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A network is an efficient tool to organize complicated data. The Laplacian graph has
attracted more and more attention for its good properties and has been applied to many
tasks including clustering, feature selection, and so on. Recently, studies have indicated
that though the Laplacian graph can capture the global information of data, it lacks the
power to capture fine-grained structure inherent in network. In contrast, a Vicus matrix
can make full use of local topological information from the data. Given this consideration,
in this paper we simultaneously introduce Laplacian and Vicus graphs into a symmetric
non-negative matrix factorization framework (LVSNMF) to seek and exploit the global
and local structure patterns that inherent in the original data. Extensive experiments are
conducted on three real datasets (cancer, cell populations, and microbiome data). The
experimental results show the proposed LVSNMF algorithm significantly outperforms
other competing algorithms, suggesting its potential in biological data analysis.

Keywords: matrix factorization, Laplacian regularization, Vicus graph, microbiome, local structure

INTRODUCTION

With the development of high-throughput metagenomic sequencing and 16S sequencing
technologies, more and more biological data have been accumulated. Generally, these sequences
have very complicated characteristics, making discoveries and identification of latent relations
among samples very daunting. In order to reach a good understanding of the roles that the
microbiome plays in the health and disease states of humans, many plans, including the Human
Microbiome Plan (HMP) (Turnbaugh et al., 2007), integrative Human Microbiome Plan (iHMP)
(The Integrative Hmp (iHMP) Research Network Consortium, 2019), and the Metagenomics of
Human Intestinal Tract (MetaHIT) (Qin et al., 2010), have been launched. These actions pave the
way for researchers to further explore the complex relationships residing in microbiome data.

Arumugam et al. classified the microbiome into different enterotypes and pointed out the
significance of a functional analysis to reveal the interactions among microorganisms (Arumugam
et al., 2011; Siezen and Kleerebezem, 2011). Clustering approaches and similarity measurements
were applied to elucidate the influence that various factors impose on the identification of
enterotypes (Koren et al., 2013). Jiang et al. (2012) proposed a new approach based on non-
negative matrix factorization (NMF) to identify the structure and functions of complex microbial
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communities across environmental samples. Wu et al. (2016)
developed a stable NMF method, staNMF, and obtained a
novel and concise representation of spatial gene expression
patterns. As a clustering technology, NMF has attracted a lot of
attention in terms of its good data representation capabilities. In
NMF, samples or features can be viewed as the linear additive
combination of basis vectors. Meanwhile, the membership
label of each sample can be assigned by the corresponding
coefficient matrix. When the data have a linear structure, NMF
usually achieves better performance. However, in the real world,
data points are generally embedded in a non-linear manifold;
thus, adopting other ways (such as graphs) to describe latent
relationships among data points is a better choice (Kuang et al.,
2012). Symmetric non-negative matrix factorization (SNMF)
takes a similarity matrix as input and outputs a cluster indicator.
In this process, a similarity matrix can be obtained in many
ways, such as through a Gaussian kernel, polynomial kernel,
linear kernel, and so on. Kuang et al. (2012, 2015) designed an
effective SNMF algorithm to model the complex relationships
contained in non-linear data that outperforms many NMF-based
approaches. Ma et al. (2016a) developed HSNMF, a method
that combined SNMF with a second-order graph to explore
microbiome data.

Recently, the graph regularization framework has been
successfully applied in many fields including bioinformatics,
image processing, and text mining, achieving good performance.
Cai et al. (2010) proposed the GNMF algorithm to reveal the
potential patterns of several datasets. Specifically, GNMF used
Laplacian regularization (Lr) to encode the intrinsic geometrical
structure presented in the original data. Subsequently, a number
of variants based on Lr were generated (He et al., 2015; Ma
et al., 2016b, 2017). Although these methods obtained some
interesting findings, they may ignore some important aspects.
For example, a traditional Laplacian graph captures the global
structure of a data matrix, which is insufficient in biology
research, where local topologies need to be sought and utilized
effectively (Wang et al., 2017). Moreover, recently emerging
methods developed to capture local topological information
have been shown to obviously outperform global algorithms
(Roweis and Saul, 2000; Wu and Schölkopf, 2007; Jiang and
Hu, 2014). These methods aim to reconstruct each data point
using its local neighbors and are shown to be robust and
insensitive to outliers. Vicus, an alternative local spectral matrix,
can effectively capture the local geometrical information from
neighboring nodes to model biological interactions, and it shares
many similar properties with Laplacian matrices; for example,
both matrices are symmetric and positive semidefinite (psd), and
both have non-negative, real-valued eigenvalues (Wang et al.,
2017). Compared with Laplacian graphs, Vicus graphs, which are
constructed via local subnetworks, are more robust with respect
to noise and can lessen the influence of outliers to some extent.
In this paper, we first used similarity graphs to establish the
complicated relationships in samples; second, given these graphs,
we constructed Laplacian and Vicus spectral matrices; finally, we
integrated the Vicus (and/or Laplacian) matrix into an SNMF
framework to conduct downstream analysis, such as clustering,
visualization, and so on.

In view of the above considerations, in this paper we
introduce Laplacian and Vicus matrices (Wang et al., 2017) to
simultaneously model the global and local structure connections
residing within the data and compare their performance with
the methods only based on Laplacian or Vicus graphs on several
real datasets. Our experiments include tumor classification,
microbiome samples identification and so on. The experimental
results show that the proposed algorithm outperforms other
baseline and competing approaches, which demonstrates its
efficiency and effectiveness in microbiome data analysis. Figure 1
gives an illustrative example.

The contribution of this work lies in the fact that (1) an
effective clustering algorithm has been proposed and can be
easily expanded to other applications and (2) to our knowledge,
this is the first attempt to integrate global and local structure
information into an SNMF framework to conduct microbiome
data analysis. The rest of this paper is organized as follows:
in the next section a brief statement of SNMF is given. Then
Lr, the formulation of Vicus, and the proposed algorithm are
also provided. In section “Results and Discussion”, extensive
experiments are conducted, and the experimental results
and comparisons analysis are presented. Section “Conclusion”
summarizes the conclusions and further research plans.

MATERIALS AND METHODS

Symmetric Non-negative Matrix
Factorization
In SNMF, given an n× n symmetric matrix A and a reduced rank
k, SNMF seeks to find the best factorization so that A = HHT ,
where H can be viewed as the cluster indicator. The objective of
SNMF can be formalized as follows:

O = min
H≥0

wwwA−HHT
www2

F
(1)

Where A ∈ Rn×n+ with A = AT , H ∈ Rn×k+ , and ‖•‖ denotes
the c of a matrix. Compared with NMF, SNMF concerns only
the factorized similarity matrix A and doesn’t consider whether
the structure of the data is linear or non-linear. Once A is given,
SNMF conducts factorization similar to that of NMF. Therefore,
SNMF is more suitable to modeling unknown data. For a matrix
A, Aij, the ij-th element of A, denotes the similarity score between
the ith and the jth data points. Similarity metrics can take many
forms. One common way is to use the Gaussian kernel function
to construct a weighted similarity matrix:

wij = exp

−‖Xi−Xj‖
2
F

σi σj

 (i 6= j) (2)

where, Xi denotes the ith data point (sample), σi is the Euclidean
distance between Xi and its d-th neighborhood. We set d = 7 as
suggested in the literature of Zelnik-Manor and Perona (2005).
It is noted that the diagonal elements of similarity W are set to
be zeros to eliminate self-similarity. Next, we only retain those
edges linking nodes with their p nearest neighbors N (i). Thus,
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FIGURE 1 | An illustrative example of the proposed LVSNMF algorithm. (A) the original data matrix (gene expression matrix, microbiome abundance profile matrix,
and so on. (B) Laplacian graph used to maintain manifold consistence assumptions. (C) A Vicus graph explores the local geometrical structure in the data. Then c
and d are introduced into the proposed LVSNMF model, which integrated the global (Laplacian) and local (Vicus) geometrical structure of the original data. (D) the
clustering result given by LVSNMF.

the weighted matrix W derived from Equation 2 can be rewritten
as:

wij =

{
wij, if i ∈ N(j) or j ∈ N(i);
0, otherwise.

(3)

Where N (i) is the set of neighbors of the ith node.
As suggested in [20], W can be transformed into the

normalized form:

A = D−1/2 WD−1/2 (4)

here, Dii =
∑n

j=1 wij denotes the degree matrix.
Finally, by multiplication update rules SNMF can obtain the

locally optimal solution:

hik ← hik
(AH)ik(

HHT H
)
ik

(5)

Laplacian Graph
Given P, a weighted matrix, let L be the Laplacian matrix; L can
be defined as:

L = D− P (6)

where D is a degree matrix and Dii =
∑n

j=1 dij. The normalized
cut version of L can be formalized as:

L = I − D−1/2 PD−1/2 (7)

where I denotes the identity matrix. Note that the general
Laplacian matrix (Equation 6) is used in the complete
experiments, and the normalized version of L is used to be
input for spectral methods. In the process of constructing a
weighted graph P, many similarity functions can be used, such
as the inner product function, kernel function, and so on. In
our experiments, the Gaussian kernel function (Equation 2) is
employed to establish P.

Vicus Graph
As described in Wang et al. (2017), Vicus graphs have the
same properties as Laplacian graphs. For example, both matrices
are symmetric and positive semidefinite, and the eigenvector
corresponding to the smallest eigenvalue 0 of both matrices is
the constant vector 1. Compared with the Laplacian graph, the
Vicus graph can capture the local structure within the data. In this
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subsection, we demonstrate the process of constructing a Vicus
graph in detail. Note that the Vicus matrix is constructed based
on a sample-sample similarity matrix, which can be computed via
any similarity function, such as the Gaussian kernel, the cosine
kernel functions, and so on. In this paper, we used the Gaussian
kernel for computing the similarities between any two samples.
The differences between the Laplacian and the Vicus graphs
lies in the fact that the former describes the global structure
information inherent in the data whereas the latter captures well
the fine-grained topological information present in the biological
network. The intuition is that we can use the local connection
information from neighboring nodes to make the Vicus matrix
more robust with respect to noise. Thus, it helps to lessen the
influence of outliers.

Let {x1, x2, · · · , xn} be a set of data points. Then
vi corresponding to xi denotes the ith vertex in a weighted
network P, and N (i) represents xi’s neighbors, not including
xi. Here, the neighborhood size of all nodes is consistent
(‖Ni‖ = k, i = 1, 2, · · · , n).

The main assumption behind Vicus is that the cluster label
of the ith data point can be inferred from its nearest neighbors
N (i). First, a subnetwork Pi = (Vi,Ei) is extracted such that
Vi=N (i)

⋃
xi and Ei represents the edges connecting all points

inherent in Vi. Using the label diffusion algorithm (Zhou et al.,
2004), a virtual label indicator vector ckvi can be reconstructed as:

ckvi = (1− α) (I − α Si)−1 qkvi , 1 ≤ k ≤ C (8)

Where α ∈ (01) is a constant. In all our experiments, α is set 0.9
as suggested in Wang et al. (2017). C is the number of clusters.
qkvi is the scaled cluster indicator of Pi.Si denoting the normalized

transition matrix, i.e., Si (u, t) = Pi (u, t)
/∑K+1

l=1 Pi
(
u, l
)
. ckvi is

a vector of K + 1 elements; here qki = ckvi [K + 1] is the estimate
of how likely it is that node i belongs to the kth cluster. The goal
is maximal concordance between qki and qki . Let βi ∈ RK+1 be
the ith row of the matrix (1− α) (I − α Si)−1, representing label
propagation at its terminal state. We set qki = βi qkvi . Thus, qki can
be approximated by

qki ≈
βi [1 : K] qkN(i)

1− βi [K + 1]
(9)

Where βi [1 : K] is the first K elements of βi and βi [K + 1]
denotes the (K + 1)th element in βi .

Next, we use matrix B to represent the linear relationship qk ≈
B qk, k = 1, 2, · · · ,C:

Bij =

{
βi[j]

1−βi[K+1] if xj ∈ N (i) and xj is the j−th element in N(i);
0 otherwise

(10)
In order to minimize the difference between qk and qk, we can

adopt a simple objective as listed below:

n∑
i=1

C∑
k=1

(
qki − qki

)2
=

C∑
k=1

∥∥∥qk− qk
∥∥∥2
≈

C∑
k=1

∥∥∥qk−B qk∥∥∥2

= Tr
(
QT (I − B)T (I − B)Q

) (11)

Here, Tr(•) denotes the trace of a matrix. Setting V =
(I − B)T (I − B), we thus obtain the Vicus matrix. Similarly to
the traditional spectral clustering formulation, by performing
eigen-decomposition of V we can obtain clustering results. In this
paper, we use V as constraint term to preserve the local manifold
structure of the data.

Note that in order to better reveal the complicated
relationships among microbiome samples, we simultaneously
introduce the Laplacian and Vicus spectral matrices into the
objective function of SNMF. The details are given below, in
section “Symmetric Non-negative Matrix Factorization Based on
Laplacian and Vicus Regularization.”

Symmetric Non-negative Matrix
Factorization Based on Laplacian and
Vicus Regularization
Based on analysis above, we combine Laplacian and Vicus
matrices into the Symmetric Non-negative Factorization
framework to explore the global and local structure inherent
in the data. The proposed algorithm, namely LVSNMF, takes
full advantage of the global and local consistency of the data
to model complex relationships between different samples. The
final objective can be defined simply as:

O = min
H≥0

∥∥∥A−HHT
∥∥∥2

F
+ α

[
tr
(
HT LH

)
+ tr

(
HT VH

)]
(12)

Where α is a regularization parameter and used to balance
the trade-off between matrix reconstruction errors and spatial
structure preservation. The second term in Equation 12
simultaneously takes into account the global information
(Laplacian) and local structure (Vicus) of the data.

To minimize the objective of LVSNMF, we use multiplicative
update rules to solve the optimal problem. The updating formula
of H can be obtained as follows:

hik ← hik
(AH)ik+α

[(
P + V−

)
H
]
ik(

HHT H
)
ik+α

[(
D+ V+

)
H
]
ik

(13)

Here, V = V+−V− .
LVSNMF integrates the global and local similarity

information inherent in the data, and it can therefore obtain
better performance than just using the Laplacian graph or
other methods based on local diffusion information from
neighboring nodes.

Evaluation Metrics
The proposed LVSNMF and competing algorithms are evaluated
by comparing the generated labels of all samples with the ground
truth contained in the datasets. Two common cluster metrics,
accuracy (AC) and normalized mutual information (NMI), are
used to evaluate the performance of the proposed LVSNMF
algorithm. Generally, the higher AC and NMI values achieved,
the better the clustering quality is. More detailed information on
these two metrics can be found in Xu et al. (2003).
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Datasets
Three datasets are used in our experiments. The first one is a
cancer dataset from TCGA, the second is a pollen dataset, and the
last is a human microbiome dataset from HMP1. The important
statistics of these three datasets are summarized in Table 1.

Lung cancer: This is a benchmark dataset including five cancer
subtypes. It can be downloaded from https://jundongl.github.io/
scikit-feature/datasets.html.

Pollen: these data consist of 11 cell populations, containing
neural cells and blood cells. These data are obtained directly
from Pollen et al. (2014).

Human microbiome data: these data consist of 637 samples
drawn from seven body sites: one gut (stool), one vagina
(posterior fornix), one nasal (anterior nares), one skin site
(retroauricular crease), and three oral sites (supragingival plaque,
tongue dorsum, and buccal mucosa). Each sample consists of 710
microorganisms. The relative abundance of each at species level
wase estimated by MetaphlAn. All the data can be downloaded
from the HMP website.

RESULTS AND DISCUSSION

Experimental Results
In this section, we conduct extensive experiments on these three
datasets. The experimental results are shown in Table 2. From
this table, we can see that LVSNMF outperforms the second
best algorithm at 0.49/1.93% points in terms of AC/NMI on the
Lung dataset, 3.22/2.17% points on the Pollen dataset, and the
2.09/0.61% points on HMP dataset.

The results in Table 2 are obtained when p = 12 and
k = 15 across all three datasets. Here, p denotes the number of
neighbors in constructing similarity matrix A, k is the number
of local neighbors in constructing a Vicus matrix. For other
values, LVSNMF still outperforms these competing algorithms in

1http://hmpdacc.org/

TABLE 1 | Statistics of the two datasets.

Dataset Number of
samples

Number of
features

Number of
clusters

Lung cancer 203 3,312 5

Pollen 249 14,805 11

HMP 637 710 7

TABLE 2 | The best performance in three real datasets.

Accuracy (%) Normalized mutual
information (%)

Lung Pollen HMP Lung Pollen HMP

SNMF 83.74 84.66 87.84 67.51 86.49 84.52

SNMF + Laplacian 90.64 85.94 88.27 70.03 87.33 84.46

SNMF + Vicus 90.15 85.60 88.49 71.26 87.12 84.95

LVSNMF 91.13 89.16 90.58 72.96 89.50 85.56

most cases. Note that in our experiments NNDSVD (Boutsidis
and Gallopoulos, 2008) is utilized to enhance the initiation
of SNMF-based algorithms, which result in rapid reduction of
reconstruction errors.

Parameter Analysis
In the proposed LVSNMF method, there is one essential
parameter: the regularization parameter α. In fact, Laplacian and
Vicus matrices should have different weight parameters. In this
study, we set them to be equal for convenience. Parameter α

reflects the extent to which we want to exert punishment for
violating the manifold consistency hypothesis.

In our experiments, the values of α are set to be in the
range (0.001 0.005 0.01 0.05 0.1 0.5 1 10). Table 2 reports
the best performance of all algorithms on three datasets.

FIGURE 2 | The best performance of LVSNMF as αincreases.

FIGURE 3 | The performance of LVSNMF varies as K increases.
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In order to intuitively observe performance of LVSNMF, we draw
curve of LVSNMF vs.α on HMP dataset. Figure 2 gives the
performance curve of LVSNMF as α increases.

Comparison and Discussion
In order to further demonstrate the effectiveness of LVSNMF,
we compare the performance of LVSNMF with three other
algorithms on the HMP dataset when α varies in the range (0.001
0.005 0.01 0.05 0.1 0.5 1). As shown in Figure 1, in the interval
(0.001, 0.1), LVSNMF achieves consistently good performance
as α increases. When α, LVSNMF obtains the best performance
(90.58%/85.56% in terms of AC/NMI), and performs slightly
better than the second best algorithm. One possible reason is
that samples from HMP are noiseless and the Laplacian has
successfully captured sufficient structure information such that
the performance of LVSNMF might not be obvious.

On the other hand, on the pollen dataset the proposed
LVSNMF algorithm significantly outperforms other competing
algorithms (as Table 2 shows). This suggests that LVSNMF
has the ability to seek and find the latent structure
inherent in the data.

Vicus has an important hyperparameter, the number of
neighbors K. To validate the influence of K on the performance
of LVSNMF, we also conduct additional experiments on the HMP
dataset. Figure 3 shows that the performance of LVSNMF varies
with K (α = 0.01).

As shown in Figure 3, two algorithms based on Vicus
regularization have consistently good performance as K varies
within the interval (10, 30), especially when K equals 15; then
they obtain the best performance. This suggests that the proposed
LVSNMF is robust with respect to the number of neighbors K.
Unlike the SNMF + Vicus algorithm, LVSNMF also takes into
account the global information of the data; therefore, it can
achieve the better performance in most cases.

In summary, the proposed LVSNMF method can adequately
capture the global and local structure of the data. The
experimental results on three real datasets demonstrate its
efficiency and effectiveness.

CONCLUSION

In this paper, we propose a novel approach, called LVSNMF,
to conduct microbiome data analysis. In LVSNMF, the global

and local structure similarities are encoded in Laplacian and
Vicus matrices, respectively. Extensive experiments are executed
on three datasets, and the results show that the proposed
LVSNMF algorithm significantly outperforms other baseline or
state-of-the-art methods, which demonstrate its efficiency and
effectiveness on microbiome data analysis.

Although LVSNMF achieves good performance, it concerns
only sample clustering. In the real world, the relationship among
microbes is often subtle and complicated. Therefore, modeling
microbial interactions is important to dissect the mechanism
behind diseases related to the microbiome. In the future, we
will develop new methods to construct microbial interaction
networks and seek appropriate ways to describe the functional or
genetic similarities among microbes, such as phylogenetic trees,
metabolic abilities, and so on.
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