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MicroRNAs regulate granulosa cells apoptosis and follicular 
development — A review

Zhuandi Gong1, Juan Yang2, Shengju Bai1, and Suocheng Wei2,*

Objective: MicroRNAs (miRNAs) are the most abundant small RNAs. Approximately 2,000 
annotated miRNAs genes have been found to be differentially expressed in ovarian follicles 
during the follicular development (FD). Many miRNAs exert their regulatory effects on the 
apoptosis of follicular granulosa cells (FGCs) and FD. However, accurate roles and mechanism 
of miRNAs regulating apoptosis of FGCs remain undetermined. 
Methods: In this review, we summarized the regulatory role of each miRNA or miRNA 
cluster on FGCs apoptosis and FD on the bases of 41 academic articles retrieved from 
PubMed and web of science and other databases. 
Results: Total of 30 miRNAs and 4 miRNAs clusters in 41 articles were reviewed and sum
marized in the present article. Twenty nine documents indicated explicitly that 24 miRNAs 
and miRNAs clusters in 29 articles promoted or induced FGCs apoptosis through their dis
tinctive target genes. The remaining 10 miRNAs and miRNAs of 12 articles inhibited FGCs 
apoptosis. MiRNAs exerted modulation actions by at least 77 signal pathways during FGCs 
apoptosis and FD. 
Conclusion: We concluded that miRNAs or miRNAs clusters could modulate the apoptosis 
of GCs (including follicular GCs, mural GCs and cumulus cells) by targeting their specific 
genes. A great majority of miRNAs show a promoting role on apoptosis of FGCs in mammals. 
But the accurate mechanism of miRNAs and miRNA clusters has not been well understood. 
It is necessary to ascertain clearly the role and mechanism of each miRNA or miRNA cluster 
in the future. Understanding precise functions and mechanisms of miRNAs in FGCs apoptosis 
and FD will be beneficial in developing new diagnostic and treatment strategies for treating 
infertility and ovarian diseases in humans and animals.
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INTRODUCTION

The first microRNA (miRNA) was discovered in the Caenorhabditis elegans by Ambros 
and Ruvkun in 1993 [1]. Later, a lot of miRNAs were discovered in human and animals [2]. 
The miRNAs are originally transcribed from coding genes which occupy 1% to 3% of the 
genome. Currently, approximately 2,000 annotated miRNAs have been reported in humans 
[3,4]. The miRNAs regulate about 30% of proteincoding genes in mammals since the 
different miRNAs may target the same mRNAs [5]. Nucleotides sizes of miRNAs are dif
ferentially reported in the mammals, including 19 to 22 nucleotides [6], 20 to 24 nucleotides 
[6,7], 21 to 23 nucleotide [4], and even 21 to 26 molecules [8]. Consequently, the precise 
numbers of nucleotides of miRNAs remain undetermined [9,10].
 Roughly, 52% of human miRNAs are localized within the intergenic regions, 40% are 
located within intronic regions, and the rest 8% are situated within exons [11]. In mammals, 
most miRNAs regulate gene expression via combining the 3′untranslated region (UTR) 
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and the specific sequences of target mRNAs, causing repres
sion of translation of target mRNAs [1214]. One miRNA may 
target hundreds of different mRNAs. However, the regulatory 
mechanism of every miRNA remains unclearly understood 
[12].
 Follicular granulosa cells (FGCs) play a key role in nourish
ing oocytes through secreting growth factors and hormones 
and regulating development of oocytes [15]. It has been well 
known that miRNAs exert the vital functions in FGCs apop
tosis and follicular development (FD) [8,16,17]. The functions 
of specific miRNAs are implicated in different aspects of FGCs 
processes of the mammals, such as proliferation [18], differ
entiation [19], and cumulus expansion [20]. 
 Previous studies aimed to determine the roles of miRNAs 
on the FD of mammals using various approaches, includ
ing conditional knockout of miRNA biogenesis genes, high
throughput sequencing technologies in various animal models. 
Nowadays, it has been well known that miRNAs exert a sig
nificant role in FD and oocyte development of mammals 
[8,21]. 
 However, so far the accurate effects and regulatory mech
anism of different miRNAs regulating apoptosis of granulosa 
cells (GCs) and FD have still remained unclear, especially their 
target genes and signaling pathways [20,22]. The present 
review aimed to comprehensively elaborate the research ad
vances on miRNAs for modulating apoptosis of FGCs and 
FD in humans and animals so as to seek new diagnostic and 
treatment scheme for infertility and ovarian diseases.

miRNAs MODULATE APOPTOSIS OF 
FOLLICULAR GRANULOSA CELLS

The miRNAs regulate the function of FGCs via altering ex
pression levels of target genes [7,23]. The microRNA (miR)
let7 family is highly conserved in sequences across animal 
species. MiRlet7 family is differentially expressed during 
follicular atresia [24]. Expression levels of miR-let-7a, let-7b, 
let-7c, and let-7i genes were reduced in early and progressed 
atretic follicles as compared to those in healthy follicles [25,26]. 
The miRlet7gmediated suppression of mitogenactivated 
protein kinase kinase kinase 1 (MAP3K1) resulted in the ex
pression and dephosphorylation of the transcription factor 
fork head O1 (FOXO1) which induced FGCs apoptosis [27]. 
Overexpression of miRlet7g increased the apoptosis rate of 
the mouse FGCs [26] and FOXO1 expression in FGCs, and 
then resulted in nuclear accumulation of dephosphorylated 
FOXO1. Additionally, the expression levels of the apoptosis
associated genes including Caspase 3, BCL2Associated X 
(BAX), and BES1interacting Myclike protein (BIM) were 
significantly upregulated after miRlet7g mimic was trans
fected into porcine FGCs. But the antiapoptotic genes Bcell 
lymphoma2 (Bcl-2) and myeloid cell leukemia1 were sig

nificantly downregulated [26]. Briefly, the miRlet7 family 
exerted a potential in the regulation of FGCs apoptosis. 
 MiR21 is one of three highly luteinizing hormone (LH) 
induced miRNAs in murine FGCs [14]. It acts as an anti
apoptotic factor in GCs. A loss of miR21 in vivo leads to a 
reduction of ovulation rates [28]. MiR21 blocks the apoptosis 
of murine FGCs [14,29]. Several miR21 target transcripts 
have been identified to explain its antiapoptotic effect, in
cluding programmed cell death 4, phosphatase and tensin 
homologue [29,30]. 
 The levels of the primary transcript of miR21 (primiR21) 
and mature miR21 were obviously increased in the cumulus 
oocyte complexes (COCs) over the maturation period. The 
primiR21 expression was remarkably decreased in COCs 
treated with a signal transducer and activator of transcrip
tion 3 pathway inhibitor, and cumulus expansion may be 
prevented. Inihibition of PrimiR21 expression directly in
fluenced miR21 expression in bovine oocytes and cumulus 
cells (CCs) [31]. Upregulating miR21 expression signifi
cantly reduced CCs apoptosis. The oocytesecreted factors 
(OSFs) upregulated miR21 expression and suppressed FCCs 
apoptosis by activating the PI3K/Akt signal [29]. It is known 
that oocytes and CCs are more resistant to apoptosis than 
other compartments of the antral follicle. However, little is 
known about the intracellular mechanisms by which OSFs 
render FCCs resistant to apoptosis [29,32]. 
 MiR146a is implicated in ovarian cancer development by 
suppressing the expression of antiapoptotic genes, such as X
linked inhibitor of apoptosis protein, Bcl2like protein 2, and 
baculoviral IAP repeat containing 5 [33]. The downregulation 
of miR146a inhibited apoptosis of FGCs by simultaneously 
targeting interleukin1 receptorassociated kinase (IRAK1) 
[34]. A recent study demonstrated that miR126 inhibited 
FSH receptor (a direct target gene) expression and increased 
the apoptosis rate of porcine FGCs [35]. However, the cell 
apoptosis rate was dramatically reduced when miR1413p 
was overexpressed in rat FGCs [36].
 An earlier report revealed that miR26b enhanced DNA 
breaks and FGCs apoptosis by targeting the ataxia telangiec
tasia mutated (ATM) gene [37]. Overexpression of miR26b 
promoted porcine FGCs apoptosis by regulating the expres
sion of Smaand Madrelated 4 (SMAD4). These results 
strongly suggest that miR26b plays a crucial role in FGCs 
apoptosis [37]. MiR125b regulated apoptosis by targeting 
bone morphogenetic protein receptor 1B (BMPR1B) in yak 
FGCs [38].
 The miR144 was differentially expressed in the porcine 
preovulatory follicles. The miR144 regulated FGCs apopto
sis and affected follicular atresia [39]. Additionally, miR224 
was involved in the mouse FGCs proliferation via targeting 
SMAD4 [33]. Another study indicated that miR1275 was 
expressed during the porcine follicular atresia. The miR1275 
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can promote early apoptosis of porcine FGCs and the initia
tion of follicular atresia (FA) by inhibiting estradiol release 
and expression of liver receptor homolog (LRH)1 that was 
bound to the cytochrome P450, family 19, subfamily A, poly
peptide 1 promoter and increased its activity. Additionally, 
miR1275 attenuated LRH-1 expression by directly binding 
to its 3′ UTR [40].

MiRNAs REGULATE DEVELOPMENT OF 
MURAL GCs AND CUMULUS CELLS 

The GCs are divided and differentiated into mural GCs and 
CCs that tightly surround the oocyte [41,42]. Both mural 
GCs and CCs are two specialized cell types that differentiate 
from a common progenitor during folliculogenesis [43]. Mural 
FGCs supported the oocytes via endocrine and paracrine 
pathways [44]. The miRNAs are differentially expressed be
tween CCs and mural GCs [45]. Another report showed that 
59 miRNAs were found differentially expressed between 
bovine immature and maturated oocytes [46]. The sequenc
ing analysis revealed the expression of several hundreds of 
miRNAs in mural GCs and CCs. 53 miRNAs (such as miR
146a5p, miR1495p, miR5093p, and miR1825p) were 
differentially expressed between mural FGCs and CCs [43]. 
Top 10 most abundant miRNAs in mural GCs and CCs 
were miR215p, let7a5p, let7f5p, miR26a5p, let7b5p, 
let7g5p, miR103a3p, miR125a5p, miR92a3p, miR
320a, and other miRNAs. MiR146a5p, miR1825p, miR
5093p, and miR1495p exert their regulatory functions 
through 37, 43, 2, and 9 target genes, respectively [43].
 Expression of miR130b was altered during oocyte matu
ration by directly targeting SMAD5 and mitogen and stress
activated protein kinase 1 which were identified as target genes 
of miR130b. Overexpression of miR130b increased the pro
liferation of mural GCs and CCs. But, inhibition of miR130b 
expression during in vitro maturation (IVM) of oocytes de
creased the first polar body extrusion and the mitochondrial 
activity. Such, functional modulation of miR130b affected 
the proliferation and survival of GC and CC as well as oocyte 
maturation [47].
 Previous studies also demonstrated miR146a5p promot
ing apoptosis of mural GCs by directly targeting IRAK1 and 
tumor necrosis factor receptorassociated factor 6 and miR
5035p inhibiting proliferation by targeting cyclin D2 [48]. 
In 9 differentially expressed miRNAs, 4 miRNAs (hsamiR
146a5p, hasmiR10b5p, hsamiR29b3p, and hsamiR142
5p) in mural GCs, and 5 miRNAs (hsalet7c5p, hsamiR
125b5p, hsamiR1275, hsamiR1295p, and hsamiR129
23p) in CC were upregulated [43]. 
 Overall together, studies on cell communication, extracel
lular matrix and signaling pathways have demonstrated the 
differential expressions of miRNAs have relevance with physi

ological functions of CCs and mural GCs [45]. 

MiRNAs REGULATE DEVELOPMENT OF 
OVARIAN FOLLICLES

Both FD and oocyte maturation are completed in the ovaries 
of female mammals. A highly complicated, spontaneous death 
phenomenon that is called as atresia takes place during the 
FD and maturation in the mammals. Follicular atresia is re
sulted from the apoptosis of GCs surrounding oocytes [49]. 
In mammals, less than 1% of ovarian follicles will eventually 
ovulate. More than 99% of ovarian follicles are disappeared 
as a result of atresia, which affects all stages of follicular growth 
and development [50]. 
 The FD is mediated by various regulatory factors includ
ing many miRNAs [51]. Numerous miRNAs play important 
roles in follicular atresia and development [49,52]. The miR
NAs exert their functions as mediators of these processes via 
their extensive involvement in posttranscriptional mRNA 
regulation [53,54]. The miRNAs are differentially expressed 
during the primordial development [55], luteal development 
[56] and the whole FD [54]. 
 MiR378 could affect oocyte IVM by inhibiting the ex
pansion and altering gene expression of CCs, and adjust in 
estradiol production by depressing aromatase translation 
in porcine FGCs. The miR378 decreased IVM rate, sup
pressed the expression of genes associated with FD, such as 
bone morphogenetic protein 15 and growth differentiation 
factor 9 and also increased apoptosis rate [21] since miR378 
targeted to the 3′UTR of aromatase mRNA [57]. 
 MiR23a and miR27a have been reported to promote GC 
apoptosis by targeting SMAD5 through the FasLFasme
diated pathway [8,58,59]. Knocking down SMAD5 expression 
increased the rate of apoptosis [59]. Additionally, studies 
indicated miR1835p and miR1495p inhibit the release of 
progesterone and estradiol, respectively [17]. Moreover, miR
5093p promotes estradiol secretion by targeting MAP3K8 [60]. 
 In summary, up to date many miRNAs mediate the process 
of oocyte maturation and folliculogenesis and also regulate 
follicular atresia through their target genes, thereby modu
lating FGCs apoptosis [59]. A large number of miRNAs and 
miRNA clusters involved in the FD have been documented 
[6163]. However, accurate roles of miRNAs and miRNA 
clusters in this process are not clearly understood [8,63]. 
Understanding the miRNAs roles will elucidate clearly the 
mechanisms of GC apoptosis, development and atresia of 
ovarian follicles [64].

MiRNA CLUSTERS REGULATE FGCs 
APOPTOSIS AND FOLLICULAR 
DEVELOPMENT 
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A miRNA cluster comprises of more than two miRNAs with 
similar functions [65]. Currently, it has been reported that 
the specific miRNA families and clusters are involved in fol
licular atresia and development including miR21, miR23a, 
miR145, miR503, miR224, miR383, miR378, miR132, 
miR212, the let7 family, miR1792 cluster, miR232724 
cluster, miR18396182 cluster, miR1792 cluster and so on 
[28,64,66,67]. However, it has been undetermined which 
miRNA cluster(s) are associated with the each stage of FD 
[61,63,64]. Furthermore, actual roles of these miRNA clusters 
in the FD, atresia and ovulation remain unclear [8,43,68].
 Fifteen different miRNAs were found during the growth 
and selection of dominant follicles [69]. Six miRNAs, includ
ing miR17, miR18a, miR19a, miR20a, miR19b, and miR
92a, are encoded by a single miR1792 transcript [70], and 
are expressed and processed together as a cluster [63]. The 
miR1792 cluster was differentially expressed in GCs from 
subordinate and dominant follicles at day 19 of the estrous cycle 
[71]. The overexpression of the miR1792 cluster promoted 
GC proliferation and reduced the proportion of differenti
ated cells. However, miR1792 cluster inhibition resulted 
in decreased proliferation and increased differentiation in 
GCs [71].
 The miR18396182 cluster (miR183, miR96, and miR
182) is highly conserved [72], it is also abundantly expressed 
in both luteal cells and bovine FGCs of preovulatory domi
nant follicles [20,73]. This miRNAs cluster impacted bFGCs 
proliferation. The overexpression of miR18396182 promot
ed the proliferation of bovine FGCs [20]. This cluster targeted 
the 3′ UTR of the FOXO1 gene [74], and thus regulated FD 
and luteal development via exerting effects on cell survival 
and steroid production. Moreover, it was also reported miR
182 inhibited FGCs apoptosis by targeting SMAD7. However, 
the actual roles and mechanism of miRNAs remain to be 
comprehensively investigated in the FGCs apoptosis and fol
licular atresia [8,75,76]. 
 The miR232724 cluster comprises the miR23a gene 
cluster (miR23a, miR27a, and miR242 genes) and the miR
23b cluster (mir23b, mir27b, and mir241 genes) that exert 
their function via SMAD5. SMAD5 is a direct target of mir
23a and mir27a, which promote GC apoptosis via the Fas
FasL pathway [59]. These evidences suggest that miR2327
24 clusters play a role in follicular atresia. On the other hand, 
expression levels of miR23a27a24, miR222221, and miR
214199a clusters showed an increase until the midluteal 
phase, but expression decreased in the dominant FGCs dur
ing the late follicular phase of the estrous cycle.
 The miR1792 cluster (including miR17, miR18a, miR
19a, miR19b, miR20a, and miR92a) was activated via direct 
binding the MYCN protooncogene/MYC protooncogene 
promoter [64,77]. This cluster showed to regulate the trans
forming growth factor β (TGFβ) pathway and affect FGCs 

apoptosis and follicular atresia [70]. Similarly, the miR132
212 cluster is associated with ovulation and was elevated after 
the induction with an ovulatory dose of LH/human chorionic 
gonadotropin [16], preventing cells from entering into apop
tosis.
 Based on the reported information in recent years, the 
regulatory roles of miRNAs on FGCs are summarized in Table 
1. As presented in table 1, in total of 41 academic theses re
garding 34 miRNAs and miRNAs clusters that reported the 
regulatory effects of miRNAs on FGCs apoptosis in mam
mals. The documents indicated explicitly that 24 miRNAs 
and miRNAs clusters in 29 articles promoted or induced 
FGCs apoptosis through their distinctive target genes. Seven 
miRNAs inhibited FGCs apoptosis. So far, the regulatory 
roles of the remaining 9 miRNAs and miRNAs clusters have 
been undetermined. We could conclude that a majority of 
miRNAs show promoting role on apoptosis of FGCs in mam
mals. But the accurate mechanism of miRNAs and miRNA 
clusters have been not well understood.

MOLECULAR SIGNALING PATHWAYS 
WERE SUMMARIZED

The existence of miRNAs was discovered more than 20 years 
ago, and since then considerable achievements have been 
made in understanding the molecular mechanisms in the 
apoptosis, proliferation and development of follicular cells 
[78]. MiRNAs can combine with complementary sequences 
in the 5′UTR [52] or 3′UTR [21] of target mRNAs, there
fore degrading the mRNA or repressing translation.
 Nowadays, it has been known that many miRNAs modu
late and FGCs apoptosis and follicular atresia through distinct 
signaling pathways [61]. Individual miRNAs target multiple 
genes and involve different patterns of pathways to regulate 
apoptosis of FGCs, follicular atresia and development. The 
miRNAs regulate varying signaling pathways of FGCs apop
tosis and the ensuing FA via interacting with the mRNAs of 
target genes [37,58]. Several miRNAs targeting signaling path
ways of FGCs apoptosis have been identified in bovine FGCs 
[20,79]. A previous report showed that at least 77 signaling 
pathways were reported in the documents which involved 
miRNAs regulation on FGCs apoptosis and FD [8]. Another 
study indicated 10 differentially expressed miRNAs and 117 
pathways in dominant follicles were collected [51]. An earlier 
bioinformatic analysis of miRNAs expression of FGCs showed 
that 139 associated pathways were screened out during the 
growth and selection of dominant follicles [69]. Furthermore, 
Cha et al 83 reported that 48 signal transduction pathways 
are upregulated by miRNAs and 29 pathways are down
regulated by the miRNAs [80]. Nowdays, it has been clearly 
undetermined how many signal transduction pathways are 
involved in the miRNAs regulation roles [8,64]. Based on the 
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documents, partial miRNAs and their signal pathways are 
summarized in Table 2. As shown in this table, 16 miRNAs 

exert their functions by targeting 11 genes (mainly SMAD7) 
via mainly 11 signal pathways with the maximum of TGFβ 

Table 1. Regulatory roles of miRNAs on apoptosis of granulosa cells

Gene symbol Functions and changes during apoptosis Target 
genes

Model 
species Study types References

miR-21 Decreased cleaved caspase 3, inhibited apoptosis, increases ovulation rate LNA-21 Mice In vivo Carletti [14]
miR-182 Inhibits FGCs apoptosis SMAD7 Human In vitro Sinha [47] 
miR-23a Increased cleaved caspase-3, decreased caspase-3 protein and promoted FGC 

apoptosis
XIAP  
(protein)

Human In vitro Yang [58]

Promoted FGCs apoptosis in human SMAD5 Human In vitro Nie [59]
miR-26b Increases DNA break, inhibits ATM, and promotes FGC apoptosis ATM Pig In vitro Liu [37]

Inhibits Bcl-2, suppresses SMAD4, and promotes GC apoptosis SMAD4 Pig In vitro Liu [37]
Suppresses HAS2, enhances caspase-3 and promotes GC apoptosis HAS2 Pig In vitro Liu [84]

miR-34a Represses INHBB and promotes GC apoptosis INHBB Pig In vitro Tu [90] 
miR-92a Inhibits SMAD7 and promotes apoptosis SMAD7 Pig In vitro Liu [83]
miR-27a Increases expression of cleaved caspase-8, cleaved caspase-3, promotes FGC apop-

tosis
SMAD5 Human In vitro Nie [59]

let-7g Inhibits MAPK1 and induces GC apoptosis MAP3K1 Pig In vitro Zhou [25]
Inhibits TGB-β1 and induces GC apoptosis TGBR1 Pig In vitro Cao [26]
Induces FGCs apoptosis MAP3K1 Pig Cao [32]
Overexpression of let-7g increase the apoptosis rate of FGCs IGF1R Mice In vitro Zhou [23]

miR-125a Enhances cleaved caspase-3 and promotes FGC apoptosis STAT3 Mice In vitro Wang [70]
miR-320 Inhibits E2 synthesis and FGC proliferation E2f1/Sf-1 Mouse In vitro Andrei [43]
miR-15a promotes release of progesterone and testosterone unknown Human In vitro Sirotkin [17]
miR-146a Inhibits ovarian granulosa cell apoptosis IRAK1 Human In vivo Chen [34]
miR-146a-5p Promotes apoptosis of mural gcs IRAK1 

TRAF6
Human In vivo Lei [48]

miR-125a-5p Promotes GC apoptosis Stat3 Mouse In vitro Andrei [43]
miR-126* Inhibits FSHR expression and increases the rate of AR-induced apoptosis in FGCs FSHR Pig In vitro Du [35]
miR-378 Decreases E2 production CYP19A1 Porcine In vitro Xu [57]
miR-378-3p Inhibited FGC differentiation PGR Bovine In vitro Sun [21]
miR-224 Enhanced TGF-1-induced FGC proliferation TGF-1  

Smad4
Mice In vitro Shin [13] 

miR-10 Suppresses GC proliferation BDNF Goat In vivo Andrei [43]
miR-503/322/351 cluster Reduces of mitochondrial activity in FGCs AMAG Mouse In vitro Lei [48]
miR-764-3p Decreases steroidogenesis Sf-1 Mice In vitro Wang [70]
miR-22 Suppresses SIRT1 and inhibits FGCs apoptosis SIRT1 Mice In vitro Xiong [86]
miR-183-96-182 cluster Promotes GCs apoptosis FOXO1 Cow In vitro Gebremedhn [73]
miR-17-92 cluster Promoted GCs proliferation PTEN  

BMPR2
Cattle In vitro Andreas [71]

Affect FGCs apoptosis and follicular atresia MYCN/ 
MYC

Mice Wang [70]

MiR‐141‐3p Inhibits apoptosis in rat ovarian GCs DAPK1 Rat In vitro Li [33]
miR-145 Regulates negatively FGC proliferation IRS1 Human In vitro Naji [28]

Protects FGCs agaist oxidative stress- induced apoptosis KLF4 Mice  In vitro Zhang [64]
miR-378 Increases apoptosis rate Bax/Bcl-2 Mice In vitro Sun [21]
miR-16 Suppresses Apoptosis through targeting PDCD4 in polycystic ovarian syndrome PDCD4 Human In vivo Fu [30]
miR-125b Regulates apoptosis of FGCs BMPR1B Yak In vivo Yao [38]
miR-1275 Promoted early apoptosis of FGCs LRH-1 Pig In vitro Liu [40]

LNA-21, locked nucleic acid; FGCs, follicular granulosa cells; SMAD4, SMAD5, and SMAD7, Sma-and Mad-related 4, 5 and 7, respectively; XIAP, X-linked inhibitor of apoptosis 
protein; ATM, ataxia telangiectasia mutated gene; GCs, granulosa cells; HAS2, hyaluronic acid synthase 2; INHBB, inhibin beta-B; MAP3K1, mitogen-activated protein kinase 
kinase kinase 1; TGB-β1, transforming growth factor-β type 1; TGBR1, transforming growth factor-β type 1 receptor; IGF1R, insulin-like growth factor 1 receptor; STAT3, signal 
transducer and activator of transcription 3; IRAK1, interleukin-1 receptor-associated kinase; TRAF6, tumor necrosis factor receptor-associated factor 6; FSHR, FSH receptor; 
CYP19A1, cytochrome P450, family 19, subfamily A, polypeptide 1; PGR, progesterone receptor; TGF-1, transforming growth factor 1; Smad2, Sma- and Mad-related protein 
2; BDNF, brain derived neurotrophic factor; AMAG, autophagy/mitophagy-associated genes; Sf-1, steroidogenic factor-1; SIRT1, silent mating-type information regulation 2 
homologue 1; FOXO1, fork head O1; PTEN, phosphatase and tensin homolog deleted on chromosome ten; BMPR, bone morphogenetic protein receptor 1b; MYCN/MYC, 
Mycn proto-oncogene/Myc proto-oncogene; DAPK1, death‐associated protein kinase 1; IRS1, insulin receptor substrate; KLF4, Krüppel-like factor 4; Bax/Bcl-2, B-cell lympho-
ma-2 associated X/B-cell lymphoma-2; PDCD4, programmed cell death 4; BMPR1B, argeting bone morphogenetic protein receptor 1B; LRH-1, liver receptor homolog-1.



www.ajas.info  1719

Gong et al (2020) Asian-Australas J Anim Sci 33:1714-1724

and Bcl2 (Figure 1). 
 Moreover, the SMAD played an important role in regulat
ing FD [51,81]. SMAD proteins can transduce the TGFβ 
family signals at the cell surface into gene regulation in the 
nucleus. The miR23a and miR27a targeted SMAD5 and 

regulated apoptosis in human GCs via the FasLFas pathway 
[59].
 The miR224 and miR26b regulate the pathway by tar
geting SMAD4 [13,82]. Earlier research indicated that miR
26b was upregulated during porcine follicular atresia. In vitro 

Table 2. miRNAs and their signal pathways

Signal pathway mi-RNAs Target Model Species Reference

TGF-β miR-92a SMAD7 Mouse Yang [55]
Human Donadeu [56]

miR-181b SMAD7 Pig Yao [38]
miR-let-7g TGBR1 Pig Zhou [25]
miR-92a SMAD7 Pig Liu [37]
miR-182 SMAD7 Rat Luo [15]
miR-224 SMAD4 Mice Yao [38]

Bcl-2 miR-26b SMAD4 Pig Worku [49]
miR-26b ATM Pig Liu [84]
miR-let-7g MAP3K1 Porcine Cao [32]
miR-224 SMAD4 Pig Liu [37]

Bcl-2/Bax miR-125b BMPR1B Yak Yao [38]
Bcl-2/MCL-1 miR-let-7g TGBR1 Pig Cao [32]
FasL-Fas miR-23a miR-27a SMAD5 Human Nie [59]
TGFBR1 miR-125b SMAD7 Pig Yao [38]
HAS2-CDD44-casp-3 miR-26b SMAD4 Pig Liu [84]

USP9X Liu [37]
HAS2-HA-cd44-casp-3 miR-26b HAS2 Pig Liu [84]
sNPFR1/npyr miR-9a NPY2R Porcine Suh [54]
MSK1 miR-130 SMAD5 Cattle Sinha [47]
PKB/mTOR miR-let-7g IGF1R Mice Zhou [23]
CP2/miR-144/COX-2/PGE2 miR-144 CP2 Mouse Zhou [39]

TGF-β, transforming growth factor β; SMAD4, SMAD5, and SMAD7, Sma-and Mad-related 4, 5 and 7, respectively; TGBR1, transforming growth factor-beta type 1 receptor; 
Bcl-2, B-cell lymphoma-2; ATM, ataxia telangiectasia mutated; MAP3K1, mitogen-activated protein kinase kinase kinase 1; BMPR1B, argeting bone morphogenetic protein 
receptor 1B; MCL-1, myeloid cell leukemia-1 gene; TGFBR1, threonine kinase complex composed of type I; HAS2, hyaluronan synthase 2; HA, hyaluronic acid; ubiquitin-spe-
cific proteases 9X (USP9X); sNPFR1, short neuropeptide F receptor 1; NPY2R, Neuropeptide Y receptor Y2; MSK1, mitogen- and stress-activated protein kinase 1; IGF1R, 
insulin-like growth factor 1 receptor; CP2, cyclooxygenase prostaglandin E2; COX, cyclooxygenase; PGE2, prostaglandin.

Figure 1. The main target genes and numbers of miRNAs regulatory roles on follicular granulosa cells (FGCs) apoptosis (articles published untill March 2019). The diverse 
types of miRNAs regulated FGCs apoptosis of and follicular development in humans and animals. But, which target gene is the key gene in these comprehensive processes 
so far has been undetermined.
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study revealed miR26b enhanced DNA breaks and GC apop
tosis by targeting ATM [83]. Overexpression of miR26b in 
follicular FGCs suppressed levels of SMAD4 mRNA and pro
tein, leading to downregulation of the antiapoptosis Bcl-2 
gene and the promotion of GC apoptosis [49]. Another study 
reported that miR26b and its overexpression could promote 
apoptosis of porcine FGCs by directly and indirectly target
ing SMAD4, ubiquitinspecific proteases 9X and hyaluronic 
acid synthase 2 (HAS2) respectively [83]. The apoptosis pro
cesses are mediated through the HAS2CDD44Caspase3 
pathway [84]. These results strongly suggested that miR26b 
plays a crucial role in GC apoptosis and follicular atresia. 
 The miR23a and miR27a promote human GC apoptosis 
by targeting SMAD5. Similarly, miR92a, miR181b, and 
miR182 directly bind to SMAD7 [47,76], which is consid
ered an antagonist of the TGFβ pathway [17] and an amplifier 
of TGFβinduced apoptosis [24]. Roles of the TGFβ pathway 
and related miRNA regulation have been frequently reported 
in recent years.
 The functional networks play critical roles in the FD which 
contribute to the profound exploration on miRNAs roles. 
However, the association with downstream apoptosis genes 
and proteins remains still unclear [85,86]. The exact signal 
pathways in which the miRNAs exert need to be investigated 
in the future [40]. 

CONCLUSIONS AND PERSPECTIVES

MiRNAs are involved in physiological and developmental 
processes by posttranscriptionally inhibiting gene expres
sion. In this review of 41 academic theses, we summarize 
the current advances in the regulatory roles of miRNAs and 
miRNA clusters on the FGCs apoptosis and FD in the mam
mals. Total of 30 miRNAs and 4 miRNAs clusters were reported 
in all articles. The documents indicated explicitly that 24 
miRNAs and miRNAs clusters in 29 articles promoted or 
induced FGCs apoptosis through their distinctive target 
genes. The remaining 12 papers reported that 10 miRNAs 
and miRNAs clusters inhibited FGCs apoptosis. We could 
conclude that miRNAs or miRNAs clusters could modulate 
the apoptosis of GCs (including follicular GCs, mural GCs, 
and cumulus cells) by targeting its specific genes through 
the different signal pathway. A majority of miRNAs show 
promoting role on apoptosis of FGCs in mammals. But the 
accurate mechanism of miRNAs and miRNA clusters is not 
well understood [8,43,64]. The current results in the published 
documewnts are still not to clearly eaplain the distinctive 
effects of each miRNAs or miRNA cluster on FGCs apoptosis 
and FD in mamnals. It is extremely necessary to ascertain 
clearly the role and mechanism of each miRNA or miRNA 
cluster in the future. Understanding comprehensively mech
anism of miRNA action may enhance the development of 

new tools to study miRNAs functions and inspire new di
agnostic and treatment strategy or scheme for infertility 
[87], ovarian disorders and ovarian diseases associated to 
miRNA high expression or insufficiency [88], such as fol
licular infertility and ovarian cancer [89]. 
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