less number of projections
with the help of various iterative reconstruction techniques
(Southard et al., 2019) along with three-dimensional iterative
image reconstruction (3D-IIR) to get acceptance in clinical
setting (Ishikawa et al., 2020).

In children referred to emergency noncontrast head CT,
iterative model reconstruction on average reduce 22% relative
dose, compared with FBP, with significantly improved objective
and subjective image quality (Elmokadem et al., 2019). Radiation
exposure in patients can be reduced significantly (mean absorbed
organ and effective doses were reduced by approximately 95%)
using low-dose chest CT protocols and model-based iterative
reconstruction (MBIR) algorithm while maintaining image
quality for detecting round-shaped lung metastases (Kaasalainen
et al., 2019). A 1-D wavelet transform-based multiscale image
reconstruction technique was introduced by Bhatia et al. (1996)
using FBP coefficients in expanded form with 1-D wavelet basis.
They transformed complete set of projection views and it was
much closer to the time domain. The significant reconstructed
image quality degradation was reported when limited number of
projections was transformed. Algebraic reconstruction technique
is an iterative way to estimate the cross-section at the cost of
computational time (Herman, 2009). Expectation maximization
(EM) technique has been used as a stochastic approach and its
success is attributed to the reduction in dose rate as compared
to FBP while resulting in comparable image quality with lesser
number of projections (Smith-Bindman et al., 2010; Schindera
et al., 2013). In this way, the dose rate to patient can be reduced
many folds as its relationship with number of projections is
assumed to be linear (Chen et al., 2008; Liu et al., 2012).
Gjesteby et al. (2017) integrated the convolution neural network
(CNN) into CT image reconstruction process. Instead of using
a traditional stopping rule (threshold or maximum number of
iterations) during iterative reconstruction, this study monitors
the quality of CT image and decided to stop the process according
to an intelligent numerical observer. For low-dose computed
tomography (LDCT) scan, the iterative reconstruction results
in degradation of image quality. To overcome these limitations,
deep learning image reconstruction maintains the image quality
and also reduction in dose. Kim et al. (2021) assessed the quality
of image and noise of LDCT scan images which are reconstructed
with deep learning image reconstruction. In low-dose X-ray CT,
severe artifacts typically occur due to photon starvation, beam
hardening, and other causes, all of which decrease the reliability
of the diagnosis. Kang et al. (2017) proposed an algorithm which
uses a deep convolutional neural network (CNN) which is applied
to the wavelet transform coefficients of low-dose CT images.
Similarly, Lee et al. (2018) proposed a deep-neural-network-
enabled sinogram synthesis method for sparse-view CT. The
proposed network produced promising results and is believed to
play an important role as an option to the low-dose CT imaging.

The Metropolis criterion (Kirkpatrick et al., 1983) is used
as the basis in the simulated annealing (SA) where the global
optimization stages are traversed in the search space to avoid
local optima. In case of SA, the decision to accept the change
is independent of the cost incurred for new change so it can
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be easily converged (Granville et al., 1994). This algorithm has
been used in numerous applications such as phase measurement
profilometry (Dai M. et al., 2020), bone material identification
(Wilkie et al., 2020), analog circuit design, piezoelectric
device optimization, core loading pattern optimization in
nuclear reactors, communication code design, image restoration,
traveling sales man problem, and identification of military targets
without experts (Geman and Geman, 1984; Gamal et al., 1987;
Johnson et al., 1989; Pai and Sreeram, 2002; Vetterling et al., 2002;
Han and Chatterjee, 2004; Zameer et al., 2014). Haneishi et al.
(1990) applied SA to reconstruction of CT images and found that
the modified cost function is unavoidable to suppress artifacts
originating due to the ambiguity of null components. Greening
(1994, 1995) and Smith et al. (2008) found that the selection of
appropriate cost function for SA not only affects the convergence
rate but may also lead to inaccuracies with degraded outcome.
The determination of an optimal cost function for SA-based
image reconstruction still needs to be considered to reduce the
patient dose rate as it uses lesser number of projections. Candès
et al. (2006) algorithm used incomplete projections for image
reconstruction by compressive sensing technique and proved
substantial reconstructed image quality. In comparison, their
method cannot be compared with stochastic methods due to
the inherent differences lying in their mathematical foundations.
Although, the modern days GPU-based systems can involve
massive parallelism to counter the time lapse involved in the
stochastic problem-solving strategies.

Particle swarm optimization (PSO), genetic algorithm (GA),
and SA belong to the class of stochastic processes. Each of
these methods has its own merits and demerits. Researchers
have worked in each of the specific domains for their problems
keeping in view the problem structure and specific parameters
and graded them in multiple ways (Rajendra and Pratihar, 2011;
Jia and Lichti, 2017), and the fact is that the inherent working
of each of the methods is different. The results obtained by GA
and those by PSO have been compared, and the performance
of latter has been found relatively better, as the PSO carries out
global search and local searches simultaneously whereas the GA
concentrates mainly on the global search (Rajendra and Pratihar,
2011). In addition to this, GA is slower in the final convergence
stage due to loss of diversity whereas PSO is relatively faster
in this respect. PSO easily falls into local optima problem in
case of high-dimensional space whereas GA solves complex
optimization problems with artificial intelligence approach. The
program simplicity is more in case of PSO whereas GA, with
unguided mutation and computational expense, is challenging
in finding an objective function with appropriate representation
and suitable operators working in line with the Darwin’s theory
of evolution and mutation philosophy. In this context, SA uses
different cost functions while dealing with arbitrary and complex
systems to find an optimal solution that is statistically guaranteed
(Lecchini-Visintini et al., 2007). It is a search algorithm based on
a solo-sequence, simulating the physical process of cooling metals
while furnace cooling or annealing to acquire an optimized
solution. Some researchers have introduced hybrid diversification
operators using SA in GA to solve the problem of diversity loss
for image quality optimization problem (Qureshi et al., 2011).

The proposed model focusses on image reconstruction using
numerous cost functions at a low-dose rate, using incomplete or
missing CT projections, to reconstruct high-quality images.

As the early diagnosis of COVID-19 is essential, the reduced
dose rate is highly desirable when CT scan is conducted,
especially in case of multiple scans due to destructive nature
of ionizing radiations being used as viewing source. Even
biomolecules signatures (Rehman and Qureshi, 2020) produced
can be used for virus replication process in the alveoli but
still CT imaging is the authentic technique to diagnose the
COVID-19 disease (Ul Rehman and Qureshi, 2020). Therefore,
CT image reconstruction using an ultralow dose rate-based
SA with a suitable cost function is desirable to solve this
problem. In this work, the cost functions, namely universal
image quality index (UIQI), root-mean-squared error (RMSE),
structural similarity index measure (SSIM), mean absolute error
(MAE), relative squared error (RSE), relative absolute error
(RAE), and root-mean-squared logarithmic error (RMSLE) have
been evaluated and critically analyzed for ultralow dose rate
image reconstruction. Their annealing and execution times in
case of 8× 8 and 16× 16 lung phantoms have been described and
compared. RMSLE after optimizing with lung phantom has been
successfully implemented on patients with COVID-19 and their
image reconstruction has been performed with 18 projections
achieving an ultralow dose for patients with COVID-19 and
compared with actual patient’s CT images.

MATERIALS AND METHODS

The image reconstruction has four basic parts: a cost function that
finds the misfit between the measured and postulated projections;
the Metropolis criteria that randomly accepts the solution in case
the cost is high; a set of generic parameters, namely initial and
final temperatures; and problem-specific parameters (PSPs). For
the CT reconstruction problem, the important PSPs are view
angles, number of projections, and image size. In parallel ray
transmission tomography, the projection for a view angle θ can
be obtained by measuring the transmitted intensities through an
object f(x, y) as shown in the model in Figure 1. The resorting
algorithm transforms the fan beam data into the equivalent
parallel beam data which can be used for image reconstruction
(Kak et al., 2002). The proposed methodology for the ultralow-
dose CT image reconstruction is shown in Figure 2.

The RT, an integral transform, is a discrete sequential line
integral for a specific angular view using digital image like spatial
grid (or matrix) distributed within the object across a slice. For
a single projection Pθ(t), along (θ, t)-line, a Radon transform is
given by (Buzug, 2011):

Pθ(t) =
∫
∞

−∞

∫
∞

−∞

f
(
x, y

)
δ(xcos θ + ysin θ−t)dx dy, (1)

−∞ < t < ∞ , 0 ≤ θ < π.

This is an inverse problem where the unknown function
f(x, y) is computed using X-ray-based sensors-acquired set of
projections Pθ (t). Bhatia et al. (1996) used multiscale data

Frontiers in Physiology | www.frontiersin.org 3 January 2022 | Volume 12 | Article 737233

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-737233 January 10, 2022 Time: 13:48 # 4

Qureshi et al. Ultra-Low Dose CT for COVID-19

FIGURE 1 | Model depicting forward projection at an orthogonal distance t
through the center of a hypothetical cross-section f(x, y) of lung rotated by θ

in Cartesian coordinates (x, y).

FIGURE 2 | Ultralow Dose CT-based image reconstruction of COVID-19
patient’s lungs using simulated annealing.

filter matrix RW = WRfbpWTusing Daubechies or Haar wavelet
family where Rfbp is the ramp filter of the conventional FBP
technique. The 1-D wavelet transform of actual projections
results in θth multiscale projection ηθ = WPθ and the
filtered projections are given by ξθ = RWηθ . We used
universal thresholding scheme (Donoho and Johnstone, 1994;
Yao and Rajpoot, 2005) where all wavelet coefficients higher
than a threshold are used and the remaining are removed
(Scheunders, 2004) and these coefficients are back-projected
afterward along the θth multiscale basis function. The overall
estimate of back-projection process over B number of detector
bins is given by: f̂WT

(
x, y

)
=

∑M
θ = 0 TθTξθ , where Tθ

represents M × B2 matrix for viewing angle θ and M represents
viewing angles count. The approximated IRT, f̂WT, is used as
a template to initialize the population. The sinogram or the
measured projections PM (t, θ) for multiple views, by varyingθ
, is collected through the data acquisition and control system
of CT machine. The linear Radon transform is based on the
summation of absorption coefficients that are distributed in a
highly nonlinear manner. Its discrete representation as a forward
problem is given by:

PM (t,θ)=
rm−1∑
x=0

cm−1∑
y=0

θn∑
θ=0

f
(
x, y

)
µ
(
x, y

)
(2)

µ
(
x, y

)
=

{
1 if t = xcos θ+ysin θ

0 otherwise

Here, rm × cm forms the cross-section to be estimated and
µ
(
x, y

)
represents the distribution of absorption coefficients.

The postulated projections PP (t,) are generated by randomly
changing the pixel intensity for the IRT approximation. The
energy or cost function corresponding to the kth iteration, Ck,
is given in Section “Pseudocode for the Proposed Algorithm.”
The objective is to minimize the error between the measured
and postulated projections using numerous cost functions under
different constraints, consisting of CT-specific (PSP) and generic
parameters of SA. The simulations are carried out repeatedly
to reach a lower temperature state along with optimization
of image reconstruction quality. The postulated projections,
corresponding to the estimated IRT, f̂k with an error 4̂f, are
obtained in an iterative manner via forward projections as f̂k + 1.
The estimated image, without using any backward projections,
is given by f̂k + 1 = 4̂f + f̂k. The regularization to get a
finite and meaningful solution is solved by generating random
numbers for sampling position in the image domain and its
quantized intensity level in the range [0, 255]. Let 4C indicates
the cost variation as given by 4C = Ck + 1−Ck, where Ck + 1
andCkrepresent the cost of f̂k + 1and f̂k, respectively. The change
f̂k + 1is admitted for the iteration if the condition 4C < 0 is
TRUE. The acceptance probability, for the kth iteration, f̂k + 1,
in case4C < 0 is FALSE, is given by:

hk= exp
(
−4C

Tk

)
(3)

Here, Tk is the annealing temperature for the kth iteration.
Equation 3 shows that the decrease in temperature is
accompanied by a corresponding improvement in acceptance
occurrences for the worst-case scenarios. The possibility of
acceptance of a variation at even higher cost prevents the
algorithm from local minima trapping. Various cost functions
experimented for ultralow-dose CT image reconstruction using
SA are presented in Table 1. Regarding the mathematical
notation employed in this paper, Table 2 describes the main
symbols used to designate the data items and operations, among
others. The pseudocode for the proposed algorithm follows next.
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TABLE 1 | Cost functions used for image reconstruction and their mathematical relationship for θth view.

Cost function References Relationship

UIQI Wang and Bovik, 2002 UIQIθ =
σPM PP
σPM

σPP
. 2PMPP

PM
2
+ PP

2 .
2σPM PP

σ2
PM
+ σ2

PP

RSE Arnold and Stahlecker, 2002 RSEθ =
∑tb−1

t = 0 (PM(t)−PP(t))
2∑tb−1

t = 0

(
PM−PM(t)

)2

SSIM Wang et al., 2004 Sθ (PM,PP) = f (l (PM,PP) , c (PM,PP) , s (PM,PP))

MAE Hyndman, 2006 MAEθ = 1
tb

∑tb−1
t = 0 |PM (t)− PP (t)|

RAE Zomaya and Kazman, 2010 RAEθ =
∑tb−1

t = 0 |PM(t)−PP(t)|∑tb−1
t = 0

∣∣∣PM−PM(t)
∣∣∣

RMSE Liu et al., 2017 RMSEθ =
√

1
tb

∑tb−1
t = 0 (PM (t)− PP (t))

2

RMSLE Leke and Marwala, 2019 RMSLEθ =
√

1
tb

∑tb−1
t = 0 (log (PM (t)− PP (t)))

2

Pseudocode for the Proposed Algorithm
The selection of template, number of projections, size of
IRT, and the random selection of gray levels according

TABLE 2 | Mathematical notation summary for proposed low-dose CT-based
image reconstruction system.

Symbols Meanings

tb Total number of detector bins

f̂WT Wavelet transform-based approximated IRT

Ck Cost (or energy) function for kth iteration

4C Cost variation in simulated annealing

f̂k Estimated inverse Radon transform

4f̂ Error in consecutive projections

hk Acceptance probability for kth iteration

ls Length of the side of template

N Total number of iterations for simulated annealing

P Uniformly distributed projections over the interval [0, π]

Pθ Single projection along θ-view

Pp Postulated projections

PM Measured projections

Rfbp FBP-based ramp filter matrix

RW FBP-based multiscale filter

rm × cm Cross-section to be estimated

T0 Initial annealing temperature

Tf Final annealing temperature

Tk Annealing temperature for kth iteration

W Matrix of the discrete 1-D wavelet transform operation

1-D wavelet transform of projection θ

µ(x, y) Absorption coefficients distribution

PMPP Covariance between measured and postulated projections

PM Standard deviation of measured projections

PP Standard deviation of postulated projections

PM Mean of measured projections

PP Mean of postulated projections

l (PM,PP) Luminance comparison function

c (PM,PP) Contrast comparison function

s (PM,PP) Structure comparison function

T Bin number of detector

θ Viewing angle

ξ Filtered projection as 1-D wavelet transform

to some predefined criteria are the important variants that
are addressed in the pseudocode illustrated in Figure 3.
In addition to this, the SA parameters include the initial
temperature, the final temperature, the annealing profile,
and the number of iterations by which the temperature
is kept constant.

Cost Functions and Their Formulas
The cost functions, namely UIQI, RMSE, SSIM, MAE, RSE, RAE,
and RMSLE, have been analyzed for image reconstruction.

Wavelet Transform-Based Initializing
Template
The lung phantom data have been used from the Institute
of Medical Physics Friedrich-Alexander-University Erlangen-
Nürnberg, Germany. It is a fractal model of the bronchial tree
during which every branch of the lung phantom is terminated by
a semisphere (hollow) connected via a cylinder (hollow) followed
throughout. Out of one end of the branch grows two sprouts,
a small one and a large one, during which lie the two sprouts
are known as branch plane. The branch plane is revolved from
generation to generation by a given angle to extent the structure
from 2 to 3 dimensions and therefore to homogeneously fill a
given volume (Fishburn et al., 1997; Vazquez-Corral et al., 2020).

The initial guess or templates for the starting image in
SA is important as it considerably lowers the annealing time
required for convergence according to a predefined criterion. In
the primitive technique, namely back-projection, the matrix is
projected backward or inverted along the corresponding degree
of rotation between [0, π]. The initialization template is based
on wavelet transforms to address the blurring effect in the spatial
domain during back-projection resulting by inversion of Radon
transforms. The multiscale data filter with Daubechies wavelet
family is used on the conventional back-projection filter. The
actual projections are subjected to a 1-D wavelet transform, and
the multiscale projections for the specific geometrical view are
multiplied with the wavelet transform of the Rfbp (ramp filter).
The wavelet coefficients higher than a critical value are used with
the leftover removed. These coefficients are back-projected to
generate the IRT estimate.

The wavelet transform-based image reconstruction method
has been used to simulate 8 × 8- and 16 × 16-sized templates
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FIGURE 3 | Pseudocode for the image reconstruction algorithm.

(̂fWT) for postulated projections Pp. The phantom used for
simulation of measured projections PM is shown in Figure 4.
The formal restraints imposed for uniform basis are same
data size (512 × 512) for lung phantom, 512 collimator
openings uniformly distributed, linear interpolation during back-
projection, and zero noise level (Qureshi et al., 2007).

The optimized parameter set has been used for simulations,
namely number of projections p = 18 (uniformly distributed)
which reduces the dose by several tens or even over hundred folds
as compared to that in current CT practice. Initial temperature

is kept T0 = 0.1 along with a uniform temperature slab
thickness of 103. Annealing times N = 2 × 105 for 8 × 8-
and N = 8 × 105 for 16 × 16-sized images have been
used in all the simulations. Final temperature has been set as
TN = 1.5 × 10−3. The temperature profile used for kth
iteration for lung phantom is directed by:

Tk =
T0 − TN

cosh
(

10k
N

)
TN

. (4)
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FIGURE 4 | The 512 × 512 pixels lung phantom.

The selection rule is set to iteration-count limit or the allowed
variation in iterative cost function as 0.1. All the simulations have
been based on 20 repetitions for each size of reconstructed image.

COVID-19-Confirmed Patients’ Data
Once it was established that RMSLE produced agreeable results
for lung phantom, it was implemented on COVID-19-confirmed
patients’ data publicly available that have been taken from Italian
Society of Medical and Interventional Radiology (SIRM, 2021).

Performance Measures and Hardware
The reconstruction models and corresponding simulations have
been carried out using standard software tools. The computation
has been carried out using Dell Inspiron 5520 (processor: Intel(R)
Core(TM) i7-3612QM CPU @ 2.1 GHz, generation 3) with 8
GB RAM, and image quality measures, namely PSNR, EuE, and
WPSNR, have been used to assess the reconstruction class (Guo
et al., 2020; Sohrabi et al., 2020).

EXPERIMENTAL RESULTS AND
DISCUSSION

We have used lung phantom (Figure 4) to simulate the
measured projections (Pm) that are evenly distributed in the
range [0, π], with zero noise level and standard deviation,
having 256 intensity levels in the range [0, 1]. The postulated
projections (Pp) are simulated using the wavelet transform-
based template, f̂WT, under the same prevailing conditions.
The error between the measured and postulated projections is
computed using the cost functions, namely UIQI, RMSE, SSIM,
MAE, RSE, RAE, and RMSLE and this forms the basis of their
comparison for their efficacy in image reconstruction through
SA algorithm. The wavelet transform-based template is then
modified iteratively according to the Metropolis criterion, and the
changes in reconstructed image intensity are accepted or rejected

accordingly (Kirkpatrick et al., 1983). The generic and CT-related
parameters remain the same for whole cost function analysis.
This SA technique has been used by many researchers to solve
problems lying in similar domains. Ortiz-Alemán and Martin
(2005) have put forward the solution of inversion problem using
SA with poor templates for electrical capacitance tomography
data with slow convergence rates, resulting in highly accurate
images as compared to the traditional linear methods. Carletti
et al. (2006) reported outstanding reconstruction with the SA-
based algorithm for the electron beam spectrum. The SA was also
used to reconstruct positron emission tomography (PET) images
by Yaqub et al. (2006), and the results were found to be superior
to the interior-reflective Newton method with no biasing. Webb
(1989) had already introduced SA-based single photon emission
computed tomography (SPECT) using the data acquired through
gamma camera. A comparison of various forms of SA may be
seen in detail by Ingber (1993).

A tabular comparison of numerous cost functions for SA on
the basis of PSNR, EuE, and WPSNR resulting in 8 × 8 and
16 × 16 lung phantom images has been illustrated in Table 3.
The sensitivity analysis of cost functions reveals that RMSLE has
been found relatively more effective. The reconstructed images
of sizes 8 × 8 and 16 × 16 for lung phantom have been
shown on left and right sides in Figure 5, respectively. We used
the number of views as p = 18, for different cost functions
(Table 1) to visually compare the reconstruction performance
between 8 × 8- and 16 × 16-sized images using SA for the lung
phantom. The original phantom image and cost functions have
been implemented using the SA-sensitive parameters as follows
(initial temperature To = 0.1, final temperature TN = 1 × 10−6,
annealing time N = 8 × 105, temperature slab thickness set
to 1,000 for which the temperature is kept constant to attain
equilibrium in the image intensities, and temperature profile
as given by Eq. 4). First two columns of Figure 5 show the
results of the cost functions of 8 × 8-sized image. First image

TABLE 3 | Comparison of cost functions for SA-based image reconstruction using
performance measures: (PSNR, EuE, and WPSNR).

Image Cost Reconstructed image quality

Size Function PSNR(dB) EuE WPSNR(dB)

8 × 8 UIQI 8.67 ± 0.72 1.06 ± 0.09 25.79 ± 0.92

RMSE 24.20 ± 3.85 0.19 ± 0.06 62.59 ± 4.32

SSIM 10.80 ± 0.90 0.83 ± 0.09 29.35 ± 2.11

MAE 24.07 ± 2.80 0.18 ± 0.05 61.13 ± 7.39

RSE 12.29 ± 0.98 0.7 ± 0.07 29.66 ± 2.15

RAE 14.87 ± 1.19 0.51 ± 0.07 34.88 ± 1.83

RMSLE 24.27 ± 3.10 0.18 ± 0.05 64.33 ± 1.98

16 × 16 UIQI 7.41 ± 0.27 1.19 ± 0.03 19.01 ± 0.82

RMSE 26.28 ± 1.08 0.13 ± 0.01 68.11 ± 3.88

SSIM 9.59 ± 0.49 0.93 ± 0.05 21.88 ± 0.89

MAE 25.16 ± 1.43 0.15 ± 0.02 65.71 ± 3.13

RSE 9.31 ± 0.42 0.96 ± 0.04 21.56 ± 0.97

RAE 9.58 ± 0.49 0.93 ± 0.05 22.53 ± 0.71

RMSLE 24.62 ± 1.15 0.16 ± 0.02 63.41 ± 1.87
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FIGURE 5 | Comparison between 8 × 8 and 16 × 16-sized image reconstruction using simulated annealing for the lung phantom, by using original phantom image,
and cost functions (UIQI, RMSE, SSIM, MAE, RSE, RAE, and RMSLE) (p = 18, T0 = 0.1, TN = ×10−6, N = 8× 105, temperature slab thickness set to 1000, and
temperature profile as given by Eq. 4).

in first column is the original phantom (8 × 8) whereas the
last image in the second column shows the best reconstructed
image (8 × 8) corresponding to the RMSLE as the cost function.
The other competing functions are RMSE and MAE in achieving
good image quality. Some cost functions, such as UIQI, SSIM,
and RSE, have not been found helpful in achieving good image
quality. Similarly, for columns 3 and 4, the same trend has
been observed for 16 × 16-sized image reconstruction whereas
RMSLE has been found remarkable. The other competing cost
functions that have produced outclass results are RMSE and
MAE whereas rest of the cost functions seem requiring more
annealing time to reach the acceptable image quality. Keeping in
view the image quality with reduced number of views, significant
reduction in radiation dose to the patients has been observed
in case of lung biopsy sample images acquired using low-dose
CT-guidance producing equivalent diagnostic accuracy images to
standard dose CT-guidance (Arnold and Stahlecker, 2002).

It may be said, in general, that larger-sized images need
iterations to a greater extent to achieve an agreeable image
quality. The image quality of the lung phantom is lower owing
to the complexity of the reconstructed image. UIQI and SSIM, as
cost functions, have been found to be requiring more annealing
time to converge the reconstructed image to the same level as
found with the other cost functions. This higher execution time

is attributed to their inherent algorithmic complexity. In future,
the decreasing computational cost per year for the same price
may enable the use of appropriate cost functions by engaging
parallel computing algorithms. The comparison of run times for
numerous cost functions is shown in Table 4 for of 8 × 8-
and 16 × 16-sized images. Keeping in view the image quality
and also the run time comparison, RMSLE comes out to be the
most appropriate choice. On the other hand, Figure 6 shows the
convergence trends of RMSLE and RMSE cost functions for the
lung phantom. The RMSLE converges efficiently in comparison

TABLE 4 | Comparison of execution times for numerous cost functions for 8 × 8
and 16 × 16 lung phantoms.

Cost function Run time (s)

Lung 8 × 8 Lung 16 × 16

UIQI 128.86 ± 3.44 613.74 ± 14.74

RMSE 21.73 ± 0.58 189.2 ± 10.02

SSIM 172.48 ± 3.73 924.29 ± 17.06

MAE 16.38 ± 0.53 191.19 ± 9.73

RSE 18.22 ± 0.59 148.16 ± 1.97

RAE 18.28 ± 0.94 157.76 ± 20

RMSLE 19.19 ± 0.31 147.8 ± 1.32
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FIGURE 6 | Convergence trends as normalized error variation against annealing time for (A) 8 × 8, and (B) 16 × 16 (N = 8× 105) lung phantom reconstruction
using fan beam projections.

FIGURE 7 | 8 × 8, 16 × 16, and 64 × 64-sized COVID-19 reconstructed images using simulated annealing with RMSLE as cost function (p = 18, T0 = 0.1,
TN = 1 × 10−6, N = 2 × 105, temperature slab thickness set to 1000, and temperature profile as given by Eq. 4).

with RMSE and it has been found that the former has been
showing sharp error decline and less annealing time for 8 × 8
and 16× 16 lung phantoms.

Actual and reconstructed CT images of 8 × 8, 16 × 16, and
64× 64 size of five confirmed patients with COVID-19 have been
shown in Figure 7. The patients with COVID-19 have already
low immunity and sensitive to X-ray radiation dose, so ultralow-
dose CT has much importance in such cases (Agostini et al., 2020;
Dangis et al., 2020) where the reduction in radiation exposure
remains a topic of high interest. The most dose reduction
approaches remained in the realm of decreasing tube current or
tube voltage whereas iterative algorithms indemnify a satisfactory

diagnostic image quality or a novel way to reduce radiation
exposure to acquire less projection images. This compressed
sensing (Candès et al., 2006; Donoho, 2006) is known as sparse-
sampling CT. This approach allows acquiring a reduced number
of projections for an additional dose reduction by a factor of two
or more (Whiting et al., 2015; Mei et al., 2017). In the current case
of patients with COVID-19, images are reconstructed by taking
18 sparse samples, so the reduction in dose is up to 10-fold. So,
from concluding point of view the image quality, low-dose, and
less-computational time comparison, RMSLE comes out to be
a universal choice and has an efficient application for chest CT
imaging of patients with COVID-19.
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Statistical Analysis
If a population has a normal distribution, the two prime activities
of inferential statistics using sample data are the estimation of
population mean, µ, and testing the claim about this population
parameter (Triola et al., 2014). The confidence level (C), also
known as confidence coefficient, is the probability (95% for
experimentation) that the confidence interval actually does
contain the population parameter (population mean), assuming
that the estimation process is repeated a large number of times.
The converse is true for significance level, α, representing the
rejection region (two tails of the t-distribution). The analysis
of our results has been conducted using Student’s t-test or the
Mann–Whitney U test according to the normality tests. The
confidence intervals for different cost functions using t-test have
been illustrated in Table 5. The WPSNR mean values.

x, have been used along with the corresponding standard
deviation, S, values (Table 3). A critical value, tα/2, is borderline
value separating sample statistics that are likely to occur from
those that are unlikely to occur, whereas the margin of error
or the maximum error of estimate, E = (tα/2S)/n, represent
the variation between sample and population means. It can be
interpreted that we are 95% confident that the interval from lower

value to the higher value actually does contain the true value of
population mean. If we were to experiment with multiple samples
of size 20 and find the confidence intervals using t-test, 95% of
them would contain the value of population mean.

In statistics, when a property of population has a claim, it is
declared a hypothesis whereas a hypothesis test is a procedure
devised to check this claim. The null hypothesis (H0) and
alternative hypothesis (Ha) for different cost functions have been
illustrated in Table 6. The t-test statement for each of the cost
function has been given in APA style guide. Since, p-value≥ α, we
accept the null hypothesis in each of the case. It can be inferred
that for a 95% level of confidence, we accept the null hypothesis
(H0:µ = x) that the mean WPSNR value is representing the
population mean. So, with 95% confidence, we believe that there
is no evidence to reject the null hypothesis.

Evaluation Based on Comparative
Performance
We have implemented the FBP (Hansen et al., 2021) and
algebraic reconstruction technique (ART) (Andersen, 1989) for
comparison with the proposed methodology using patients with
COVID-19. The experimentation has been carried out using

TABLE 5 | Multiple resolution t-test analysis of cost functions based on 95% confidence interval (α = 0.05) and unknown population mean for sample size n = 20 with
error margin E using tα/2 = 2.093.

Resolution Cost function (AvgAcc)samplex (StdDev)sample S E Confidence interval

8 × 8 UIQI 25.79 0.92 0.430568 25.36 < µ < 26.22

RMSE 62.59 4.32 2.021799 60.57 < µ < 64.61

SSIM 29.35 2.11 0.987499 28.36 < µ < 30.34

MAE 61.13 7.39 3.458587 57.67 < µ < 64.59

RSE 29.66 2.15 1.006219 28.65 < µ < 30.67

RAE 34.88 1.83 0.856457 34.02 < µ < 35.74

RMSLE 64.33 1.98 0.926658 63.40 < µ < 65.26

16 × 16 UIQI 19.01 0.82 0.383767 18.63 < µ < 19.39

RMSE 68.11 3.88 1.815875 66.29 < µ < 69.93

SSIM 21.88 0.89 0.416528 21.46 < µ < 22.30

MAE 65.71 3.13 1.464868 64.25 < µ < 67.17

RSE 21.56 0.97 0.453969 21.11 < µ < 22.01

RAE 22.53 0.71 0.332286 22.20 < µ < 22.86

RMSLE 63.41 1.87 0.875177 62.53 < µ < 64.29

TABLE 6 | Multiple resolution t-test statement in APA style for different cost functions used for image reconstruction (two-tailed t-distribution with no inequality in
alternate hypothesis), the null hypothesis is H0:µ = x, and the alternative hypothesis is Ha: µ 6= x.

Resolution Cost function (AvgAcc)samplex (StdDev)sample S t-test statement

8 × 8 UIQI 25.79 0.92 t(19) = 2.093, p = .05

RMSE 62.59 4.32

SSIM 29.35 2.11

MAE 61.13 7.39

RSE 29.66 2.15

RAE 34.88 1.83

RMSLE 64.33 1.98

16 × 16 UIQI 19.01 0.82

RMSE 68.11 3.88

SSIM 21.88 0.89

MAE 65.71 3.13

RSE 21.56 0.97

RAE 22.53 0.71

RMSLE 63.41 1.87
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TABLE 7 | Comparison of proposed cost function-based reconstruction with other works for 8 × 8-, and 16 × 16-sized square images using lesser number of
projections (p = 18).

No. Method 8 × 8 16 × 16

PSNR (dB) EuE WPSNR (dB) PSNR (dB) EuE WPSNR (dB)

Patient 1 FBP +9.45 1.08 +15.64 +11.77 0.82 +21.34

ART +14.71 0.52 +33.67 +14.71 0.51 +33.67

This work +24.32 0.14 +55.46 +20.52 0.28 +65.58

Patient 2 FBP +9.22 0.98 +13.22 +11.98 0.79 +21.79

ART +13.72 0.57 +29.39 +13.72 0.57 +29.39

This work +26.91 0.13 +58.77 +20.93 0.29 +64.35

Patient 3 FBP +9.11 0.96 +13.10 +12.11 0.77 +21.22

ART +13.64 0.56 +25.66 +13.64 0.56 +25.66

This work +25.65 0.16 +56.55 +22.51 0.21 +63.65

Patient 4 FBP +9.37 0.97 +13.02 +12.02 0.81 +21.37

ART +14.39 0.57 +25.57 +14.39 0.57 +25.57

This work +23.91 0.22 +52.14 +21.52 0.26 +64.08

Patient 5 FBP +9.83 0.91 +16.32 +12.07 0.79 +21.23

ART +15.07 0.51 +34.05 +15.07 0.51 +34.05

This work +27.35 0.13 +61.23 +21.65 0.25 +62.19

p = 18 as the uniform basis with their published parametric
set. The experimental results have been illustrated in Table 7.
It has been found that the RMSLE-based image reconstruction
using SA appears promising in comparison with FBP and ART
methods using limited number of projections (Section “Wavelet
Transform-Based Initializing Template”).

We have achieved ultralow-dose X-ray CT of patients with
COVID-19 by stochastically estimating images. The sensitivity
analysis of different cost functions in terms of computational
and spatial complexity has been performed using image
quality measures, namely PSNR, EuE, and WPSNR. We have
reconstructed chest CT images of patients with COVID-19 using
RMSLE with eighteen projections. This led to 10-fold reduction
in radiation dose exposure which may help for accurate diagnosis
of patients with COVID-19 with less immunity and sensitive to
radiation dose. Some of the demerits in this research activity may
be enumerated as the high run time required that is generally
associated with stochastic processes. In addition to this, extensive
parallelism is required for large-sized images to get the results in
adequate time. The shape complexity of the image to be estimated
is another important factor that can affect the convergence trend.

CONCLUSION

The objective of this work is to introduce ultralow-dose X-ray
CT methods along with a suitable cost function for early and
reliable diagnosis of elderly and also individuals subjected to
the pandemic with dire consequences. First, we have applied the
ultralow dose rate SA on lung phantom reconstruction going
through different cost functions, and then actual reconstruction
is carried out using real patients’ CT scan. The cost function
analysis for image reconstruction using SA has been carried
out to compare the improvement in the image quality and
their convergence trends. The numerous cost functions used
are UIQI, RMSE, SSIM, MAE, RSE, RAE, and RMSLE. For
the same set of parameters, RMSLE generally is considered
outperforming relatively. The UIQI and SSIM are classified as

the subjective image quality measures that will be promising in
near future where more annealing time is relatively reasonable.
For 8 × 8 and 16 × 16 lung phantoms, RMSLE cost function
has resulted in WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB,
respectively. So, RMSLE can be implemented to reconstruct the
chest CT images of patients with COVID-19. A comprehensive
comparison of existing reconstruction techniques shows that
using only eighteen number of projections, a 10-fold reduction
in radiation dose exposure is a need to adopt computer-aided
diagnostic techniques as a second opinion with expert advice.
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