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I. INTRODUCTION

Lymphocytes are important in both innate
and adaptive immune responses. Innate lym-
phocytes represent a heterogeneous group of
cells that include cells lacking receptors for
antigen, such as the group of innate lymphoid
cells, of which natural killer (NK) cells are
the prototypical example. Innate lymphocytes
expressing antigen receptors include B1 B cells,
natural killer T (NKT) cells, and γδ T cells.
While innate lymphocytes are relatively rare in
circulation and in lymphoid tissues, they are
found in mucosal surfaces that represent por-
tals of entry into the body [1]. In this chapter,
we will focus on some of our laboratory’s work
on one of the major antigen-specific subsets of
innate lymphocytes: γδ T cells.

γδ T cells have important roles in both innate
and adaptive immune responses, wound heal-
ing, and tissue homeostasis. There are many
outstanding reviews of the biology and func-
tion of γδ T cells. A select few relevant to the
topic of this chapter are listed in Table 46.1.
Briefly, γδ T cells express unique T cell receptors

(TCRs) that recognize self and foreign antigens
in the absence of the requirement for presenta-
tion by major histocompatibility complex
(MHC) class I or class II molecules. This feature
leads to a broad range of innate responses
against pathogens, as well as recognition of
stressed or tumor cells. Subsets of γδ T cells are
defined by restricted TCR gene usage in addi-
tion to expression of various surface molecules
and preprogrammed functional responses
imprinted prior to their egress from the thy-
mus. γδ T cells also express myriad innate
receptors, such as toll-like receptors (TLRs),
scavenger receptors, and lectin receptors, such
as dectin-1, that can directly sense infectious
agents. These receptors, along with cytokine
receptors, fine-tune sensing and response of
γδ T cells adapting to the tissue microenviron-
ment. TCR stimulation leads to a variety of
functional responses, such as cytolysis, cyto-
kine production, regulatory effects, and even
phagocytosis and antigen presentation, that
depend on the activation of receptors and core-
ceptors. γδ T cells respond rapidly to external
signals, leading to early cytokine responses in a
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variety of disease settings. Furthermore, they
are uniquely positioned at virtually all portals
of entry into the body where this type of innate
immune response is critical. Indeed, γδ T cells,
like other innate lymphocytes, are found at all

mucosal surfaces and make up a large fraction
of the intraepithelial lymphocyte population.
They are also recruited to sites of inflammation,
tumor growth, or other tissue insults.

II. γδ T CELL SURFACE
RECEPTORS

In addition to the γδ TCR, γδ T cells express a
variety of non-TCR receptors that affect their
function. γδ T cells express the NK C-type lec-
tin-like receptors, such as NKG2D, which rec-
ognize cellular stress proteins resulting in
cellular activation [31,32]. They also express
tumor necrosis factor (TNF) receptor family
molecules CD27, CD30, and CD137 [9]. CD27 is
a costimulatory receptor to the TCR [33], and
CD137 is also expressed on TCR-stimulated
tumor-reactive γδ T cells [34]. CD28 (of the Ig
superfamily) is also a γδ TCR coreceptor. The
aryl hydrocarbon receptor (AhR), generally
known for its role in homeostasis for mucosal T
cells, is also expressed by mouse γδ T cells that
produce innate interleukin 17 (IL-17) [35], as
well as the mouse skin γδ T cell subset [36]. γδ T
cells also express various cytokine receptors
that contribute to their activation (IL-2R, IL-
15R, IL-23R, etc.) and fine-tune their functional
responses. The expression of pathogen-
associated molecular pattern receptors has been
detected on γδ T cells. These include another
lectin receptor, dectin-1, a receptor for fungal,
plant, and bacterial-derived polysaccharides
[37,38]; the TLRs [20,39]; CD36 [40]; scavenger
receptors [41]; and NOD-like receptors [42].
Though not a focus of this chapter, γδ T cells
also express a variety of receptors that downre-
gulate their function. Examples include killer
cell immunoglobulin-like receptor and leuko-
cyte immunoglobulin-like receptor, B and T
lymphocyte attenuator, and programmed cell
death 1 receptor, which are regulatory recep-
tors that suppress the function and/or prolifer-
ation of the cells [29].

TABLE 46.1 Recent References/Reviews for Key γδ T
Cell Functions

γδ T cell function Selected review article

General γδ T cell Hayday, Annu Rev Immunol 2000 [2],
Chien, Annu Rev Immunol 2014 [3],
Chien, Immunol Rev 2007 [4] Ciofani,
Nat Rev Immunol 2010 [5], Holderness,
Annu Rev Anim Biosci 2013 [6],
Holderness, Crit Rev Immunol 2008 [7],
Zarin, PNAS 2014 [8], Ribeiro, Frontiers
Immunol 2015 [9]

γδ T cell role in
cancer and
cytolytic
responses

Wu, Cell Mol Immunol 2017 [10], Zou,
Oncotarget 2017 [11], Silva-Santos, Nat
Rev Immunol 2015 [12], Rei, Cancer Res
2015 [13], Paul, Int J Cancer [14],
Ramstead, J Interferon Cytokine Res [15]

γδ T cell innate
and adaptive
responses

Bonneville, Nat Rev Immunol 2010 [16],
Jutila, Anim Health Res Rev 2007 [17],
Ribeiro, Front Immunol 2015 [9]

γδ T cells in
multiple species

Holderness, Annu Rev Anim Biosci 2013
[6]

Myeloid-cell-like
features,
including APC

Moser, Trends Immunol 2006 [18], Jutila,
Anim Health Res Rev 2007 [17],
Holderness, Crit Rev Immunol [7]

TLR expression
by γδ T cells

Wesch, Cell Mol Life Sci 2011 [19], Dar,
Front Immunol 2014 [20]

IL-17-producing
γδ T cells

Chien, Trends Immunol., 2013 [21],
Papotto, Nature Immunol. 2017 [22],
Corpuz, J. Immunol., 2016 [23],
McKenzie, Nature Communications,
2017 [24]

Skin/gut-
resident γδ T
cells

Hayday, Annu Rev Immunol 2000 [2],
Holderness, Crit Rev Immunol 2008 [7],
Macleod, Havran, Cell Mol Life Sci 2011
[25], Nielsen, Nat Rev Immunol 2017 [1],
Ebert, J Immunol 2006 [26], Sheridan,
Immunity 2013 [27]

γδ T cells/
immunotherapy

Burjanadze, Br J Immunol 2007 [28],
Lawand, Front Immunol 2017 [29],
Mirzaei, Cancer Lett 2016 [30]
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III. SIMILARITIES OF γδ T CELLS
TO MYELOID AND MACROPHAGE

CELLS

γδ T cells are an ancient immune cell lineage,
found in all jawed vertebrates. Phylogenetic
evidence suggests that they are the progenitors
of both αβ T cells and B cells [43]. They predate
adaptive immunity, so it is not surprising that
they retain many innate functions similar to
those of monocytes and macrophages.
Zebrafish γδ T cells both are phagocytic and can
present antigen, in addition to their expression
of CD8 [44]. We characterized transcript expres-
sion in subsets of bovine γδ T cells [45�47]. The
primary outcome of these studies was the recog-
nition of multiple transcripts similar to those
found in monocyte and macrophage cells, indi-
cating their innate function. As part of these
studies, we detected B-lymphocyte-induced
maturation protein 1 (BLIMP-1) transcripts in
bovine γδ T cells [46]. BLIMP-1, also known as
PRDI-BF1, is a key regulator in the differentia-
tion of hematopoietic cells into myeloid or B
cells [48]; therefore, its detection in a T cell sub-
set was notable at the time. We recognized this
significance and further confirmed the expres-
sion of transcripts in resting bovine γδ T cells
and not αβ T cells [46]. More recent findings
have further confirmed the innate function of
γδ T cells in the appropriate contexts.

Transcript analyses in bovine γδ T cells also
suggested expression of transcripts encoding
solute carrier 11A1 (SLC11A1, also denoted nat-
ural resistance-associated macrophage protein
1, or NRAMP-1) in these cells [45]. SLC11A1 is
a divalent metal transporter that is thought to
be expressed only in myeloid and macrophage
cells; it is important in effective responses
against intracellular bacterial infections
[49�51]. SLC11A1 enhances signaling and acti-
vation in macrophages [52]. We defined protein
expression and a similar function in activation
in bovine and human γδ T cells and NK cells.
Expression of SLC11A1 was strongly correlated

to the activation and, in particular, the expres-
sion of interferon gamma (IFNγ) in these cells
[53]. Thus SLC11A1 is an additional monocyte/
macrophage protein that is also expressed in
γδ T cells with functional relevance.

Another similarity to myeloid cells is the
ability of γδ T cells in a number of species to
process and present antigen. Effective antigen
presentation is required for the initiation of
adaptive immunity and is studied primarily in
conventional antigen-presenting cells (APCs),
such as dendritic cells (DCs), activated macro-
phages, and B cells. γδ T cells express an array
of surface receptors, such as scavenger recep-
tors, CD11b, and CD16, that facilitate uptake of
particulate antigens [54,55]. Subsets also
express MHC class II and necessary coreceptors
for effective antigen presentation to CD41 T
cells [56�58]. Antigen uptake and presentation
to CD41 T cells were first shown for bovine
γδ T cells [57]. It was also shown that MHC
class II expression and antigen presentation is
enhanced in bovine WC11 γδ T cells during
viral infection [59]. Similar functions were
described for porcine, human, and mouse γδ T
cells [60�62]. γδ T cells in contact with bacteria
can transition from cytokine-producing cells to
phagocytic APCs, demonstrating their func-
tional plasticity [63]. The phagocytic capacity of
γδ T cells is augmented by opsonization [54,63].
Combined, these studies show that subsets of
γδ T cells in various species can be induced to
present antigens via MHC class II. Clearly, γδ T
cells have a unique role in innate immunity
that is similar in some respects to that of mono-
cytes and macrophages, and is further involved
in the subsequent initiation of antigen-
dependent acquired immunity.

IV. γδ T CELL-MEDIATED
CYTOTOXICITY

Ligation of receptors expressed on the γδ T
cell can lead to potent cytolytic responses
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against stressed, infected, and malignant cells
[64�67], though γδ T cells can be permissive to
growth of some tumors [15]. Ligation of TCR,
in combination with other receptors such as
NKG2D and cytokine receptors such as the IL-
23 receptor, enhances and directs cytotoxic
responses along with cytokine production
[68,69]. Cytotoxicity is a function of γδ T cells
that is conserved across species [70�75]. For
example, granzyme B, perforin, and FasL are
expressed in WC11 γδ T cells from bovine
peripheral blood mononuclear cells (PBMCs),
with FasL expression increasing upon activa-
tion of these cells [76,77]. Perforin expression is
also found in bison γδ T cells [78]. Perforin and
granzyme, FasL-Fas, and the TNF-related apo-
ptosis-inducing ligand pathway are also fea-
tures of human γδ T cells [79,80]. The cytotoxic
activity of γδ T cells likely plays an important
role in multiple species for optimal immune
responses by these cells to a subset of malig-
nant and infected cells.

V. γδ T CELL CYTOKINE
PRODUCTION

Another important functional response of
γδ T cells is their regulation of the tissue envi-
ronment through cytokine generation. These
cytokines include those that drive inflamma-
tory responses and contribute to downstream
adaptive immune responses as well as cyto-
kines that affect epithelial cell health and tissue
homeostasis. Although the number of cytokines
produced by γδ T cells is large, a few, such as
IL-17, IFNγ, and the tissue cytokines keratino-
cyte growth factor (KGF) and insulin-like
growth factor (IGF), are of particular impor-
tance in the function of subsets of these cells.
IL-17 and IFNγ are potent activators of cells of
the myeloid lineage and contribute to down-
stream inflammatory responses. In mice, γδ T
cells are a major source of innate IL-17 early in
response to infection [81,82]. Two populations

of γδ T cells contribute to the IL-17 response.
One is referred to as “natural” IL-17-producing
cells, which acquire effector function prior to
egress from the thymus [83]. These cells are
found in mucosal tissues and are thought to be
early responders to infectious insult. Another
population is referred to as “induced,” and
these cells rapidly acquire effector function
after egress from the thymus and in response to
antigen and cytokine in the periphery [84].
Some reports suggest that although human and
large animal γδ T cells produce IL-17 (induced
phenotype), they may not be a major early
source of this cytokine in these species [10,85].
Although they are clearly protective in most
instances and are thought to be important to
the early innate immune response, dysregula-
tion of IL-17 production leading to excessive
IL-17 can also be pathogenic [86]. KGF and IGF
are also produced by tissue γδ T cells and are
important in maintaining epithelial cell health
and effective wound repair responses [87�90].
Though defined as important in tissue homeo-
stasis, these responses are also important for
host defense, since health of the epithelial cell
barrier contributes to protection against various
pathogens and the creation of a homeostatic
environment for commensal microbiota.

VI. ROLE OF γδ T CELLS IN
INFECTIOUS DISEASES

γδ T cells have been shown to respond to
and participate in host defense responses in a
variety of infectious diseases, including viral,
bacterial, and parasite-induced disease, many
at the mucosal surface [2,91]. Recently, γδ T
cells have been found to be important for pro-
tection against emerging viruses such as
Chikungunya and West Nile virus [92,93]. In
HIV infection, the peripheral subset of human
γδ T (Vδ2) cells is severely depleted and does
not completely recover, even in patients who
have had successful antiretroviral treatment.
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This deficit may increase the likelihood for sec-
ondary infections and could be a critical target
for new immunotherapies for HIV patients [94].

γδ T cells are clearly important in anti-
bacterial immunity as a source of early IFNγ
and IL-17 [77,82,95,96]. As human γδ T cells are
preprogrammed for recognition of bacterial
phosphoantigens, they are particularly impor-
tant in protection from Mycobacterium and
Legionella infections [97,98]. Human γδ T cells
expand during Salmonella enterica serovar
Typhimurium (ST) infection of the intestinal
mucosa [99] and are a source of early IFNγ
[100,101]. Bovine γδ T cells also respond to oral
ST infection [102]. γδ T cells play a critical role
in protection against infection with Brucella sp.,
which are facultative intracellular bacteria
[103]. This appears to be primarily through pro-
duction of IFNγ, and was found in mice, cattle,
and sheep [103,104]. However, our results
showed no contribution of mouse γδ T cells to
infection with another emerging intracellular
pathogen, Coxiella burnetii (unpublished
results). Following mucosal infection but not
peripheral infection, mouse γδ T cells were also
found to have a role in downstream memory
immune responses to Listeria infection [27].
Thus, γδ T cells play an important role in
response against many different bacterial infec-
tions. This suggests that their specific stimula-
tion may contribute to protection and may
potentially replace or at least reduce the need
for antibiotics and could be considered as a
new target for future vaccine development.

γδ T cells also play protective roles in para-
site infections. They respond to and are protec-
tive following initial infection with the malaria
Plasmodium falciparum, owing to recognition of
phosphoantigens produced by the parasite.
However, upon subsequent infection, the num-
bers of γδ T cells drop, similar to the situation
with long-term HIV infection. Nonetheless,
higher numbers of functional Vδ2 T cells are
correlated with greater protection from reinfec-
tion with Plasmodium and also increased

symptoms upon infection, as they are sources
of IFNγ and TNF-α [105]. Similarly, the first
instance of bovine IL-17-producing cells was
demonstrated and protects against a related
parasite [106]. Indeed, in most instances of pro-
tection from pathogens, γδ T cells are similarly
protective in humans and other animals [6].
Common features across species provide a
rationale for the use of various animal models
to test the role and importance of γδ T cells in
disease settings of relevance to humans, which
will lead to the creation of strategic platforms
for γδ T cell-targeted vaccine development.

VII. THERAPEUTIC POTENTIAL
FORMANIPULATION OF γδ T CELLS

γδ T cells are characterized by a unique and
specific tissue location, rapid response to exter-
nal signals and insults, and the existence of pre-
programmed and induced effector subsets.
Combined with the ability to expand these cells
in vitro and their critical roles in a variety of
infectious and cancerous disease settings, γδ T
cells have been the target for new immunother-
apeutics [11,28�30,34,91]. In humans, both TCR
and TLR agonists have been studied for their
effects on enhancing γδ T cell function. Prenyl
phosphates and bisphosphonates that directly
or indirectly drive expansion and cytokine pro-
duction in a major subset of circulating γδ T
cells have been pursued for treatment of certain
tumors and infections [29]. Two approaches
have been used. In the first approach, γδ T cells
are expanded to large numbers in vitro and
then adoptively transferred to patients. In the
second approach, these agonists are given
directly to the patient, inducing responses
in vivo. The in vivo responses of γδ T cells to
these agonists are impressive, leading to signifi-
cant expansion in tissues, such as the lung
and production of immune cytokines [107]. Of
note, though originally pursued for cancer
treatments, the potential application of
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phosphoantigen stimulation of γδ T cells in
infectious disease was recently demonstrated in
Mycobacterium tuberculosis infection in primates
[108]. The application of these therapeutic
approaches to stimulate γδ T cells is limited to
humans and nonhuman primates, since γδ T
cell responses to the prenyl phosphates are
restricted to primate cells. Other therapeutic
approaches to increase γδ T cell activity have
focused on other receptors, such as TLRs and
scavenger receptors [19,20].

Our recent endeavor has been to expand the
number of materials that enhance the activity of
γδ T cells in multiple species. This was achieved
by screening various natural product libraries
and other sources of natural products, includ-
ing nutritional supplements. They were
assessed for their capacity to upregulate IL-2
receptor expression on primary γδ T cells,
thereby enhancing responses to IL-2 in the
absence of antigen [7,17,109�112]. Follow-up
functional assays examined their cell type spec-
ificity, induced cytokine responses, and benefit
in various infectious disease models [110,112].
Two classes of plant products—polyphenols
and polysaccharides—and one example of a
microbial product that stimulate these cells,
which came from these studies, are summa-
rized below.

VIII. PLANT POLYPHENOLS FOR
THE ACTIVATION OF γδ T CELLS

A class of plant polyphenol called oligomeric
procyanidins (OPCs) produced by apples,
grapes, and some other plants was determined
to be a potent priming agent for γδ T cells.
Several studies suggest that ingestion of plant
and berry compounds containing polyphenols
expand human γδ T cells in vivo [113�115]. Our
study showed that OPCs from apple peel prime
human, mouse, and bovine γδ T cells, and NK
cells in some instances [109], for enhanced
responses to secondary signals provided by

cytokines and antigens. Other groups also
found that OPCs expand mouse γδ T cells in vivo
[116] and stimulate goat γδ T cells [117]. OPC-
mediated γδ T cell responses increase the
expression of activation markers, but the cells
do not actively proliferate in the absence of a
secondary signal, such as cytokine or TCR
engagement [109]. OPC treatment also induces
production of a restricted number of cytokines,
many of which act on myeloid cells, such as
colony-stimulating factors (CSFs) and chemo-
kines such as IL-8, and various tissue growth
factors [109]. One of the consequences of OPC
treatment of bovine and human γδ T cells is a
significant extension of the stability of CSF and
chemokine transcripts [118]. The ability to
extend the functional lifetime of these tran-
scripts enables γδ T cells to more rapidly and
robustly produce certain cytokines in response
to secondary signals. Importantly, OPCs show
bioactivity when ingested and are safe over a
range of doses in all species tested [7,116,119].
Such supplements increase γδ T cells in the
periphery or in tissues [119,120]. Following oral
delivery of very large doses of the OPCs in
mice, a significant reduction of inflammation
was seen in dextran sulfate sodium (DSS)-
induced colitis [121]. The anti-inflammatory
effects are independent of γδ T cells and require
αβ T cells. Interestingly, in the absence of αβ T
cells, a Rag-protein-dependent population of
cells, likely γδ T cells, is responsible for a robust
but noninflammatory cytokine response in
OPC treated mice in the DSS model [121].
Consistent with this observation, OPC ingestion
in some mice was shown to induce increased
levels of G-CSF in circulation without obvious
deleterious inflammation (unpublished results).
Induced G-CSF is normally considered a proin-
flammatory response, but it can also contribute
to protective immune support in certain
instances. Clearly, we have much to learn about
the myriad effects of ingestion of OPCs on γδ T
cells and other immune cells (e.g., αβ T cells)
in vivo. We expect that these potent plant
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chemicals (e.g., OPC) and their derived pro-
ducts may be a safe novel immunotherapeutic
and immunomodulator in some settings.

A. Plant Polysaccharides as γδ T Cell-
Targeted Immunomodulator

Our study has also identified unique poly-
saccharides from various plants that are potent
agonists for γδ T cells and other cells of the
immune system. The first source of polysac-
charide agonist was Funtumia elastica bark
(Yamoa). Yamoa polysaccharides activate γδ T
as well other immune cells, such as monocytes,
and, when given in vivo, enhance protection
from infection [110]. Optimal activation or
priming of γδ T cells by these polysaccharides
requires monocytes or macrophages in a
mixed in vitro culture. Following our initial
characterization of the Yamoa polysacchar-
ides, similar activity was defined in extracts
from other plants, including tansy (unpub-
lished), juniper (unpublished), and, most
recently, açai [111,122,123]. Many of the poly-
saccharide preparations being tested, except
for those generated from açai, were positive in
the limulus amebocyte lysate assay for lipopo-
lysaccharides [124]. Açai polysaccharide
responses are conserved in γδ T cells across
species, including humans, cattle, and mice
[111]. Monocytes and macrophages are also
activated by the polysaccharides and are
required for optimal responses by the γδ T cell.
Instillation of açai polysaccharides into the
lungs of mice induces dose-dependent IL-12
production, accumulation of myeloid cells,
and activation of local DCs and macrophages
[111]. It was subsequently shown that prophy-
lactic or therapeutic nasal administration of
açai polysaccharides significantly enhances
host innate defense responses against the
intracellular bacterial pathogens Francisella
tularensis and Burkholderia pseudomallei [125].
Protection could also be achieved following

oral delivery, although responses were more
variable. Mechanism of action studies showed
that açai polysaccharides enhance IFNγ
expression by γδ T cells and NK cells following
F. tularensis and B. pseudomallei infections.
Inhibition of IFNγ blocked the protective effect
of the polysaccharides [125]. Thus, the stimula-
tion of γδ T cells, as well as other innate
immune cells, by açai or similar plant agonists
and subsequent type 1 T helper cell-associated
responses, could have therapeutic applications
in bacterial infections.

Since açai is a commonly ingested dietary
supplement and has shown therapeutic bene-
fit following oral delivery [125], we examined
the effects of these agonists in two additional
intestinal models. Dysbiosis is a condition
usually induced by antibiotic use in which the
normal flora is disrupted. This state can lead
to increased susceptibility to infection and
colitis [126]. Mice with dysbiosis were treated
with açai polysaccharides to assess whether
these polysaccharides could aid in recovery
from this susceptible state. When cytokine
expression in mesenteric lymph nodes
(MLNs) and spleen cells were measured, the
feeding of açai polysaccharides induced
expression of IL-12 in supernatant fluids from
cultured MLN and spleen cells from the trea-
ted mice. IL-12 was also detected in the serum
of the mice [127]. Expression of IFNγ was
also increased in spleen cells from açai
polysaccharide-fed mice, similar to the previ-
ous finding using nasal administration [125].
No adverse effects were noted in the açai-
treated mice. In a model of chemically
induced colitis, mice that were fed açai had a
reduced deleterious inflammatory response in
the gut [127]. Considering that there are no
adverse effects following açai ingestion, this
polysaccharide could represent a safe and
novel approach to stimulating γδ T cells and
other innate cells, potentially to promote their
innate protective and homeostatic functions at
the mucosal surface.
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Our next study aimed to examine potential
receptors involved in the sensing and responses
to the açai polysaccharides by immune cells.
Some of the responses were lost in mice lacking
functional TLR4 or the innate adaptor protein
MyD88. However, neutrophils were still
recruited into the peritoneum of these mice fol-
lowing intraperitoneal injection of açai [111].
The role of the β-glucan receptor dectin-1 was
particularly investigated, since IL-12 is pro-
duced by immune cells following ingestion of
β-glucans [128]. Our result demonstrated that
açai polysaccharides contain appropriate lin-
kages for recognition by dectin-1 using an inhi-
bition ELISA against β-glucan [127].
Furthermore, açai polysaccharides specifically
block binding of anti-dectin-1 antibodies to
immune cells in a flow cytometry based assay.
Thus, açai polysaccharides bind to multiple
innate immune cell receptors, contributing to
unique effects of innate and likely downstream
adaptive immune responses. Açai polysacchar-
ides can be considered as a new mucosal
immunomodulator molecule for the regulation
of antigen-specific immune response and
inflammation.

B. Microbial Products for the Regulation
of γδ T Cells

Activation-based screening assays resulted
in the detection of robust agonist activity for
γδ T cells in multiple microbial extracts (unpub-
lished results). One such agonist was deter-
mined to be amphotericin B (AmB), produced
by Streptomyces nodosus. AmB is a commonly
used antifungal drug that has previously been
shown to stimulate innate immune cells
[129�131]. AmB induces expression of cyto-
kines in macrophages, mediated by TLR recog-
nition [132�134]. AmB treatment of bovine
PBMCs leads to increased expression of IL-2R
selectively on γδ T cells, activation of bovine
monocytes and NK cells, and enhanced IFNγ

from NK cells [112]. Addition of IL-2 to these
cultures induces a robust, antigen-independent
proliferation of the treated γδ T cells [112]. The
agonist activity of AmB is not restricted to cat-
tle, in that similar effects are seen on expression
of activation markers and proliferation of γδ T
cells in humans and mice as well [112]. Thus
the response is highly conserved. In a separate
study, AmB was shown to increase IFNγ pro-
duction in mouse lung cells following in vitro
infection and costimulation by avirulent C. bur-
netii bacteria [127]. AmB also enhances anti-
body responses against ovalbumin when used
as an immunizing adjuvant [127]. Thus AmB
has potential both to enhance innate and
acquired responses to infection and to function
as a vaccine adjuvant.

Since bovine γδ T cells and NK cells respond
to AmB at very low, nontoxic doses, our next
experiment aimed to test it in an in vivo model
of infectious enterocolitis. Calves were given
one intravenous injection of approximately
0.029�0.031 mg/kg AmB or saline 24 hours
prior to ST infection by the oral route. AmB-
treated calves had lower fevers, had overall
reduced morbidity, and shed less bacteria into
the environment in comparison to control
calves [112]. Thus AmB protected from disease
severity and reduced the level of shed bacteria.
The result suggested that AmB could be used
as a potent immunomodulatory molecule to
enhance disease resistance against ST in calves.

Our efforts are continuing to assess the
immune protective effects of AmB on very
young calves, which are highly prone to infec-
tion. When bovine calves are less than a week-
old, they have a variable colostrum status, and
they experience a broad spectrum of natural
scouring and respiratory maladies in their first
week to 3 months of life. These symptoms are
typically caused by rotavirus, coronavirus,
Cryptosporidium, or a combination of virus and
parasite infections. Regardless of the cause, the
calves are treated with a hydration therapy. If
signs of a secondary bacterial infection become
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apparent, antibiotics are administered. The
calves were likely preexposed to a variety of
pathogens; this would explain the early disease
that occurs when they are housed indoors in
clean facilities. With years of data on these
occurrences of natural illness in our facilities,
our study was directed to test whether early
minimal treatments with AmB could potentially
be used as a broad-spectrum prophylactic
immunomodulator. A dose of 0.25 mg/kg
injected intravenously as previously described
[112] was used in the study. This is approxi-
mately 10-fold less than the doses given to
patients for antifungal treatment and was deter-
mined to be nontoxic in calves. There were two
treated groups (n5 12 per group). One group
received a single injection of AmB on the day of
arrival at our facility (AmB x1). A second group
received this initial dose on the day of their
arrival and a second dose after 10 days
(AmB x2). Thus, for the first 10 days, there were
24 calves treated with one dose of AmB. Health
condition was assessed by evaluating each ani-
mal’s subjective appearance and attitude, appe-
tite, temperature, pulse and respirations, fecal

consistency, and treatments on a scale of 0�5.
Health condition was assessed for all calves
twice daily and was compared to calves
acquired in the same 3 months in a 5-year span
before and after this experiment that did not
receive any treatment. In a given period, the
study tallied the number of days the calves had
perfect health scores (scores of 0). The calves
that received one injection of AmB had
improved health assessments in their first 10
days in comparison to calves that received no
treatment (Fig. 46.1A). The period was then
extended to the first 30 days. In this case, the
untreated calves were compared to the AmB x1
and AmB x2 groups. Whereas one dose of AmB
appeared to benefit in the short term (in the first
10 days), the AmB x1 treatment had no lasting
effect. In contrast, calves treated with AmB x2
had a longer-lasting positive benefit (Fig. 46.1B).
These data suggest that minimal early doses of
an innate immune stimulant could benefit the
health of livestock for extended periods. This is
especially important for cattle that are subject to
repeated infections early in life. It also provides
proof of principle that broad-spectrum
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FIGURE 46.1 Early prophylactic treatment of calves with AmB improves their health. Calves were assessed twice daily,
and the perfect health assessments in the first 10 days (A) at our facility were tallied for calves that were treated once with
AmB (AmB x1), or untreated. (B) Numbers of perfect health assessments in the first 30 days for calves treated with AmB
once, on the day of their arrival (AmB x1), or twice, on their first and 10th days in the facility (AmB x2). Statistical analysis
was by Student’s t-test. * P value, .05; ** P value, .01.
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protection against an array of mucosal patho-
gens can likely be achieved through prophylac-
tic use of an innate immune stimulant.

IX. CONCLUDING REMARKS

Because of their position in the body and
their capacity for varied, appropriate responses
depending on the environmental signals, γδ T
cells are an optimal target for novel immuno-
therapeutic and vaccine development. Some
TCR and TLR agonists that can stimulate γδ T
cells have already been used extensively for
new cancer treatments. Ample data suggest
that the cells might also be specifically stimu-
lated to protect from infectious and inflamma-
tory disease. Considering the growing concerns
about the use and overuse of antibiotics, it is
critical that such novel approaches to counter
infectious agents be pursued.
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