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Background: Estrogen receptors (ERs) are nuclear transcription factors that are involved in 

the regulation of many complex physiological processes in humans. ERs have been validated as 

important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, 

osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data 

suggest that the development of subtype-selective ligands that specifically target ER-β could be a 

more optimal approach to elicit beneficial estrogen-like activities and reduce side effects.

Methods: Herein, we focused on ER-β and developed its in silico quantitative structure-activity 

relationship models using machine learning (ML) methods.

Results: The chemical structures and ER-β bioactivity data were extracted from public chemo-

genomics databases. Four types of popular fingerprint generation methods including MACCS 

fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended 

fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, 

k-nearest neighbor, random forest, and support vector machine were used to train the models. 

The range of classification accuracies was 77.10% to 88.34%, and the range of area under the 

ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 

5-fold cross-validation. Comparison analysis suggests that both the random forest and the sup-

port vector machine are superior for the classification of selective ER-β agonists. Chemistry 

Development Kit extended fingerprints and MACCS fingerprint performed better in structural 

representation between active and inactive agonists.

Conclusion: These results demonstrate that combining the fingerprint and ML approaches leads 

to robust ER-β agonist prediction models, which are potentially applicable to the identification 

of selective ER-β agonists.

Keywords: estrogen receptor subtype β, selective estrogen receptor modulators, quantitative 

structure-activity relationship models, machine learning approach

Introduction
Estrogen receptors (ERs) are nuclear transcription factors and hormone-regulated 

modulators of intracellular signaling and gene expression.1–4 There are two subtypes 

of ERs, ER-α and ER-β. ER-α is encoded by the ESR1 gene on chromosome 6, and 

ER-β is encoded by the ESR2 gene on chromosome 14.5 Both ER-α and ER-β are 

widely distributed in many kinds of cells and tissues, and modulate biological func-

tions in several organ systems, such as endocrine, reproductive, skeletal, cardiovas-

cular, and central nervous systems. ER-α is predominantly expressed in mammary 

gland, ovary, uterus, male reproductive organs (testes and epididymis), prostate, liver, 

heart, bone, adipose tissue, vascular system, and brain. ER-β is mainly expressed in 

correspondence: sheng-qi Wang
Department of Mammary Disease, 
guangdong Provincial hospital of 
chinese Medicine, the second clinical 
college of guangzhou University of 
chinese Medicine, Dade road no 111, 
guangzhou 510120, People’s republic 
of china
email wsq2011@126.com 

Journal name: Drug Design, Development and Therapy
Article Designation: Original Research
Year: 2016
Volume: 10
Running head verso: Niu et al
Running head recto: Prediction of selective estrogen receptor beta agonist using open data
DOI: http://dx.doi.org/10.2147/DDDT.S110603

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S110603
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:wsq2011@126.com


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2324

niu et al

mammary gland, ovary (granulosa cells), bladder, prostate 

(epithelium), adipose tissue, immune system, colon, heart, 

vascular system, lung, and brain.6,7 The ER-α subtype has 

a more prominent role in the mammary gland, uterus, the 

preservation of skeletal homeostasis, and the regulation of 

metabolism. The ER-β subtype has a more profound effect 

on the immune and central nervous systems. What is more, 

ER-β generally counteracts the ER-α promoted cell hyper-

proliferation in tissues such as breast and uterus.4,8

Abnormal ER signaling leads to development of a variety 

of diseases including osteoporosis. Estradiol replacement 

therapy is used in the clinic for the treatment of osteopo-

rosis. However, estradiol replacement therapy often leads 

to an increased risk of breast and endometrial cancers, 

and thromboembolism due to the ER-α promoted cell 

hyper-proliferation.4 Selective estrogen receptor modulators 

(SERMs) are a class of drugs that act on the ER. A charac-

teristic that distinguishes these substances from pure ER 

agonists and antagonists (that is, full agonists and silent 

antagonists) is that their action is different in various tis-

sues, thereby granting the possibility to selectively inhibit or 

stimulate estrogen-like action in various tissues.9,10 Following 

tamoxifen, the first SERM, a number of other anti-estrogens 

have been developed. Good SERMs would display antagonist 

activity in the mammary gland and uterus, and agonist activity 

in cardiovascular, skeletal, and central nervous systems.9,11,12 

Emerging data suggest that ER-β subtype-selective ligands 

could be used to elicit beneficial estrogen-like activities and 

reduce side effects.4,13–15 These results inspired the medical 

researchers to discover selective ER-β agonists. Roberts et al 

found sulfonamides as selective ER-β agonists.16 Paterni et al 

identified a series of new salicylketoxime derivatives that 

display unprecedentedly high levels of ER-β selectivity, and 

one compound was further proved to be active in an in vivo 

xenograft model of human glioma.17

Computational approaches in medicinal chemistry 

provide important tools for lead discovery and lead opti-

mizations. Machine learning methods are widely applied in 

computer aided drug design, particularly in the ligand based 

virtual screening. Zang et al developed binary classification 

models using a large collection of environmental chemicals 

from ER assays by quantitative structure-activity relationship 

(QSAR) and machine learning methods.18 Ng et al devel-

oped a classification model using decision forest to predict 

environmental chemicals binding to ER.19 However, previ-

ous QSAR studies mainly focused on toxicity or endocrine 

disruption activity predictions for environmental chemicals. 

Furthermore, there had been rare reports focusing on the 

subtype-selective ER agonist prediction.

Owing to the significance of the selective ER-β agonists, 

as discussed above, we proposed a protocol to predict 

selective ER-β agonists using a machine learning approach 

(Figure 1). Due to the difficulty in developing a regres-

sion model for a large structural diverse dataset, binary 

Figure 1 The data analysis and machine learning schema.
Notes: step 1: collect er-β agonist data from public database. step 2: chemical diversity analysis. step 3: construct machine learning models. step 4: validate the constructed 
models.
Abbreviations: er, estrogen receptor; sVM, support vector machine; rOc, receiver operating characteristic; Pca, principal component analysis.
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classification approaches were used here. In this work, we 

collected a dataset of selective ER-β agonists from an open 

database (ChEMBL, www.ebi.ac.uk/chembl) and performed 

the dataset analysis using principal component analysis 

(PCA) and distance analysis. Then we constructed the predic-

tion models using various molecular fingerprints and machine 

learning approaches. The accuracies and robustness of the 

prediction models were further validated, and the perfor-

mance of the machine learning methods and the molecular 

fingerprints was compared. These models could be useful in 

the discovery of selective ER-β agonists.

Materials and methods
Dataset
The ER-β bioactive agonists were downloaded from 

ChEMBL database (ChEMBL 20 release). Duplicates and 

salts were removed using Open Babel.20 Compounds with 

unclear EC
50

 data, for example 1,000 nM, were removed. 

The active ER-β agonist was defined as having an EC
50

 less 

than 10 μM. The inactive agonist was defined as having an 

EC
50

 more than 10 μM. Finally a dataset was constructed 

which contained 356 active agonists and 107 inactive ago-

nists. The balancing of the dataset is important for developing 

a robust model. Machine learning approaches are likely to 

perform poorly in situations with data imbalance between 

the classes.21,22 In order to balance the dataset, we generated 

a decoy dataset (249 compounds) using the DUD-E online 

automated tool.23 Finally, a dataset with 356 active com-

pounds and 356 inactive compounds was obtained.

Molecular fingerprints
Molecular fingerprints are representations of chemical struc-

tures originally developed for substructure and similarity 

searching, but later widely used for descriptors in QSAR 

studies.24 Four popular fingerprint generation methods in 

chemoinformatics including Chemistry Development Kit 

extended fingerprint (ExtFP, 1024 bits), MACCS fingerprint 

(MACCSFP, 166 bits), PubChem fingerprint (PubChemFP, 

881 bits), and 2D atom pairs (AP2D, 780 bits) were used 

in this study. All the fingerprints were generated using the 

PaDEL-Descriptor software.25

Naïve Bayesian (NB) classification
The NB classification method is a simple classification 

method based on the Bayes’ theorem as described below:

 
P(A|B)

P(B|A)P(A)

P(B)
=

 
(1)

The prior probability can be estimated from the training 

set, while the marginal probability can be ignored. The details 

of NB classifier building have been described elsewhere.26,27 

NB classification can process large amounts of data, learn 

fast, and noise data tolerance. The NB classifiers were devel-

oped in Orange with default settings. Laplace method was 

used for probability estimation.

k-nearest neighbor (Knn)
KNN classifier can predict a test sample based on the closest 

training examples. The nearness is measured by similarity 

or distance based on vectors in a multidimensional feature 

space. In the classification process, “k” was a user-defined 

value, and an unlabeled vector was classified by assigning 

the label that was most frequent in the k-nearest training 

samples. The KNN classifiers were developed in Orange 

using Euclidean distance and the value of “k” was set 

to three.

random forest (rF)
The RF was first proposed by Breiman.28 The RF method is 

based upon an ensemble of decision trees, from which the 

prediction of a continuous variable is provided as the average 

of the predictions of all trees. The advantages of RF in QSAR 

include high accuracy of prediction, built-in descriptor 

selection, and a method for evaluating the importance of 

descriptors in the QSAR model. The details of training pro-

cedures are described elsewhere.29 The RF classifiers were 

developed in Orange and the number of trees in forest was 

set to ten, splitting was stopped in RF with nodes of five or 

fewer instances.

support vector machine (sVM)
SVM is a general data modeling methodology, originally 

developed by Vapnik, aimed at minimizing the structural risk 

under the frame of Vapnik Chervonenkis theory.30 The princi-

ple of SVM is to find a hyperplane in a high dimensional space 

to separate the positives and negatives.31 In this work, the 

radial basis function kernel function was used and the cost was 

set to 1.00. SVM models were developed using Orange.

Model validation
Cross validation method was employed to test the model 

performance and robustness. In 5-fold cross validation, the 

dataset was divided into five subsets, four subsets were cho-

sen as training sets which left one subset as test set in each 

run. After five runs, each subset was used as test set and the 

entire dataset was predicted. The quality of the model was 
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evaluated by the quantity of true positives (TP), true nega-

tives (TN), false positives (FPos), and false negatives (FN). 

Then the sensitivity (SE), the specificity (SP), the classifica-

tion accuracy (CA) and the Matthews correlation coefficient 

(MCC) were calculated using the following equations. 

Furthermore, the receiver operating characteristic (ROC) 

curve was plotted and the area under the ROC curve (AUC) 

was calculated. The values of AUC range from 0–1.0, and 

1.0 indicates a perfect model, 0.5 indicates a random model, 

and 0.8 indicates a good model.

SE
TP

TP FN

SP
TN

TN FPos

CA
TP TN

TP TN FPos FN

MCC
TP TN FPos

=
+

=
+

=
+

+ + +

=
× − × FFN

TP FN TP FPos TN FN TN FPos( )( )( )( )+ + + +
 

(2)

Results and discussion
chemical diversity analysis
The diversity is important when building a QSAR model.32 

The PCA was performed here to explore the chemical 

space of the dataset, which contained 356 active agonists 

and 356 inactive agonists. For each molecule, four types 

of fingerprints (ExtFP 1024 bits, MACCSFP 166 bits, 

PubChemFP 881 bits, and AP2D 780 bits) were calculated 

as descriptors. Each compound is represented by a multi-

dimensional vector, the dimension of which is equal to the 

bit-length of a fingerprint. A reducing dimension calculation 

was processed in the PCA. The top two principal components 

were preserved and plotted as illustrated in Figure 2. Each 

node represents a molecule of the entire dataset. The actives 

and inactives were rendered in black and gray color, respec-

tively. The actives and the inactives cover the same chemi-

cal space, suggesting the diversity of this collected dataset 

and the reasonability of the decoy generation methods. The 

distance of the compounds in this dataset was calculated 

Figure 2 Principal component analysis (Pca) of the dataset.
Notes: The PCA was based on four types of fingerprints. Each dot represents a unique compound of the dataset. Black dots represent active compounds, whereas gray 
dots represent inactive compounds.
Abbreviations: Ext, extended; AP2D, 2D atom pairs; FP, fingerprints.
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using Euclidean distance based on the ExtFP. A distance 

matrix (712×712) was generated and plotted with a heat 

map. The distance values were normalized to interval 0–1. 

One represents the largest distance (green) and suggests the 

structural dissimilarity. As shown in Figure 3, most areas in 

the heat map were green, indicating the chemical diversity 

of this dataset.

Performance of cross validation
In order to evaluate the performance of models, 5-fold cross 

validation was employed here. We developed 16 models 

based on four types of fingerprints and four classifiers. The 

CA, SE, SP, AUC, and MCC values are listed in Table 1. The 

ranges of CA, SE, SP, AUC, and MCC were 0.7710–0.8834, 

0.8146–0.9410, 0.6938–0.8820, 0.8151–0.9475, and 

0.5487–0.7698, respectively. The ROC curves of the 16 mod-

els are illustrated in Figure 4. The AUC values of all models 

were greater than 0.8, indicating the good performance of 

the constructed models. The excellent models (MCC 0.75) 

were SVM combined with ExtFP, and RF combined with 

ExtFP. SVM-ExtFP achieved performances of CA 0.8834 

and MCC 0.7698. RF-ExtFP achieved a performance of CA 

0.8750 and MCC 0.7501. Ten-fold cross validation method 

was also employed and the model performances were evalu-

ated and are listed in Table S1. Compared with 5-fold cross 

validation results, 10-fold cross validation results tended to 

be a bit more optimistic and showed a similar trend. In the 

following study, the 5-fold cross validation results were used. 

For comparison, we developed models using true inactive 

agonists that do not include decoys. The 5-fold cross vali-

dation model performance is listed in Table S2. The mean 

value of the MCC for the 16 models is 0.3518, this indicates a 

poor performance of the imbalanced dataset when compared 

with the balanced dataset, which achieved a mean value of 

MCC 0.6881.

In order to compare the performances of different 

machine learning methods, we ranked the performances 

of the models with the same fingerprint using the values of 

MCC. The rank results are shown in Figure 5. NB ranked 

fourth with each type of fingerprint. KNN ranked first with 

the MACCSFP. RF ranked first with PubChemFP and 

AP2D. SVM ranked first with ExtFP. These results suggest 

the model performance varies with different combinations 

of machine learning approaches and molecular fingerprints. 

Taken together, NB performs worst compared with KNN, 

RF, and SVM. RF and SVM are superior to other methods 

for the classification of ER-β agonists. In Zang et al’s binary 

classification models of a large collection of environmental 

chemicals from ER assays, they obtained the best model 

using SVM.18 This consistency suggests SVM is a suitable 

machine learning method for this target.

We further compared the performances of the finger-

prints. Model performances with various fingerprints and 

the same machine learning methods were ranked, as shown 

in Figure 6. As is obvious from the figure, ExtFP performed 

best and AP2D performed worst. ExtFP ranked first for any 

machine learning method mentioned here. In contrast,  AP2D 

Figure 3 The heat map of distance matrix for the compounds in the collected dataset.
Note: green represents a large distance and structural dissimilarity.

Table 1 Model performances of 5-fold cross validation

Model CA SE SP AUC MCC

nB-extFP 0.8244 0.8792 0.7697 0.8633 0.6528
Knn-extFP 0.8693 0.9270 0.8118 0.9171 0.7437
rF-extFP 0.8750 0.8680 0.8820 0.9450 0.7501
sVM-extFP 0.8834 0.9270 0.8399 0.9407 0.7698
nB-MaccsFP 0.7921 0.8146 0.7697 0.8532 0.5849
Knn-MaccsFP 0.8707 0.9045 0.8371 0.9302 0.7433
rF-MaccsFP 0.8693 0.8961 0.8427 0.9475 0.7398
sVM-MaccsFP 0.8665 0.9410 0.7921 0.9153 0.7414
nB-PubchemFP 0.7950 0.8371 0.7528 0.8544 0.5920
Knn-PubchemFP 0.8539 0.8764 0.8315 0.9044 0.7086
rF-PubchemFP 0.8652 0.8961 0.8343 0.9408 0.7317
sVM-PubchemFP 0.8539 0.9354 0.7725 0.9103 0.7175
nB-aP2D 0.7710 0.8483 0.6938 0.8151 0.5487
Knn-aP2D 0.8357 0.8680 0.8034 0.8883 0.6728
rF-aP2D 0.8314 0.9354 0.7275 0.9056 0.6777
sVM-aP2D 0.8132 0.8933 0.7331 0.8453 0.6346

Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; 
SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic 
curve; MCC, Matthews correlation coefficient; CA, classification accuracy.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2328

niu et al

Figure 4 The ROC curves of the 5-fold cross validation models based on four types of fingerprints (FP) and four machine learning approaches.
Note: The error bar in the curve is based on five runs of the 5-fold cross validation process.
Abbreviations: rOc, receiver operating characteristic; nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; sVM, support vector machine; ext, extended; 
aP2D, 2D atom pairs; TP, true positives, FPos, false positives. 

Figure 6 Performance ranking of fingerprints (FP) in various machine learning 
methods.
Note: Take MaccsFP for example, MaccsFP ranked third in nB, and ranked 
second in Knn, rF, and sVM.
Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
sVM, support vector machine; ext, extended; aP2D, 2D atom pairs.

Figure 5 Performance ranking of machine learning methods with various finger-
prints (FP).
Note: Take KNN for example, KNN ranked first with MACCSFP, ranked second 
with aP2D, and ranked third with extFP or PubchemFP.
Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
sVM, support vector machine; ext, extended; aP2D, 2D atom pairs.
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ranked last. ExtFP had 1024-bit length and AP2D had 780-

bit length. Usually, the length of the fingerprints may affect 

the performance. However, MACCSFP with only 166-bit 

length, ranked second in KNN, RF, and SVM models, and 

ranked third in NB models. These results suggest that the 

model’s performance is not dependent on the length of the 

fingerprints but the structural representation methods. Fur-

thermore, MACCSFP is a good fingerprint generation method 

for capturing the structural patterns of ER-β agonists.

Performance of test set
To further evaluate the robustness of the model and to prove 

the observations in the cross validations, the test set was 

randomly split from the original dataset. The ratio of train-

ing set against test set was 2:1. The model performances for 

the test set are summarized in Table 2. For machine learning 

methods, RF ranked first with MACCSFP and PubChemFP. 

NB ranked last with any fingerprints. For fingerprints, ExtFP 

ranked first in NB and SVM. MACCSFP ranked first in KNN 

and second in RF and SVM. MACCSFP showed good per-

formance and AP2D performed worst. This is in agreement 

with the previous observation in the cross validation.

We further collected an external test dataset from two 

literature sources,17,33 which included eleven ER-β selective 

agonists. We added eleven decoys to obtain a dataset with 

22 compounds in total. We trained models using compounds 

from ChEMBL and predicted the external test dataset. The 

models’ performances are summarized in Table 3. All those 

models showed a good performance in classifying agonists 

and non-agonists.

Table 2 Model performances of test set

Model CA SE SP AUC MCC

nB-extFP 0.8314 0.8876 0.7752 0.8689 0.6670
Knn-extFP 0.8612 0.9165 0.8058 0.9061 0.7268
rF-extFP 0.8769 0.8678 0.8860 0.9450 0.7538
sVM-extFP 0.8835 0.9248 0.8421 0.9403 0.7696
nB-MaccsFP 0.8062 0.8322 0.7802 0.8643 0.6132
Knn-MaccsFP 0.8731 0.8975 0.8488 0.9161 0.7472
rF-MaccsFP 0.8773 0.8926 0.8620 0.9483 0.7549
sVM-MaccsFP 0.8674 0.9455 0.7893 0.9174 0.7438
nB-PubchemFP 0.8136 0.8612 0.7661 0.8661 0.6301
Knn-PubchemFP 0.8657 0.8934 0.8380 0.9108 0.7325
rF-PubchemFP 0.8806 0.9248 0.8364 0.9491 0.7642
sVM-PubchemFP 0.8616 0.9347 0.7884 0.9158 0.7310
nB-aP2D 0.7719 0.8529 0.6909 0.8198 0.5511
Knn-aP2D 0.8260 0.8322 0.8198 0.8858 0.6521
rF-aP2D 0.8273 0.9091 0.7455 0.8917 0.6635
sVM-aP2D 0.8157 0.8802 0.7512 0.8514 0.6367

Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; 
SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic 
curve; MCC, Matthews correlation coefficient; CA, classification accuracy.

Table 3 Model performances of external test set

Model CA SE SP AUC MCC

nB-extFP 1.0000 1.0000 1.0000 1.0000 1.0000
Knn-extFP 0.8182 0.8182 0.8182 0.8967 0.6364
rF-extFP 0.8182 0.6364 1.0000 1.0000 0.6831
sVM-extFP 0.8636 0.7273 1.0000 1.0000 0.7559
nB-MaccsFP 0.9091 0.8182 1.0000 1.0000 0.8321
Knn-MaccsFP 0.9091 0.8182 1.0000 1.0000 0.8321
rF-MaccsFP 0.8636 0.7273 1.0000 1.0000 0.7550
sVM-MaccsFP 0.9091 0.8182 1.0000 1.0000 0.8321
nB-PubchemFP 0.9545 0.9091 1.0000 1.0000 0.9129
Knn-PubchemFP 0.9091 0.8182 1.0000 1.0000 0.8321
rF-PubchemFP 0.9091 0.8182 1.0000 1.0000 0.8321
sVM-PubchemFP 0.9091 0.8182 1.0000 1.0000 0.8321
nB-aP2D 0.8182 0.7273 0.9091 0.9504 0.6472
Knn-aP2D 0.8182 0.6364 1.0000 1.0000 0.6831
rF-aP2D 0.9545 1.0000 0.9091 0.9917 0.9129
sVM-aP2D 0.9545 0.9091 1.0000 1.0000 0.9129

Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; 
SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic 
curve; MCC, Matthews correlation coefficient; CA, classification accuracy.

Conclusion
Emerging data suggest that ER-β subtype-selective ligands 

could be used to elicit beneficial estrogen-like activities and 

reduce side effects. There have been rare reports focusing 

on the subtype-selective ER agonist prediction. Owing to the 

significance of the selective ER-β agonists, in this work, we 

collected a dataset of selective ER-β agonists and performed 

the dataset analysis using PCA and distance analysis. Subse-

quently, we constructed the classification models of selective 

ER-β agonists using multiple machine learning methods and 

various molecular fingerprints. The models were validated 

through cross validation methods and test set validations. The 

range of classification accuracies was 77.10% to 88.34%, and 

the range of AUC values was 0.8151 to 0.9475, evaluated 

by the 5-fold cross validation. Comparison analysis suggests 

that both the RF and the SVM are superior to other machine 

learning methods for the classification of selective ER-β 

agonists. Chemistry Development Kit ExtFP and MACCSFP 

performed better in structural representation between active 

and inactive agonists. These models are robust and accurate, 

and could be applied in the virtual screening of large chemical 

libraries to identify selective ER-β agonists.
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Table S1 Ten-fold cross validation model performance

Model CA SE SP AUC MCC

nB-extFP 0.8272 0.8876 0.7669 0.8631 0.6593
Knn-extFP 0.8708 0.9298 0.8118 0.9245 0.7468
rF-extFP 0.8820 0.8848 0.8792 0.9539 0.7641
sVM-extFP 0.8833 0.9298 0.8371 0.9423 0.7702
nB-MaccsFP 0.7850 0.8006 0.7697 0.8533 0.5705
Knn-MaccsFP 0.8806 0.9045 0.8567 0.9287 0.7621
rF-MaccsFP 0.8903 0.9185 0.8624 0.9541 0.7821
sVM-MaccsFP 0.8679 0.9438 0.7921 0.9212 0.7446
nB-PubchemFP 0.7992 0.8455 0.7528 0.8531 0.6009
Knn-PubchemFP 0.8736 0.9129 0.8343 0.9173 0.7495
rF-PubchemFP 0.8736 0.9213 0.8258 0.9480 0.7506
sVM-PubchemFP 0.8524 0.9354 0.7697 0.9133 0.7149
nB-aP2D 0.7681 0.8399 0.6966 0.8112 0.5421
Knn-aP2D 0.8427 0.8624 0.8230 0.8964 0.6859
rF-aP2D 0.8287 0.9213 0.7360 0.9031 0.6689
sVM-aP2D 0.8131 0.8876 0.7388 0.8473 0.6335

Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; 
SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic 
curve; MCC, Matthews correlation coefficient; CA, classification accuracy.

Table S2 Five-fold cross validation model performance using 
experimental inactive agonists

Model CA SE SP AUC MCC

nB-extFP 0.7083 0.7247 0.6542 0.7385 0.3322
Knn-extFP 0.8425 0.9354 0.5327 0.7831 0.5219
rF-extFP 0.8035 0.9129 0.4393 0.7852 0.3966
sVM-extFP 0.8121 0.9522 0.3458 0.8275 0.3914
nB-MaccsFP 0.7169 0.7781 0.5140 0.7309 0.2715
Knn-MaccsFP 0.8186 0.9157 0.4953 0.7999 0.4517
rF-MaccsFP 0.8271 0.9298 0.4860 0.8141 0.4707
sVM-MaccsFP 0.8164 0.9522 0.3645 0.8083 0.4095
nB-PubchemFP 0.6305 0.6489 0.5701 0.6940 0.1883
Knn-PubchemFP 0.8380 0.9073 0.6075 0.7922 0.5312
rF-PubchemFP 0.7947 0.9326 0.3364 0.7969 0.3377
sVM-PubchemFP 0.7905 0.9382 0.2991 0.8057 0.3116
nB-aP2D 0.5376 0.5225 0.5888 0.5837 0.0938
Knn-aP2D 0.8098 0.8989 0.5140 0.7504 0.4380
rF-aP2D 0.7905 0.9944 0.1121 0.6727 0.2622
sVM-aP2D 0.7840 0.9860 0.1121 0.6324 0.2199

Abbreviations: nB, naïve Bayesian; Knn, k-nearest neighbor; rF, random forest; 
SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; 
SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic 
curve; MCC, Matthews correlation coefficient; CA, classification accuracy.
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