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Retroviruses are obligate intracellular parasites that must integrate a copy of the viral
genome into the host DNA. The integration reaction is performed by the viral enzyme
integrase in complex with the two ends of the viral cDNA genome and yields an integrated
provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their
stable integration. However, some retroviral integration events may dysregulate host
oncogenes leading to cancer in gene therapy patients. Multiple strategies to target
retroviral integration, particularly to genetic safe harbors, have been tested with limited
success. Attempts to target integration may be limited by the multimerization of integrase
or the presence of host co-factors for integration. Several retroviral integration complexes
have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-
factors bind chromatin, anchoring the complex and allowing integration. The tethering
factor allows for both close proximity to the target DNA and specificity of targeting. Each
retrovirus appears to have distinct preferences for DNA sequence and chromatin features
at the integration site. Tethering factors determine the preference for chromatin features,
but do not affect the subtle sequence preference at the integration site. The sequence
preference is likely intrinsic to the integrase protein. New developments may uncouple the
requirement for a tethering factor and increase the ability to redirect retroviral integration.

Keywords: retrovirus, gene therapy, targeted integration, HIV-1, MLV, LEDGF/p75

INTRODUCTION

By stably inserting a transgene into a patient’s genome, retroviral gene therapy vectors offer
the possibility of curing monogenic diseases (Sinn et al., 2005). Retroviruses are defined by
the enzymatic activities of reverse transcriptase and integrase (IN) enzymes (Coffin et al.,
1997). Reverse transcriptase copies the viral genomic RNA to a double stranded DNA (cDNA)
(Figure 1). The nascent cDNA is bound by IN as part of a pre-integration complex (PIC). IN
mediates the covalent joining of the viral cDNA ends to the host genome yielding the stably
integrated provirus. Several families of retroviruses have been described including alpha
(Rous sarcoma virus, RSV), beta (mouse mammary tumor virus, MMTV), gamma (murine
leukemia virus, MLV), delta (human T cell leukemia virus, HTLV-1), epsilon (walleye dermal
sarcoma virus, WDSV), lenti (human immunodeficiency virus, HIV-1), and spuma
(prototype foamy virus, PFV). Retrovirus families alpha through epsilon are oncogenic in
animals and humans. The lentiviruses cause immunodeficiency. The spumaviruses, also
known as foamy viruses, have not been shown to cause any disease (Lindemann and
Rethwilm, 2011).
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FIGURE 1 | Retroviral life cycle and retroviral vector particle transduction. (Left) Retroviruses may enter a target cell by membrane fusion. The capsid core is
released to the cytoplasm. Reverse transcription copies the viral genomic RNA (black lines) to a linear double stranded cDNA. Integrase binds the ends of the viral cDNA
forming a pre-integration complex (PIC). Lentiviral PICs are able to cross an intact nuclear membrane while all other retroviruses require cellular division to access the host
genome. Integrase mediates the stable integration of the vDNA (black) to the host genome (blue) generating the provirus. Host transcription machinery generates
viral mRNAs and genomic RNA. Progeny viral particles assemble and are released from the plasma membrane. Following budding from the cell, viral enzyme protease
cleaves the polyproteins to generate a mature infectious virus particle. (Right) Retroviral vector particles recapitulate the early steps of the retroviral life cycle. Viral RNA
and cDNA depicted in red. However, they do not encode viral proteins. Only the protein of interest is expressed.

TABLE 1 | Developments in retroviral gene therapy vectors.

Advantages Disadvantages Advances References

Gene therapy Stable integration and
expression of transgene

Oncogenesis 1983 - Creation of retroviral vectors Perkins et al. (1983),Miller et al. (1983),
Joyner and Bernstein, (1983)

Low immunogenicity Limited ability to target
select genes

1990 - MLV vectors in patients for
X-SCID

Blaese et al. (1995),Cavazzana-Calvo et al.
(2000)

2006 - HIV-1 vectors in patients for
cancer treatment

Morgan et al. (2006),Bobisse et al.
(2009),Johnson et al. (2009)

2009 - HIV-1 vectors in patients for
X-ALD and β-thalassemia

Cartier et al. (2009),Cavazzana-Calvo et al.
(2010)

2018 - CRISPR-CAS9 in patients Romero et al. (2018)
Fusions of IN Transduction of primary cells Potential disruption of

intasome multimers
1994 - First chimeric HIV-1 IN
fusions

Bushman (1994),Goulaouic and Chow
(1996)

Modification of retroviral protein
only

Reduced integration
efficiency

1996 - First chimeric ASLV IN
fusions

Katz et al. (1996)

1997 - Zinc finger fusions to HIV-
1 IN

Bushman and Miller (1997),Tan et al. (2004)

Fusions of tethering
factors

Does not require modification
of retroviral proteins

Cannot be performed in
primary cells

2003 - Discovery of LEDGF/p75 as
HIV-1 IN co-factor

Cherepanov et al. (2003),Turlure et al. (2004)

Does not redirect all
integration events

2009 - First LEDGF/p75 fusions Meehan et al. (2009),Ferris et al.
(2010),Silvers et al. (2010)

Requires manipulation of
cellular factors

2013 - Discovery of BET proteins
as MLV IN co-factors

De Rijck et al. (2013),Gupta et al.
(2013),Sharma et al. (2013)

2013 - LEDGF/p75 fusion
employed in WT cells

Vets et al. (2013)

Tether independent
targeting

Transduction of primary cells Limited efficacy 2016 - Alterations to PFV GAG Hocum et al. (2016)

No cellular modifications
required

2014 - Alterations to MLV IN Aiyer et al. (2014),Larue et al. (2014),El
Ashkar et al. (2014)
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There are several consequences of stable retroviral integration
in patients. In the cases of human pathogens HTLV-1 and HIV-1,
it has been impossible to cure patients with the notable exception
of two HIV-1 patients (Taylor et al., 2019). During HIV-1
infection, a latent reservoir of cells persists throughout
suppressive anti-retroviral therapy but will resume
transcription and replication if therapy is stopped (Chun et al.,
1999). Interestingly, some patients have been reported to
suppress HIV-1 replication in the absence of anti-retroviral
drugs (Kaul et al., 2011; Saez-Cirion et al., 2013; Sharaf et al.,
2018). In most HTLV-1 patients the proviral genomes may
remain transcriptionally silent, or latent, for decades
(Bangham et al., 2019). Due to this prolonged latency,

HTLV-1 infection does not lead to disease for 90–95% of
patients. However, both diseases caused by HTLV-1, adult
T cell leukemia (ATL) and neurodegenerative HTLV-1
associated myelopathy/tropical spastic paraparesis (HAM-
TSP), have limited treatment options and poor prognoses
(Utsunomiya et al., 2015; Yves et al., 2015; Matsuura et al., 2016).

While the stable integration of retroviral genomes prevents
effective cures of these viral infections, its very nature offers the
exciting possibility to cure monogenic diseases with retroviral
gene therapy vectors that stably introduce a corrective transgene
(Table 1; Figure 2). Retroviral gene therapy vectors employ the
viral structural and enzymatic proteins but lack accessory and/or
virulence proteins (Miller 1992; Naldini et al., 1996; Trobridge
et al., 2002a; Trobridge et al., 2002b). The packaged vector RNA
genome encodes a cellular promotor, a corrective transgene, as
well as regulatory elements required for packaging the RNA into
vector particles (the psi packaging signal) and reverse
transcription (the long terminal repeats) (Logan et al., 2002).
No viral genes are encoded in the vector RNA genome (Figure 3).
Retroviral particles are readily pseudotyped with a variety of
membrane proteins altering the tropism and allowing entry to
variable cell types (Duverge and Negroni 2020; Gutierrez-
Guerrero et al., 2020). An advantage to retroviral-based
vectors is the relatively limited induction of innate and
adaptive immunity as compared to adenoviral-based gene
therapy systems which have seen limitations due to their
immunogenicity (Sauter and Kirchhoff 2016; Saez-Cirion and
Manel 2018; Mennechet et al., 2019; Shirley et al., 2020). To date
retroviral gene therapy vectors have allowed the delivery of
functional transgenes to stem cells ex vivo, followed by
successful engraftment and permanent functional cure of
monogenic disorders. These disorders include X-linked
chronic granulomatous disease (X-CGD), Wiskott-Aldrich
syndrome (WAS), X-linked adrenoleukodystrophy, and
X-linked severe combined immune deficiency (X-SCID) (Ott
et al., 2006; Aiuti et al., 2013; Eichler et al., 2017). Despite this
initial success, retroviral-based gene therapy vectors treating

FIGURE 2 | Timeline of developments in retroviral gene therapy vectors and targeted integration.

FIGURE 3 | HIV-1 proviral genome and lentiviral vector genome. (Top)
The HIV-1 proviral genome (HIV Genome) has long terminal repeats (LTRs) at
each end. These non-coding sequences include the terminal sequences that
are bound by integrase. The LTRs also encode sequences necessary for
viral gene expression including transcription factor binding sites and a TATA
box to initiate RNA Pol II transcription. Every retrovirus includes gag, pol, and
env genes. These genes encode the structural, enzymatic, and envelope
proteins, respectively. HIV-1 also has six accessory genes. Two of these
genes, tat and rev, are spliced. (Bottom) A representative lentiviral vector
(WW Vector) for treatment of Wiskott-Aldrich syndrome (WAS) encodes the
WAS protein (WASP) gene driven by the human WASP promoter (hWASP)
(Aiuti et al., 2013). The post-transcription regulatory element (PRE) mediates
export of unspliced mRNA from the nucleus to the cytoplasm for translation
(Zufferey et al., 1999). Much of the LTR sequences have been deleted,
including transcription factor binding sites, yielding a self-inactivating (SIN)
vector.
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X-SCID suffered a significant setback when clinical studies with
an MLV-based gene therapy vector led to leukemia in several
children (Hacein-Bey-Abina et al., 2003; Hacein-Bey-Abina et al.,
2008; Howe et al., 2008). Genetic characterization of the resulting
cancer revealed that oncogenesis was due to MLV vector
integration at the promoters of known oncogenes and
dysregulation of their expression. Interestingly, this is also how
MLV infection leads to leukemia in mice.

Targeting retroviral integration to genetic “safe harbors” in the
host genome that will not lead to cancer has become an
imperative for the use of retroviral gene therapy vectors
(Papapetrou et al., 2011). Integration site selection in a host
genome is not random for most retroviruses (Schroder et al.,
2002; Wu et al., 2003; Desfarges and Ciuffi, 2010; Serrao et al.,
2015). Instead, each retrovirus displays unique integration
preferences for genomic regions such as transcription units,
CpG islands, or transcription start sites (TSSs). Understanding
the factors governing species specific retroviral integration site
selection is key for the development of next generation retroviral
gene therapy vectors. While precision targeting of retroviral
integration was first attempted over 25 years ago, thus far
there has been little success in these endeavors. Whether
retroviral gene therapy vectors can be purposefully directed to

integrate at genetic safe harbors in patient cells is currently
unknown.

Adeno-associated virus (AAV) vectors, which are not
retroviruses, are also used as gene therapy vectors and may
sometimes integrate at a specific locus in the human genome.
AAV vectors are beyond the scope of this manuscript and have
been extensively reviewed elsewhere (Wang et al., 2019; Colon-
Thillet et al., 2021; Fakhiri and Grimm, 2021; Peters et al., 2021;
Riyad and Weber, 2021).

Integration Site Selection in Cells
Retroviral gene therapy vectors that have been used in humans
and animals have been derived fromMLV, HIV-1, avian sarcoma
leukosis virus (ASLV), and PFV. All retroviral INs have a zinc
coordinating amino terminal domain (NTD), a catalytic core
domain (CCD) with the enzymatic DD (35)E motif, and a
carboxyl terminal domain (CTD) that is the least conserved
between retroviruses (Chiu and Davies, 2004; Figure 4A).
Some retroviral INs, such as PFV IN, include an amino
terminal extension domain (NED) (Valkov et al., 2009).
Whether MLV IN includes a NED is controversial (Guan
et al., 2017). Viral vectors derived from gammaretroviruses
and spumaviruses, such as MLV and PFV, require cellular

FIGURE 4 |Domains of viral integrases and cofactors. (A)Domains of murine leukemia virus (MLV), prototype foamy virus (PFV) and human immunodeficiency virus
(HIV-1) INs. These domains are the N-terminal extension domain (NED), the N-terminal domain (NTD), the catalytic core domain (CCD) and the C-terminal domain (CTD).
The numbers along each line represent amino acid residues. (B) Domains of integration host cofactors LEDGF/p75 and Brd4. LEDGF/p75 includes a chromatin binding
domain (PWWP) followed by three charged regions (CR1-CR3). Between CR1 andCR2 is a nuclear localization signal (NLS) and two AT-hooks which allow for DNA
binding of AT-rich motifs. Near the C-terminus is the integrase binding domain (IBD). Brd4 contains two bromodomains (BD1, BD2) as well as 2 DNA binding motifs, A
and B, which in conjunction bind chromatin. There is also a protein interaction extra terminal domain (ET), a serine-rich SEED domain, and a C-terminal motif (CTM).
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division to access the host genome while lentiviral vectors can
traverse an intact nuclear membrane (Kobiler et al., 2012;
Matreyek and Engelman, 2013). The ability of lentiviruses to
infect non-dividing cells makes them especially attractive for gene
therapy development.

Retroviral IN catalyzes two reactions during infection.
Following reverse transcription of the viral genomic RNA to a
linear double stranded cDNA IN removes a GT dinucleotide from
the 3′-terminus of each viral DNA end, termed 3′-processing. In
the nucleus IN covalently joins hydroxyls at both 3′ ends of the
viral cDNA to the host DNA in independent single step
transesterification reactions (Brown, 1997; Jones, Lopez et al.,
2016). These two points of joining are separated by 4–6 base pairs
of host DNA spanning one major groove. This spacing is
characteristic of each retrovirus and results in duplications
flanking the integrated proviral genome (Kvaratskhelia et al.,
2014). Integration appears to be an inefficient reaction since only
approximately 10% of reverse transcripts result in a provirus
(Butler et al., 2001; Yoder et al., 2011; Francis et al., 2014; Francis
and Melikyan, 2018).

Each retrovirus appears to have a distinct preference for
integration site selection in cells (Shun et al., 2007). These
preferences may favor or disfavor genomic elements, such as
promoters or transcription units, or DNA sequence. While
retroviral integration is not random in most cases, the
preferences for chromatin elements are not stringent. For
example, HIV-1 integration sites favor the bodies of actively
transcribed genes (58–86% compared to a matched randomized
control value of 45.7%) while murine leukemia virus (MLV)
favors TSSs, enhancers, and promoter regions (15–39%
compared to a matched randomized control value of 4.9%)
with variations likely due to cell type and bioinformatics
criteria (Schroder et al., 2002; Wu et al., 2003; Sharma et al.,
2013; De Ravin et al., 2014; Lafave et al., 2014; Serrao et al., 2015;
Feng et al., 2016). However, it should be noted that these
retroviruses also integrate at sites outside of these regions
(∼40–30% for HIV-1 integration not in actively transcribed
genes and ∼70–80% for MLV integration outside promoter
regions). Integration at genomic elements appears to be largely
determined by host co-factors of integration (Shun et al., 2007).

In addition to genomic elements most retroviruses appear to
have a unique subtle sequence preference at the points of joining
(Holman and Coffin, 2005; Wu et al., 2005; Hacker et al., 2006;
Kang et al., 2006; Marshall et al., 2007; Bennett et al., 2014; Liu
et al., 2015). The preferences include the 4–6 bp between the
points of joining and flanking 3 bp. The sequences appear to
display palindromy, although this notion has been challenged
(Kirk et al., 2016). The sequence preferences are extremely subtle
generally requiring at least one hundred unique integration sites
to achieve statistical significance at each base (Mitchell et al.,
2004; Holman and Coffin, 2005; Wu et al., 2005; Bennett et al.,
2014). There is no apparent linkage between any of the individual
base preferences around the integration site. In addition, the
consensus integration site preference is typically not observed.
The DNA sequence preference at the integration site is unaffected
by deletion of the host co-factors, suggesting it is determined by
IN (reviewed in (Kvaratskhelia et al., 2014)).

Many retrovirus families have host proteins that act as
integration co-factors (Cherepanov et al., 2003; De Rijck et al.,
2013; Gupta et al., 2013; Sharma et al., 2013; Maertens, 2016;
Winans et al., 2017). These proteins bind to both IN and
chromatin effectively tethering the integration complex and
directing integration to nearby host DNA. Tethering factors
appear to determine the integration preference for genomic
elements (Shun et al., 2007). To date two main groups of
tethering factors have been identified: lens epithelium-derived
growth factor (LEDGF/p75) is the host co-factor for lentiviral IN
and the bromodomain and extra terminal (BET) family of
proteins (Brd2, 3 and 4) interact with gammaretroviral IN.

The first identified retroviral integration host co-factor was
LEDGF/p75 which interacts with HIV-1 IN (Cherepanov,
Maertens et al., 2003; Turlure et al., 2004). LEDGF/p75
(encoded by PSIP1) is a transcriptional co-activator which
interacts with a variety of cellular proteins including menin,
mixed-lineage leukemia histone methyltransferase (MLL), and
pogo transposable element with ZNF domain (PogZ) (Ge et al.,
1998; Yokoyama and Cleary, 2008; Bartholomeeusen et al., 2009;
Huang et al., 2012). It consists of a PWWP domain, three charged
regions (CR), two AT hook domains, a nuclear localization signal
(NLS), and an IN binding domain (IBD) (Figure 4B; Cherepanov
et al., 2004; Llano et al., 2006a; Turlure et al., 2006). The PWWP
domain of LEDGF/p75 binds to the histone H3 with a tri-methyl
post translational modification (PTM) at lysine 36 (H3K36me3)
(Pradeepa et al., 2012; Eidahl et al., 2013; van Nuland et al., 2013).
H3K36me3 is a chromatin mark for active genes, the preferred
target for HIV-1 integration (Schroder et al., 2002; De Rijck et al.,
2010). The IBD binds to a cleft between two HIV-1 IN protomers
and helps to stabilize the integration complex (Cherepanov et al.,
2005; McKee et al., 2008; Kessl et al., 2011). The IBD domain is

FIGURE 5 | Model of LEDGF/p75 tethering an HIV-1 intasome. A
mononucleosome (green) wrapped in DNA (black line) representing a
nucleosome. The PWWP domain of LEDGF/p75 (cyan) binds the post
translational modification H3K36me3. The integrase binding domain
(IBD) of LEDGF/p75 is bound to the HIV-1 intasome (red) which is shown as a
tetramer for simplicity. The viral DNA genome is shown in black and the
dashed lines represent the viral DNA within the intasome.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6623315

Kristine E. Yoder et al. Targeting Retroviral Integration

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


responsible for interactions with cellular proteins including cell
division cycle-associated 7-like protein (JPO2), PogZ, and protein
IWS1 homolog (IWS1) (Bartholomeeusen et al., 2009; Tesina
et al., 2015). Taken together, LEDGF/p75 creates a bimodal tether
between HIV-1 integration complexes and H3K36me3 in
chromatin. These structural studies generated the model for a
cellular factor guiding retroviral IN to a chromatin target site
(Figure 5).

Genetic deletion of PSIP1 reduced HIV-1 infection 10-fold
and reduced integration into actively transcribed genes (Llano
et al., 2004; Ciuffi et al., 2005; Shun et al., 2007). Sequencing HIV-
1 integration sites in cells with deletion of the PSIP1 gene revealed
that the sequence preference was unaffected, suggesting that an
IN tethering factor may not participate in the sequence preference
(Shun et al., 2007). Ectopic expression of the IBD domain
significantly inhibited integration by ∼7-fold (De Rijck et al.,
2006; Llano et al., 2006a; Meehan et al., 2011). Small molecules
that inhibit the interaction of LEDGF/p75 with HIV-1 IN (termed
Allosteric IN inhibitors (ALLINIs), also referred to as non-
catalytic site integrase inhibitors (NCINIs); LEDGINs or
INLAIs) have been shown to alter HIV-1 infectivity,
integration site selection, and virion maturation (Christ et al.,
2012; Kessl et al., 2012; Tsiang et al., 2012; Feng et al., 2016). The
primary mechanism of ALLINIs has been shown to be during
virion maturation where it inhibits integrase interaction with the
viral RNA genome, however ALLINIs exhibit secondary effects
during integration via blocking integrase interaction with
LEDGF/p75 (Jurado et al., 2013; Sharma et al., 2014; Kessl
et al., 2016). Treatment with one such drug, BI-D, decreased
HIV-1 integration in genes from 86.4% to 67.9% (Feng et al.,
2016). Together these data indicate that LEDGF/p75 binding to
HIV-1 IN directs integration to actively transcribed genes.

BET proteins are the principal binding partners of MLV IN
(De Rijck et al., 2013; Gupta et al., 2013; Sharma et al., 2013). The
BET protein family consists of Brd2, 3, 4, and T, whereas the
extended BET family includes Brd1, 7, 8, and 9 (Wu and Chiang,
2007; Belkina and Denis, 2012). Brd2, 3 and 4 are ubiquitously
expressed and have been implicated in control of the cell cycle,
transcription, and DNA replication, whereas BrdT is only
expressed in the testis. Brd4, unlike Brd2 and 3, is expressed
in two isoforms: short (1–720) and long (1–1363) (Figure 4B;
Boehm et al., 2012; Zhu et al., 2012). BET proteins are comprised
of dual bromodomains (BD1 and BD2), DNA binding motifs A
and B, and two C-terminal domains termed the extra terminal
(ET) and SEED domain. The ET domain interacts with many
proteins, including jumonji C-domain-containing protein 6
(JMJD6), histone-lysine N-methyltransferase NSD3 (NSD3),
glioma tumor suppressor candidate region gene 1 protein
(GLTSCR1), ATPase family AAA domain-containing protein 5
(ATAD5), and chromodomain helicase DNA-binding protein 4
(CHD4), as well as viral γ-2 herpesvirus latency-associated
nuclear antigen (Rahman et al., 2011; Crowe et al., 2016). Of
particular interest to this review is that the ET domain interacts
with high affinity (160 nM) to the carboxyl terminal tail of MLV
IN (Larue et al., 2014). The binding site in this highly flexible tail
domain is conserved among gammaretroviruses but not other
retroviral genera (Kvaratskhelia et al., 2014). Like LEDGF/p75

and HIV-1 integration, BET proteins direct MLV integration site
selection through the bimodal association of its ET domain with
the carboxyl terminal tail of MLV IN and its bromodomains with
acetylated H3 and H4 histone tails (Moriniere et al., 2009;
Filippakopoulos et al., 2010). The BET proteins guide MLV
integration to TSSs, enhancers and super-enhancers (SE)
(Sharma et al., 2013; De Ravin et al., 2014; Lafave et al., 2014).
BET proteins play significant roles in human oncogenesis.
Emerging anti-cancer small molecule inhibitors rely on
acetylation mimics which block the BET bromodomains from
binding chromatin (Alqahtani et al., 2019; Cochran et al., 2019;
Zaware and Zhou, 2019; Lu et al., 2020; Perner and Armstrong,
2020). For example, archetypical compounds I-BET and JQ-1
were shown to bind the BET bromodomains and disrupt SE
function in myeloid leukemia (Zuber et al., 2011; Loven et al.,
2013). SE formation results in abnormally elevated expression of
oncogenes and oncogenesis (Pelish et al., 2015; Call et al., 2020;
Deng et al., 2020). During MLV infection, inhibition of BET
proteins with JQ-1 significantly reduces integration at TSSs from
39 to 11% as well as corresponding reduction of integration near
acetylated histone PTMs H3K9ac and H327ac (Sharma et al.,
2013). Specifically, integration was reduced near oncogenes
LMO-2, CCND2, and BMI1, the loci associated with
tumorigenesis in human gene therapy trials (Larue et al., 2014).

Other retroviral IN tethering factors include the FACT
complex and serine/threonine protein phosphatase 2A (PP2A).
Alpharetrovirus ASLV IN has been shown to bind the
heterodimeric facilitates chromatin transcription (FACT)
complex which stimulates integration activity in vitro (Winans
et al., 2017). Furthermore, depletion of the FACT complex in cells
decreased ASLV integration efficiency. The FACT complex
contains the structure specific recognition protein 1 (SSRP1)
and suppressor of Ty 16 (Spt16), which form a general histone
chaperone complex essential for transcription and DNA
replication (Orphanides et al., 1998; Orphanides et al., 1999;
Belotserkovskaya and Reinberg, 2004; Abe et al., 2011). While the
FACT complex is thought to destabilize the histone octamer
during cellular functions, such as DNA replication, its role in
ASLV integration has not yet been determined (Reinberg and
Sims, 2006; Winkler and Luger, 2011; Formosa, 2012; Winans
et al., 2017). Deltaretroviral (HTLV-1, HTLV-2, and bovine
leukemia virus) INs reportedly bind PP2A and its addition
stimulated integration in vitro (Maertens, 2016). However,
PP2A does not have any known chromatin binding function
making its role during integration in vivo unclear.

Additional cellular factors have been shown to be involved in
targeting retroviral integration to select genomic features. While
not the focus of this review, a brief discussion is warranted. These
factors have been studied in the context of their interaction with
the HIV-1 capsid (CA) core and include cleavage and
polyadenylation specificity factor subunit 6 (CPSF6),
nucleoporin protein 153 (Nup153), and E3 SUMO-protein
ligase (RANBP2 or Nup358). CPSF6 is a chromatin associated
protein and a member of several nuclear complexes such as
cleavage factor Im (CFIm) complex, paraspeckles, and nuclear
speckles (Cardinale et al., 2007; Ruepp et al., 2009). It interacts
with the HIV-1 CA core at the nuclear pore and the nuclear
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interior where it then directs the CA core/preintegration complex
(PIC) toward gene dense regions (Lee et al., 2010; Price et al.,
2012; Sowd et al., 2016; Achuthan et al., 2018; Bejarano et al.,
2019). Unlike targeting by LEDGF/p75, which performs localized
targeting within active genes, CPSF6 appears to target integration
toward larger chromatin gene dense areas, potentially due to
CPSF6 localization in nuclear speckles (Francis et al., 2020;
Rensen et al., 2021). Nup153 is a component of the nuclear
pore complex and serves as an essential scaffolding element (Krull
et al., 2004). Nup153 interacts with the HIV-1 CA core similar to
CPSF6, is essential for HIV-1 replication, helps to import the CA
core/PIC into the nucleus, and its depletion retargets integration
to less gene dense regions (Matreyek and Engelman, 2011; Koh
et al., 2013; Matreyek et al., 2013; Lelek et al., 2015; Buffone et al.,
2018). Nucleoporin protein RANBP2 interacts with the docking
cytoplasmic CA core (Yokoyama et al., 1995; Frosst et al., 2002;
Bichel et al., 2013). Like CPSF6 and Nup153, depletion of
RANBP2 results in HIV-1 integration away from gene dense
regions (Ocwieja et al., 2011). Taken together, the interaction of
RANBP2 and Nup153 with the CA core encapsulating the PIC
could explain the propensity for HIV-1 integration closer to the
nuclear pore (Marini et al., 2015). However, retargeting
integration of gene therapy vectors through alterations in
HIV-1 CA appear unlikely due to the essential and genetically
fragile nature of the CA core (Rihn et al., 2013). In addition,
depletion of these additional cellular factors does not alter
integration into active genes but instead retargets away from
gene dense regions. Such broad retargeting is unlikely to aid in
developing improved gene therapy vectors for integration at safe
harbors.

Retroviral Gene Therapy Vectors
Early animal and human studies using MLV-based gene therapy
vectors were initially very promising. The first retroviral-based
vectors were created in the early 1980s with other viral vectors
such as those using adenovirus components following in the mid-
1990s (Joyner and Bernstein, 1983; Miller et al., 1983; Perkins
et al., 1983; Flotte et al., 1996). Murine bone marrow progenitor
cells were transduced with MLV-based vectors expressing human
gp91phox ex vivo and engrafted into mice with X-CGD. The mice
displayed partial reconstitution of superoxide production,
increased phagocytosis, and significantly increased survival
after challenge with B. cepacia (Dinauer et al., 1999). In
humans, MLV-based gene therapy vectors were first
successfully used in hematopoietic stem cell (HSC) gene-
therapy of X-SCID (Blaese et al., 1995; Cavazzana-Calvo et al.,
2000). In clinical trials from 1999 to 2009, 20 X-SCID patients
received gene therapy for a defect in the interleukin 2 common
gamma chain gene encoding γc (also called IL-2RG (Wu and
Dunbar, 2011)). While 17 patients were successfully treated for
X-SCID, 5 of 20 patients developed leukemia (Wu and Dunbar,
2011; Cavazzana et al., 2016). These tumors correlated with
integration of the MLV vectors near the LMO-2 and CCND2
oncogenes resulting in increased transcription (Schmidt et al.,
2002; Hacein-Bey-Abina et al., 2003; Hacein-Bey-Abina et al.,
2008). Patients who had received gene therapy for other genetic
disorders, such as WAS and X-CGD, also developed leukemia

(Dewey et al., 2006; Ott et al., 2006; Boztug et al., 2010; Stein et al.,
2010). While these studies demonstrated the successful treatment
of human genetic disorders with MLV-based vectors, they also
revealed the significant hazards inherent to retroviral integration.

Following the development of leukemia in several MLV vector
treated patients, the retroviral gene therapy field shifted focus to
lentiviral-based vectors. Initially, there was concern that these
vectors could also be oncogenic or have other unexpected
deleterious outcomes. Lentiviruses lead to immunosuppression
but are not oncogenic. Patients receiving anti-retroviral therapy
(ART) do have higher incidence of non-AIDS-defining
malignancies (NADM) such as Hodgkin’s lymphoma,
oropharyngeal cancer, anal cancer, hepatocellular carcinoma,
and non–small cell lung cancer (Lurain et al., 2019). Increased
incidence of these malignancies could due to several reasons,
including immunosuppression, co-infection with other
oncogenic viruses such as Hepatitis B, and chronic immune
activation and/or dysregulation (de Martel et al., 2015; Saeidi
et al., 2018; Pinato et al., 2019). Studies evaluating links between
HIV-1 infection and increased NADM have examined
integration sites in cells and in cells from patients receiving
ART. In HEK293T cells it was observed that HIV-1
integration events are ∼3-fold enriched in cancer driving genes
and highly mutated genes (identified in the Cancer Genome
Atlas) (Kandoth et al., 2013; Vogelstein et al., 2013; Singh
et al., 2015). In patients receiving ART, it was observed that
∼40% of total integration events were detected in clonally
expanded latent cells including integration into MKL2 and
BACH2 oncogenes (Maldarelli et al., 2014). A second study
showed similar results in HIV-1 repressed patients receiving
ART with slightly enriched clonal expansion seen in
oncogenes (Wagner et al., 2014). While these clonal
expansions have been shown to play a role in reemergence of
HIV-1 viremia in patients discontinuing ART, there has not been
any validated link to cancer onset (Gantner et al., 2020; Halvas
et al., 2020).

Lentiviral-based vectors are more amenable for manipulation
in the clinic due to their ability to infect non-dividing cells
(Swiggard et al., 2005). When cells are transduced in a resting,
non-activated state, such as naïve T cells or HSCs, theymay retain
more functional potential when engrafted into patients (McLean
and Michie, 1995). Thus, lentiviral-based vectors have been
employed in multiple clinical trials, including for the
treatment of certain blood cancers (Morgan et al., 2006;
Bobisse et al., 2009; Johnson et al., 2009; Milone and
O’Doherty, 2018). Development of clinically relevant lentiviral-
based vectors has included removal of virulence factors, splitting
the genome to multiple plasmids to reduce recombination, and
deletions of viral promoter elements in the LTR to generate self-
inactivating (SIN) vectors (Dull et al., 1998; Vannucci et al.,
2013). In early generations of lentiviral-based vectors, insertional
mutagenesis was observed in proliferative HSCs and tumors were
observed in mice (Themis et al., 2005; Wu and Dunbar, 2011).
Later generations of lentiviral-based vectors have successfully
treated a variety of genetic diseases, such as WAS, metachromatic
leukodystrophy, beta-thalassemia, X-linked
adrenoleukodystrophy, and metachromatic leukodystrophy
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(Cartier et al., 2009; Aiuti et al., 2013; Biffi et al., 2013; Milone and
O’Doherty, 2018). For example, gene therapy treatment of beta-
thalassemia has led to several patients no longer requiring
transfusions for several years post treatment, suggesting stable
long-term expression and no apparent adverse reactions. While
there are no reported cases of leukemogenesis in these trials,
clonal expansion of cells with integration in theHMGA2 gene was
observed in a single patient (Cavazzana-Calvo et al., 2010).
However, a subsequent study of 22 patients do not observe
any clonal expansion (Thompson et al., 2018).

Other retroviruses have been proposed for use in human gene
therapy including ASLV-based vectors (Hu et al., 2007).
Transgenic mouse lines have been developed using an ASLV-
based retroviral vector system for delivery of genes to
preimplantation mouse embryos (Federspiel et al., 1994;
Federspiel et al., 1996). In other studies, these vectors were
shown to transduce rhesus macaque CD34+ hematopoietic
progenitor cells efficiently (33%) and stably up to 18 months
(Hu et al., 2007). In a study looking at a limited number of
integration sites of rhesus long-term repopulating cells there was
no detectable integration at enhancers, promoters, or oncogenes
(Hu et al., 2008). This integration pattern could be linked to
ASLV IN interactions with the FACT complex, which is proposed
to be enriched in gene bodies, (Winans et al., 2017). To date ASLV
vectors have not progressed to human gene therapy trials.

Foamy viruses (FV), such as PFV, are not known to cause
disease in animal infections or xenotropic human infections. The
FV life cycle differs from other retroviruses and lentiviruses
which precludes them from being efficiently pseudotyped
(reviewed in (Lindemann and Rethwilm, 2011)). However, it is
possible to generate high titer FV vectors which have been shown
to transduce several cell types including human primary
macrophages, human and rhesus embryonic stem cells, human
induced pluripotent stem cells, and murine hematopoietic stem
cells (Vassilopoulos et al., 2001; Trobridge et al., 2002a; Gharwan
et al., 2007; Taylor et al., 2008; Deyle et al., 2013; Nasimuzzaman
et al., 2016; Rajawat et al., 2019). FVs are not known to have a host
integration co-factor and have little preference for genomic
features. Sequencing FV integration sites suggests that FV
integration shows a slight preference for TSSs and CpG
islands, but less so than MLV integration (Nowrouzi et al.,
2006; Trobridge et al., 2006; Serrao et al., 2015). Importantly,
FV integration does not appear to be oncogenic. Five dogs with
canine leukocyte adhesion deficiency (CLAD) caused by deficient
expression of CD18 were treated with a FV gene therapy vector
(Bauer et al., 2008; Ohmine et al., 2011; Bauer et al., 2013).
Autologous CD34+ hematopoietic stem cells were transduced and
infused to the animals (Bauer et al., 2008). Four of the dogs were
cured of CLAD, a phenotype which lasted 4–7 years (Bauer et al.,
2013). There was no evidence of leukemia in any of these animals
(Ohmine et al., 2011; Bauer et al., 2013). Similar FV gene therapy
of myoblast cells ex vivo followed by intramuscular
transplantation has successfully led to muscle regeneration in
a mouse model of Duchenne muscular dystrophy (Meng et al.,
2020).

While most retroviral gene therapy protocols include
transduction of cells ex vivo, FV has also been directly

administered intravenously to dogs (Burtner et al., 2014;
Humbert et al., 2018). Six dogs with X-SCID were given FV
vectors expressing the cc gene intravenously. The FV vectors
expressed the natural Env and were not targeted to a particular
cell type. However, two animals were treated with granulocyte
colony-stimulating factor (G-CSF) and AMD3100 to mobilize
hematopoietic stem and progenitor cells, followed by injection of
the FV gene therapy vector, and showed the greatest survival of
2.5 years (Burtner et al., 2014). There was no evidence of
oncogenesis in any of the animals. These studies suggest that
FV vectors may naturally present the least possibility of
oncogenic transformation with the benefit of in vivo delivery.
The greatest limitation is the inability to pseudotype and alter the
tropism of FV vectors.

Integrase Fusions
Attempts to target retroviral integration to a sequence specific site
with chimeric IN proteins were reported over 25 years ago
(Bushman, 1994; Kniazhanskaia et al., 2011). It was recognized
that retroviral integration was possible at multiple sites
throughout a host genome with some preference for particular
sites (Vijaya et al., 1986; Shih et al., 1988). At that time, it was
known that the Saccharomyces cerevisiae LTR retrotransposon
Ty3 precisely integrates at the transcription start site of tRNA
genes (Chalker and Sandmeyer, 1992). It was suggested that Ty3
IN might bind to polymerase III associated transcription factors
which directed integration to tRNA genes. Several groups
investigated the possibility of directing retroviral integration to
specific genomic sites by engineering a chimera of a DNA binding
domain (DBD) and IN. The DNA binding domain (DBD) of
lambda repressor was fused to the HIV-1 IN amino terminus or
the E. coli LexA repressor full length protein or its DBD was fused
to the HIV-1 IN carboxyl terminus (Bushman, 1994; Goulaouic
and Chow, 1996). Two chimeras of the ASLV IN were engineered
with the LexA DBD at either the amino or carboxyl termini (Katz,
Merkel et al., 1996). The LexA recognition site is 16 bp and the
lambda repressor binds 17 bp (Lewis et al., 1994; Albright and
Matthews, 1998). Recombinant chimeric proteins were purified
and their abilities to target integration to a specific DNA site were
assayed in vitro. While the results were not quantified, these
experiments suggested that chimeric INs showed an increase of
integration efficiency near a DNA sequence specific site under
in vitro conditions. These early experiments were highly
suggestive that retroviral INs were amenable to sequence
specific targeting, and might be enhanced with further
development. Both LexA and lambda repressor must dimerize
to bind DNA, which may have complicated these experiments.

Zinc finger DNA binding proteins are capable of binding
specific sequences as monomers. These proteins consist of zinc
finger domains that individually bind a specific 3 bp sequence.
The murine Zif268/Egr1 transcription factor has 3 zinc fingers
and recognizes a 9 bp sequence (Pavletich and Pabo, 1991).
Zif268 was fused to the carboxyl terminus of HIV-1 IN and
tested for activity in cellular integration assays (Bushman and
Miller, 1997). HIV-1 viruses with the IN-Zif268 fusion could not
be produced by transfection of HEK293T cells. However, virion
production was rescued by generating virus particles with a
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mixture of wild type and chimeric IN. The HEK293T producer
cells were transfected with varying ratios of HIV-1 plasmid
encoding wild type IN or IN-Zif268. These virions were added
to target cells and PICs were obtained 7 h post infection. The PICs
were allowed to integrate to a target in vitro and integration sites
were evaluated by high resolution gel electrophoresis. PICs with
the chimeric IN displayed some preference for the Zif268 binding
site, while also integrating at multiple other sites. Whether the
integration sites of the cellular infection also occurred near Zif268
binding sites is unknown.

Amore definitive strategy to engineer HIV-1 viruses including
the chimeric IN protein employed delivery in trans (Holmes-Son
and Chow, 2000). IN chimeras with carboxyl terminal full length
LexA protein or its DBD were cloned to the 3′ end of vpr. An
HIV-1 protease cleavage site between Vpr and IN-LexA allowed
the chimera to be packaged in the virion via Vpr targeting and
subsequently liberated by HIV-1 protease cleavage within the
virion. The IN encoded by pol was engineered to be catalytically
inactive. This strategy would ensure that catalytically active
integration complexes must include the chimeric IN. The
production by HEK293T cells of virions with Vpr-IN fusions
was significantly reduced compared to Vpr alone. When
equivalent amounts of virions were added to target cells, the
fusion of IN-LexA reduced integration efficiency but was readily
detectable. Reduced integration efficiency may be an expected
consequence of the restrictions imposed by targeting integration
in vivo to a limited number of sites. However, sequencing a
limited number of the integration sites from these IN-LexA
infected cells found that LexA recognition sites were not
observed within 200–300 bp (Holmes-Son and Chow, 2002).

A synthetic protein of 6 zinc finger domains termed E2C binds
specifically to an 18 bp sequence. This protein was fused to the
amino or carboxyl terminus of HIV-1 IN and analyzed for
integration to a plasmid encoding the E2C recognition site
(Tan et al., 2004). Although the assays were not quantitated,
the chimeras displayed a dramatic preference for integration
within 20 bp of the E2C binding site. A caveat to this
apparent targeting is the use of a PCR-based assay for
integration that does not distinguish between the joining of
two viral DNA ends mimicking integration in vivo vs. a non-
physiological joining of a single viral DNA end. The E2C
chimeras were also assayed for integration during cellular
infection using the Vpr fusion strategy developed with the
LexA chimeras (Tan et al., 2006). The E2C recognition site is
present in the human genome in the erbB-2 gene 5′ untranslated
region. Viruses with the E2C chimeras displayed 11–24%
infection efficiency compared to wild type virus. Quantitative
PCR allowed the measurement of the total number of integrated
proviruses and the number of proviruses near the E2C site. While
0.15% of wild type HIV-1 proviruses were near the E2C site, 1.5%
of viruses with E2C at the amino terminus of IN integrated near
the recognition site (Tan et al., 2006).

Similar to the increased targeting observed with an E2C
chimera, a limited increase in targeting HIV-1 integration was
observed with an IN fusion to I-PpoI (Schenkwein et al., 2013).
I-Ppol, a slime mold homing endonuclease, recognizes a 15 bp
sequence that is present in eukaryotic rDNA at ∼600 copies/

genome. An enzymatically inactive mutant of I-PpoI was fused to
the carboxyl terminus of HIV-1 IN (Schenkwein et al., 2010).
Lentiviral vector particles were produced with a mixture of
catalytically inactive HIV-1 IN and the IN-I-PpoI chimera.
Sequencing integration sites revealed that 2.7% of integration
sites with the chimera were at rDNA loci while only 0.1% of wild
type HIV-1 IN integration sites were at these sites. The targeting
by this chimera may have been confounded by the dimerization
of I-PpoI.

In the past several years multiple retroviral intasomes have
been visualized. These integration complexes include tetramers
(PFV, HTLV-1), octamers (MMTV, RSV), and hexadecamer
(maedi visna virus, MVV) (Hare et al., 2010; Maertens et al.,
2010; Ballandras-Colas et al., 2016; Yin et al., 2016; Ballandras-
Colas et al., 2017; Barski et al., 2020; Bhatt et al., 2020). Several
multimeric forms have been observed for simian
immunodeficiency virus (SIV) and HIV-1 IN (Passos et al.,
2017; Cook et al., 2020). The multimerization of INs suggest
that fusion of DNA binding domains to IN may negatively affect
the assembly of functional complexes. The most promising
approach for an IN fusion is possibly the tetrameric PFV
intasome that does not appear to require a host co-factor. An
elegant pairing of point mutations has been shown to direct PFV
IN monomers to the catalytically active “inner” positions or the
structural “outer” positions of the intasome (Maskell et al., 2015).
While the inner protomers make extensive DNA and protein
contacts, the amino and carboxyl termini of the outer protomers
are unstructured and may readily tolerate the addition of DNA or
chromatin binding domains. The recent visualization of retroviral
intasome multimeric structures provide clarifying insights into
the practicality of engineering functional IN fusions for targeting
integration.

Fusions of Intasome Tethering Factors
Retroviral integration site selection may be redirected by altering
the chromatin binding domain of the respective cellular co-
factors. Perhaps the best studied integration cofactor is
LEDGF/p75. There have been a variety of reported alternative
chromatin binding domains fused to the IBD of LEDGF/p75. The
first successful attempt involved fusing the first 31 amino acids of
kaposi’s sarcoma-associated herpesvirus (KSHV) latency-
associated nuclear antigen (LANA) to LEDGF/p75 (93–530)
lacking the PWWP domain (Meehan et al., 2009). KSHV is a
gammaherpes virus whose genome persists as a DNA episome via
the N-terminal residues (5–13) of LANA which interact with the
groove between histones 2A and 2B (Chang et al., 1994; Ballestas
et al., 1999; Barbera et al., 2006). While integration site selection
was not examined in this study, expression of this fusion in
LEDGF/p75 deletion cells led to rescued HIV-1 infectivity
(Meehan et al., 2009). Other protein domains such as plant
homeodomain (PHD) finger from inhibitor of growth protein
2 (ING2) and the chromodomain from heterochromatin binding
protein 1alpha (HP1alpha or CBX5) have also been fused to the
LEDGF IBD (Ferris et al., 2010; Silvers et al., 2010). The PHD
domain binds H3K4me3, typically found in regions of active
transcription, and the HP1alpha chromodomain binds
H3K9me2/3 located in heterochromatin (Vakoc et al., 2005;
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Wysocka et al., 2006; Ruthenburg et al., 2007). These fusion
proteins were expressed in a LEDGF/p75 deletion cell line. In
these cases, HIV-1 integration was redirected toward TSSs and
actively expressed genes and regions of lower gene expression,
respectively. A second study using HP1alpha saw a similar trend
with retargeting toward repetitive sequences and away from
genes, typical of heterochromatin (Silvers et al., 2010). An
alternative approach used fusions of heterochromatin protein
1beta (also called chromobox protein homolog 1 or CBX1) to IBD
which retargeted integration to silent gene regions (Maison and
Almouzni, 2004; Gijsbers et al., 2010). Interestingly, a marker
gene was efficiently expressed despite residing in transcriptionally
silent chromatin.

Most of the re-targeting studies of LEDGF/p75 fusions have
been performed in LEDGF/p75 knockdown or depleted cells.
This is an impractical approach for patients due to the necessity of
removing endogenous LEDGF/p75 prior to gene therapy. There
is one reported attempt of using a LEDGF/p75 fusion in a wild
type background (Vets et al., 2013). Cells were electroporated to
introduce mRNA encoding LEDGF/p75 IBD with an amino
terminal fusion of CBX1. The following day the cells were
transduced with an HIV-1 vector. Interestingly, integration to
RefSeq genes was reduced from 75.2 to 54.1%. Similar to other
studies, short-term expression of a transgene from the provirus
was efficient but long-term expression is unknown. While it may
be possible to target integration to safe harbor heterochromatin
regions, the long-term expression of the transgene is unclear.
Indeed, retroviruses such as ASLV, which has a preference for
integration into heterochromatin, may be silenced over time and
long-term expression is dependent on being in transcriptionally
active regions (Senigl et al., 2017; Miklik et al., 2018). This gene
silencing can be counteracted by the incorporation of an anti-
silencing CpG island core sequence in the provirus (Senigl et al.,
2017). However, the potential consequences of a CpG island in an
integrated provirus in patients are unclear.

Tether Independent Integration Targeting
PFV IN is not known to require a host co-factor that tethers
integration complexes to chromatin. However, the PFV IN CTD
appears to interact with the amino terminus of nucleosome protein
H2A (Maskell et al., 2015). In addition, a three amino acid motif in
the carboxyl terminus of PFV Gag also appears to interact with
histones H2A and H2B (Tobaly-Tapiero et al., 2008; Hocum et al.,
2016). It is not clear what role histone PTMs might have on this
interaction. It has been shown that alanine mutations of the Gag
chromatin binding site (CBS) alter the integration site selection in
cells away from TSSs and CpG islands (Hocum et al., 2016).
Combination of the Gag CBS alanine mutant with a PFV IN
fusion to the CBX1 protein had little further effect on re-targeting
integration to any chromatin element (Hocum et al., 2016). Perhaps
alternative PFV IN targeting fusions will prove better able to direct
integration in the context of the Gag CBS mutation.

Another avenue for tether independent targeting is to generate
retroviral vectors that no longer need their respective co-factor.
This is not possible with HIV-1 IN as LEDGF/p75 not only plays
a critical role in tethering but is also essential for IN catalytic
activity (Llano et al., 2004; Cherepanov et al., 2005; Llano et al.,

2006b; Vandekerckhove et al., 2006; Zielske and Stevenson, 2006;
McKee et al., 2008; Kessl et al., 2011). However, a different
situation exists for the generation of MLV-based retroviral
vectors which are BET protein independent. While important
for integration site selection, the carboxyl terminal tail of MLV IN
is not essential for catalytic activity in vitro or infection of cells
(Aiyer et al., 2014; Larue et al., 2014). Biochemical studies have
confirmed that these truncations abolish interaction with the BET
proteins, demonstrating its significance for the binding interface
(Larue et al., 2014). Truncations or mutations in the carboxyl
terminal tail of MLV IN reduce MLV integration near TSSs
without significant effects on replication (Aiyer et al., 2014; El
Ashkar et al., 2014). Studies using alanine mutagenesis of the
carboxyl terminal tail, deletion of the tail, or treatment with JQ-1
all led to a decrease in MLV integration at TSSs (Sharma et al.,
2013; Aiyer et al., 2014; El Ashkar et al., 2014). These studies
demonstrate that MLV-based vectors can be guided away from
TSSs by removal of interaction with BET proteins. Importantly,
mutations of the MLV carboxyl terminal tail is not sufficient to
retarget all integration away from TSSs, raising concerns that this
avenue would not be appropriate for gene therapy.

Remaining Questions and Conclusions
The first goal of safer retroviral gene therapy vectors is to remove
the possibility of cellular transformation and oncogenesis. This
must be coupled with sufficient functional rescue and sustained
gene expression. Recent evidence suggests that lentiviral-based
gene therapy vectors are closer to achieving these goals (Hocum
et al., 2016; El Ashkar et al., 2017). Functional rescue of
monogenic disorders has been reported with integration in
gene silent regions (Vets et al., 2013). However, it is unclear if
such retargeting will allow for long-term expression due to either
limited experimental time points or the recent initiation of the
gene therapy trials (Senigl et al., 2017; Miklik et al., 2018). Using
methods such as alteration to retroviral IN or host cofactors
remain untested in patients. Recent studies of MLV and HIV-1
retroviral vectors with altered IN targeting suggest that the
constraints imposed by host tethering factors may be reduced
but not eliminated (Hocum et al., 2016; El Ashkar et al., 2017).
Integration site analysis of BET independent MLV infection of a
MYC/Runx2 mouse model revealed less integration at TSSs,
decreased rate of tumorigenesis, and decreased integration at
histone marks associated with BET proteins (Loyola et al., 2019).
However, in the mice that developed tumors, integration was in
regions containing oncogenic genes. This implies that residual
MLV integration into TSSs can still lead to oncogenesis. For this
reason, it appears that MLV-based vectors may not be clinically
relevant without significant additional modification. Non-
integrating lentiviral vectors with enzymatic mutations of
integrase are in development but have not yet entered clinical
use (reviewed in (Luis, 2020)).

One question in retroviral gene therapy is to what extent will
directed integration be possible: sequence specific sites, unique
histone PTMs, or genomic regions? Retroviral INs may impose
some subtle preference for sequence at the integration site, but the
preference is not stringent (Bennett et al., 2014). Directing
retroviral vector integration to highly repetitive genomic
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sequences could be a first step toward advancing integration
sequence specific targeting. The probability targeting a single site
using retroviral-based vectors is empirically unlikely; a single PIC
would have to search the entire genome to find the select site. This
would lead to a dramatic reduction of transduction efficiency.
Sequence site specific targeting by Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR),
transcription activator-like effector nucleases (TALENs), or
zinc finger nucleases (ZFNs) is successful due to their effective
concentration in the nucleus, allowing for genome-wide
searching (Romero et al., 2018). These genome editors are
either transfected or transduced into cells allowing for high
protein expression and multiple nuclear complexes to search
the genome. Although cultured cells may be transduced with
multiplicities of infection >1, it seems unlikely that sufficient
numbers of retroviruses to perform sequence specific targeting

could efficiently infect a single cell. More optimistic re-directing
of retroviral integration may be to repetitive sequences in safe
harbors or to abundant histone PTMs that mark such regions.
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