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1  | INTRODUC TION

Often considered the food sources of the future (Torres-Tiji 
et al., 2020), microalgae can provide an abundance of essential nutri-
ents to human health (Koyande et al., 2019). Apart from high-quality 
proteins (Chronakis & Madsen, 2011), the edible biomass of microal-
gae is comprised of carbohydrates, long-chain polyunsaturated fatty 
acids, vitamins, minerals, and other bioactive compounds such as ca-
rotenoids (Henríquez et al., 2016; Schweiggert & Carle, 2016). Lately, 
the trend toward carotenoid consumption increased after a plethora 
of publications suggested their positive effects in conditions related 
to oxidative and inflammatory stress, cancer, cardiovascular disor-
ders, and ocular diseases such as age-related macular degeneration, 

cataracts, and retinitis pigmentosa (Fiedor & Burda, 2014; Kaulmann 
& Bohn, 2014). Lutein and zeaxanthin are known to be responsible 
for maintaining ocular health by reducing the risk of visual impair-
ment over time (Johnson, 2014) and have also been associated with 
cognitive function (Hammond et al., 2017), thus finding alternative 
and bioaccessible food sources of these beneficial xanthophylls con-
stitutes an important research direction.

Several microalgae such as Chlorella sp., Arthrospira sp., and 
Dunaliella sp. can accumulate high amounts of carotenoids, partic-
ularly β-carotene and xanthophylls (Cha et al., 2012; Grosshagauer 
et al., 2020; Tang & Suter, 2011). The incorporation of microalgae in 
novel food formulations is currently limited due to their unappeal-
ing sensory properties and human consumption of these dietary 
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Abstract
The bioaccessibility of the major carotenoids present in two commercial microalgal 
supplements in powder form was investigated through a standardized in vitro di-
gestion method. The dried biomass of Arthrospira platensis contained β-carotene 
(36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well 
as a high content of saturated fatty acids (61% of total fatty acids), whereas that of 
Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsatu-
rated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioacces-
sibility was not statistically enhanced after the replacement of porcine bile extract 
with bovine bile extract in the in vitro digestion protocol and after the addition of 
coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, 
the use of bovine bile extract along with co-digestion with coconut oil significantly 
enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest 
bioaccessibility of 42.8%.
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supplements is usually via the ingestion either of a compact form 
(as tablets, capsules, and pastilles) or a powdered form (as a food 
complement). Microalgal biomass for human consumption is mostly 
available in the form of dried powder (de Farias Neves et al., 2019), 
usually marketed as commercial microalgal powder. Microalgae cul-
tivated in open ponds or in closed photobioreactors are harvested, 
processed, and extracted in order to obtain the valuable powder 
used not only in the food industry, but also in feed, nutraceutical, 
and pharmaceutical fields (Benedetti et al., 2018).

It has been generally acknowledged that the bioaccessibility of 
some carotenoids is higher from animal-based foods than from plant 
sources (Chacón-Ordóñez et al., 2018), but data are still insufficient 
as concerns microalgal sources. Carotenoid release from the struc-
tural organizations in which they are embedded in different food 
matrices represents one of the major factors that affect bioacces-
sibility. Regardless of the fact that food processing may result in the 
loss of a certain amount of bioactive compound, disintegration of 
the matrix can have a beneficial impact on carotenoid liberation and 
bioaccessibility (Schweiggert & Carle, 2015). In the case of commer-
cial microalgae supplements, the cell wall is usually disrupted by the 
manufacturer during the drying process of the powders to ensure a 
better nutrient assimilation (de Farias Neves et al., 2019; Villarruel-
Lopez et al., 2017), and in some species such as Arthrospira platensis 
(more commonly known as Spirulina), additional processing is not 
required owing to the absence of cellulose in the cell wall (Hosseini 
et al., 2013).

Even though plenty of research is available regarding the nutrient 
profile of some edible microalgal products, data on carotenoid bioac-
cessibility and intestinal absorption are scarce and focused only on a 
few of the multitude microalgae species (Bernaerts et al., 2020; Cha 
et al., 2011, 2012; Gille et al., 2015, 2017, 2018; Granado-Lorencio 
et al., 2009). For instance, the existing literature on C. pyrenoidosa 
(a unicellular green microalga) is limited and mainly centered on the 
positive effects upon administration (Merchant et al., 2002; Nakano 
et al., 2007, 2009). Also, as far as we are aware, there are no publi-
cations with respect to carotenoid bioaccessibility from this edible 
microalga. In contrast, the more popular A. platensis (a multicellu-
lar blue-green microalga) has been the focus of a great number of 
investigations (Gershwin & Belay, 2007; Seyidoglu et al., 2017; Yu 
et al., 2012) over the past decades, but even in this case informa-
tion regarding carotenoid gastrointestinal fate is sparse. Given that 
these commercially available supplements are highly promoted and 
consumed throughout the world not only by athletes (mainly for 
protein intake enhancement) but also by the population at large, it 
is clear that more studies on the bioaccessibility of bioactive com-
pounds from microalgae are required in order to fully understand 
their benefits.

In this context, we sought to evaluate the bioaccessibility of the 
major carotenoids from A. platensis and Chlorella pyrenoidosa, two of 
the most consumed microalgal supplements (Koyande et al., 2019; 
Pulz & Gross, 2004), using an internationally recognized in vitro di-
gestion protocol (Minekus et al., 2014). As a means to improve carot-
enoid bioaccessibility, the addition of organic cold-pressed coconut 

oil (Cocos nucifera L.) along with the two supplements in the in vitro 
digestion protocol was studied and the use of both porcine and bo-
vine bile extracts in the intestinal phase was tested.

2  | MATERIAL S AND METHODS

2.1 | Materials

All chemicals and reagents were of analytical grade and ultrapure 
water (18 MΩ cm resistance) treated in a Milli-Q water purifica-
tion system was used throughout the experiments. α-Amylase from 
human saliva (A1031), pepsin from porcine gastric mucosa (P6887), 
pancreatin from porcine pancreas (P7545), porcine bile extract 
(B8631), and bovine bile extract (B3883) were purchased from 
Sigma-Aldrich. Carotenoid standards β-carotene, lutein, and zeax-
anthin (purity ≥ 98%, ≥95% and ≥98%, respectively) were acquired 
from Extrasynthese.

The organic powders of A. platensis and C. pyrenoidosa and cold-
pressed coconut oil (C. nucifera L.) were bought from a local health-
food store and stored at room temperature in their original packaging 
until use. The two organic microalgal powders were purchased from 
the same company (China was specified as the country of origin), and 
the nutritional values listed on the labels are shown in Table 1. The 
daily recommended dosage on the supplier's label was 3–10 g (1–3 
spoons) of A. platensis and 2–5 g (1–2 spoons) of C. pyrenoidosa.

2.2 | Carotenoid extraction from starting materials

Extraction was performed at room temperature and under dimmed 
light. Approximately 0.4 g of each organic microalgal powder was 
weighed (in triplicate) in 15-ml tubes, and 4 ml of hexane:acetone 
(1:1, v/v) was added. The tubes were homogenized using a vor-
tex mixer for 1 min and centrifuged at 4,800 g (Eppendorf 5810 
R, Eppendorf AG) for 10 min to speed up phase separation. The 
procedure was repeated with 4 ml hexane until the supernatant 

TA B L E  1   Composition of Arthrospira platensis and Chlorella 
pyrenoidosa organic powders as indicated on the labels

Arthrospira platensis

Chlorella 
pyrenoidosa

Nutritional value for 100 g 
powder

Energy 342.5 kcal 373.9 kcal

Total fat 0.76 g 2.61 g

of which saturated 0.42 g 0.61 g

Total carbohydrates 13.98 g 28.44 g

of which sugars 0.10 g 1.16 g

Fibers 4.20 g 9 g

Proteins 67.85 g 59.17 g

Salt 0.90 g 0.064 g
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was colorless. The carotenoid-containing extracts were combined, 
reduced to dryness at 35°C with the use of a rotary evaporator 
(Heidolph MR Hei-End) and stored at −20°C until HPLC-DAD 
analysis.

2.3 | HPLC-DAD analysis of carotenoids from 
starting materials and micellar fraction

The extracts were dissolved in a known volume of ethyl acetate 
and filtered (0.20 μm PTFE filter) in amber vials. The HPLC sys-
tem (Shimadzu Corporation) was equipped with a SPDM20A 
diode array detector and an YMC C30 reversed phase column 
(250 × 4.6 mm i.d., 5 µm particle size). Carotenoid separation was 
performed applying a gradient elution with methanol/tert-butyl 
methyl ether/water (83:15:2, v/v/v) (solvent A) and tert-butyl me-
thyl ether/methanol/water (90:8:2, v/v/v) (solvent B) in the follow-
ing conditions: 0 min 0% solvent B, 20 min 0% B; 150 min 82% B; 
152 min 0% B, where after the column was equilibrated for 10 min. 
The flow rate was 0.8 ml/min, and the injection volume was 20 μl. 
Individual carotenoids were identified by comparing their reten-
tion time, elution order on C30 column, UV-Vis spectra (λmax, spec-
tral fine structure (%III/II) with those of the available standards 
(β-carotene, lutein, zeaxanthin and β-cryptoxanthin)) and with lit-
erature data. Quantification of the three major carotenoids was 
performed using external ten-point calibration curves constructed 
in the range 1–100 μg/ml. The correlation coefficients were as fol-
lows: R2 = .9912 (β-carotene), R2 = .9991 (lutein), and R2 = .9996 
(zeaxanthin).

2.4 | Lipid extraction from starting materials

Lipid extraction was performed according to the method de-
scribed by Folch et al. (1957). In short, approximately 2 g of each 
microalgal biomass was weighted (in triplicate) and 10 ml metha-
nol was added. After a vigorous homogenization, 20 ml of chlo-
roform was added and the mixture was again homogenized. After 
filtration, the residual biomass was re-extracted using a mixture of 
chloroform:methanol (2:1, v/v). KCl 0.88% was added to the com-
bined extracts in a separating funnel so as to achieve a ratio of 8:4:3 
(v/v/v) chloroform:methanol:potassium chloride. The hypophase, 
that is, the lipid-containing chloroformic phase, was dried with an-
hydrous sodium sulfate, evaporated to dryness at 35°C with a ro-
tary evaporator (Heidolph MR Hei-End) and stored at −20°C prior 
to GC-MS analysis.

2.5 | Fatty acid GC-MS analysis of coconut oil and 
microalgae lipids

By using the acid-catalyzed transesterification method 
(Christie, 1989), fatty acid methyl esters (FAMEs) were determined 

employing a PerkinElmer Clarus 600T GC-MS (PerkinElmer, Inc.) 
equipped with a SUPELCOWAX 10 (Supelco Inc.) capillary column 
(60 m × 0.25 mm i.d., 0.25 μm film thickness) and helium as car-
rier gas (0.8 ml/min flow rate). The initial oven temperature (140°C) 
was increased by 7°C/min to 220°C and kept 23 min at 220°C. The 
injection volume was 0.5 μl (split ratio of 1:24), and the injector 
temperature was set at 210°C. The positive ion electron impact (EI) 
mass spectra was recorded at an ionization energy of 70 eV and the 
trap current of 100 μA, with the source temperature of 150°C and a 
scanned mass range of 22–395 m/z. FAMEs were identified twofold: 
(a) by correlating the retention times with those of known standards 
(37 component FAME Mix, SUPELCO, Art. No. 47885-U) and (b) by 
comparing their mass spectra with the data provided by the MS da-
tabase (NIST MS Search 2.0). Fatty acids were expressed as percent-
age (%) of total fatty acids. Analyses were carried out in triplicate, 
and the mean values were reported.

2.6 | Simulated digestion model

The simulation of the gastrointestinal passage was performed ac-
cording to Minekus et al. (2014). The two organic powders were sub-
jected to an in vitro digestion protocol consisting of three phases, 
that is, oral, gastric, and small intestinal phases. The effect of an 
added dietary lipid source on the bioaccessibility of carotenoids 
from A. platensis and C. pyrenoidosa was investigated through the in-
clusion of organic coconut oil (5%) in the oral phase. Moreover, the 
influence of the bile source (porcine or bovine) on carotenoid bioac-
cessibility was analyzed.

Briefly, 1 g of organic powder in 2.25 ml water was mixed with 
2 ml simulated salivary fluid (SSF), 0.6 ml α-amylase in SSF (75 U/
ml in final digestion mixture), 162.5 μl CaCl2 (0.03 M), and 487.5 μl 
water. After a short homogenization, the mixture (pH 7) was in-
cubated at 37°C for 2 min (150 orbital shakes/min) in a shaking 
water bath (Memmert GmbH + Co. KG). The oral bolus was com-
bined with 4.2 ml simulated gastric fluid (SGF), 1 ml porcine pepsin 
in SGF (2,000 U/ml in final mixture), and 32.5 μl CaCl2 (0.03 M). 
The pH was adjusted to 3.0 with HCl (1 M), water was added to 
achieve a final volume of 13 ml, and the mixture was incubated 
under agitation for 2 hr. The gastric chyme was diluted with 6.4 ml 
simulated intestinal fluid (SIF), 2 ml pancreatin in SIF (based on the 
activity of trypsin, 100 U/ml in final digestion mixture), 2 ml bile 
salts in SIF (10 mM in final digestion mixture), and 260 μl CaCl2 
(0.03 M). After homogenization, the pH was adjusted to 7.0 with 
NaOH (1 M), water was added to a volume of 26 ml, and the final 
digestion mixture was incubated for 2 hr. The resulting digesta was 
centrifuged for 60 min at 4°C (4,800 g; Eppendorf 5810 R), and an 
aliquot of the micellar phase was filtered (0.2 μm nylon filter) and 
stored at −80°C. Carotenoid extraction was described in an earlier 
study (Tudor et al., 2020).

Carotenoid bioaccessibility (%) was calculated as the concentra-
tion of carotenoids in the micellar phase versus the initial carotenoid 
concentration in the microalgae powders.
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2.7 | Statistical analysis of data

All analyses were carried out in triplicate and reported as 
mean ± standard deviation (SD). Data interpretation was performed 
using unpaired t test with Welch's correction of Graph Pad Prism, 
Version 6.0 (Graph Pad Software Inc.). p values < .05 were consid-
ered statistically significant.

3  | RESULTS AND DISCUSSION

3.1 | Characterization of the investigated microalgal 
powders

The two edible microalgae A. platensis and C. pyrenoidosa were 
characterized in terms of fatty acid profile and major carotenoid 
content (Table 2). As previously reported in the literature, the con-
tent and composition of pigments varies greatly not only between 
different species but also between studies focused on the same 
microalgal strain. In our study, the major carotenoid in A. platensis 
powder was β-carotene (36.75 ± 0.63 mg/100 g), followed by ze-
axanthin (20.78 ± 0.49 mg/100 g) (Figure 1), while the dried bio-
mass of C. pyrenoidosa contained a considerable amount of lutein 
(37.75 ± 0.36 mg/100 g) (Figure 2). Other available publications 
investigating the carotenoid content of A. platensis show a great 
variation. For example, the content of β-carotene obtained in the 

present study was within the range of Grosshagauer et al. (2020) 
(33.5–231.6 mg/100 g) but much lower than the amount reported in 
another Spirulina supplement (211 mg/100 g) (Tang & Suter, 2011). 
More consistent to our findings, in a study investigating the carot-
enoid content of six commercial Spirulina platensis dietary supple-
ments from Czech Republic (three in a powder form and three as 
pills), β-carotene was found in the range of 8.69–103.7 mg/100 g and 
zeaxanthin between 2.78 and 60.6 mg/100 g (Hynstova et al., 2017). 
All the few existing publications focusing on the carotenoid content 
of C. pyrenoidosa (Fan et al., 2015; Inbaraj et al., 2006; Wu et al., 2007) 
reported lutein as the major carotenoid but in a higher amount than 
that determined in the current study, 39.33–124.01 mg/100 g (Fan 
et al., 2015) and 125,034.4 μg/g (Inbaraj et al., 2006). This wide varia-
tion in pigment composition and content within studies targeting the 
same microalgal strain occurs most probably due to a combination 
of various factors such as the different geographical origin, cultiva-
tion conditions, and processing techniques (Hosseini et al., 2013). 
Knowing that an “established” profile for each strain is unattainable, 
the analysis of microalgal bioactive compounds proves a valuable 
tool in monitoring the quality of these dietary supplements readily 
available to the general population.

The gravimetric determination of total lipids revealed a content 
of 0.73 g lipids/100 g powder (A. platensis) and, respectively, 2.70 g 
lipids/100 g powder (C. pyrenoidosa). With respect to the fat content, 
the experimental values were in agreement with the labeled ones 
(Table 1). Regarding the fatty acid composition, the dried biomass 
of A. platensis used in this study contained 61.07% saturated fatty 
acids (SFA), whereas that of C. pyrenoidosa 34.65%, of total fatty 
acids content (Table 2). These values were slightly higher than those 
of Ötleş and Pire (2001), which reported the content of saturated 
fatty acids ranging between 51.64% and 55.72% in three commer-
cial powders of S. platensis and between 24.73% and 33% in three 
commercial powders of C. pyrenoidosa. The same authors identi-
fied in S. platensis a fatty acid profile similar to our findings, with 
palmitic acid (16:0) as the major fatty acid (42.30%–46.07%), along 
with high amounts of γ-linolenic (18:3 n−6) (8.87%–21.73%) and lin-
oleic (18:2 n−6) (16.18%–17.43%) acids. As regards, C. pyrenoidosa, 
a different fatty acid profile, was observed in our case in which the 
predominant fatty acids were linoleic (18:2 n−6) and palmitic (16:0) 
acids versus the above-mentioned study in which oleic (18:1 n−9) 
(18.05%–19.71%), α-linolenic (18:3 n−3) (13.81%–15.87%), and lin-
oleic (18:2 n−6) (11.24%–21.55%) acids were the dominant fatty 
acids.

3.2 | Fatty acid composition of coconut oil

As indicated above, there was a notable difference as concerns 
the fatty acid content and composition of the investigated micro-
algal powders. The amount of fat in C. pyrenoidosa powder was 
3.4-fold higher than that of A. platensis (Table 1) and comprised 
mostly of unsaturated fatty acids (65.36%) (Table 2). Nonetheless, 
the total fat content was quite low in both microalgae powders and 

TA B L E  2   Characterization of Arthrospira platensis and Chlorella 
pyrenoidosa in terms of fatty acid composition and major carotenoid 
content

Fatty acid (% of total)a 
Arthrospira 
platensis

Chlorella 
pyrenoidosa

Palmitic acid (16:0) 60.74 ± 1.52 31.22 ± 0.41

cis-Hypogenic acid (16:1 
n−9)

3.02 ± 0.30 1.23 ± 0.10

7,10-Hexadecadienoic (16:2 
n−6)

nd 17.83 ± 0.45

Stearic acid (18:0) 0.34 ± 0.06 3.43 ± 0.23

cis-Vaccenic acid (18:1 n−7) 2.62 ± 0.37 1.53 ± 0.25

Linoleic (18:2 n−6) 19.24 ± 0.47 36.02 ± 0.55

γ-Linolenic (18:3 n−6) 14.04 ± 0.55 0.58 ± 0.08

α-Linolenic (18:3 n−3) nd 8.16 ± 0.20

Σ SFA 61.07 ± 1.58 34.65 ± 0.64

Σ MUFA 5.64 ± 0.67 2.76 ± 0.35

Σ PUFA 33.28 ± 1.02 62.60 ± 1.27

Carotenoids (mg/100 g)a 

Lutein nd 37.75 ± 0.36

Zeaxanthin 20.78 ± 0.49 nd

β-Carotene 36.75 ± 0.63 nd

aMean ± SD (n = 3); nd = not detected, SFA represents saturated fatty 
acids; MUFA represents monounsaturated fatty acids; PUFA represents 
polyunsaturated fatty acids. 
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as previous studies have already established that the availability of 
lipids in the meal is a critical factor that affects carotenoid bioac-
cessibility (Hornero-Méndez & Mínguez-Mosquera, 2007; Lemmens 
et al., 2014; O'Connell et al., 2008; Xavier et al., 2014), and an addi-
tional lipid source was employed. In this regard, organic cold-pressed 
coconut oil was selected on account of its high content of satu-
rated fatty acid and absence of carotenoids (Dauqan et al., 2011). 
Coconut oil is commonly added in smoothie recipes in combination 
with Spirulina or Chlorella powders for an extra source of energy. 
Some studies also suggest that the consumption of coconut oil has 
a positive impact on obese men and women (Assunção et al., 2009; 

Oliveira-De-Lira et al., 2018; Valente et al., 2018; Vogel et al., 2020), 
promoting weight loss of abdominal adiposity and less appetitive re-
sponses. Coconut oil is an unusual edible oil, comprised mainly of 
medium-chain saturated fatty acids (C8–C12) and containing lauric 
acid (12:0) as dominant fatty acid (Pehowich et al., 2000). The fatty 
acid profile of the organic cold-pressed coconut oil used in the cur-
rent investigation (Table 3) was in accordance with literature data 
(Bhatnagar et al., 2009; Orsavova et al., 2015). In a recent study, pure 
coconut oil was obtained from coconut pulp and the fatty acid com-
position was examined (Pizzo et al., 2019). Similar to our results, lau-
ric acid (12:0) was the major fatty acid (49.89 ± 1.08%), followed by 

F I G U R E  1   HPLC-DAD chromatogram of carotenoids in Arthrospira platensis extract. Peaks: 1, zeaxanthin; 2, chlorophyll a; 3, chlorophyll 
a isomer; 4, β-cryptoxanthin; 5, echinenone; 6, 13-cis-β-carotene; 7, all-trans-β-carotene; 8, 9-cis-β-carotene; 9, α-carotene. Peaks 2–7 and 
8–9 were tentatively identified based on the spectral characteristics and elution order previously reported in the literature

F I G U R E  2   HPLC-DAD chromatogram 
of carotenoids in Chlorella pyrenoidosa 
extract. Peaks: 1, unidentified chlorophyll; 
2, lutein; 3, unidentified chlorophyll
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myristic acid (14:0) (19.80 ± 0.73%) and comparable amounts of pal-
mitic (16:0) (8.41 ± 0.74%) and caprylic (8:0) (7.19 ± 0.78%) acids. The 
most relevant characteristics of coconut oil in this particular study 
are the high percentages of saturated fatty acids (SFA, 96.15%) and 
medium-chain fatty acids (MCFA, 68%).

3.3 | In vitro carotenoid bioaccessibility of 
A. platensis and C. pyrenoidosa

As mentioned previously, the bioaccessibility of carotenoids from 
the two microalgal supplements was assessed through an inter-
national standardized static in vitro digestion method (Minekus 
et al., 2014). Since other studies on carotenoid bioaccessibility from 
microalgae used different in vitro digestion protocols, a straight 
comparison of results is not feasible. To the best of our knowledge, 
there is only one available publication on carotenoid bioaccessibil-
ity from microalgae (Nannochloropsis sp.) that employed the same 
simulated digestion model (Bernaerts et al., 2020), with the omis-
sion of the oral phase.

3.3.1 | Bile source influence on carotenoid 
bioaccessibility

Various bile extract sources have been used in publications 
employing the standardized in vitro digestion model (Petry & 
Mercadante, 2019; Rodrigues et al., 2017; Wen et al., 2018). Here, 

we compared the use of porcine bile extract to that of bovine bile 
extract so as to achieve a final concentration of 10 mM in the final 
digestion mixture, as suggested by Minekus et al. (2014).

No statistical significance was observed in the bioaccessibility 
of lutein from C. pyrenoidosa and in that of β-carotene from A. plat-
ensis (from 17.77% to 19.19% and from 18.94% to 19.35%, respec-
tively) after the replacement of the porcine extract with the bovine 
extract. More interestingly, a statistically significant enhancement 
was obtained as regards the bioaccessibility of zeaxanthin from 
A. platensis (from 24.68% to 37.24%) (Figure 3). In a similar manner, 
Wen et al. (2018) tested both sources of bile extract and higher zea-
xanthin dipalmitate hydrolysis and bioaccessibility (from 15.9% to 
29.5% and from 20.8% to 27.4%, respectively) were achieved when 
using the bovine bile extract. The authors highlighted an important 
aspect that may impact mixed micelles formation, namely the dif-
ferent granularity of the commercial products, bovine bile extract 
appearing as a fine powder, whereas porcine bile extract consist-
ing of bigger and uneven particles. Also, Chitchumroonchokchai 
et al. (2004) observed a significant increase (from 27% to 49%) in 
carotenoid bioaccessibility from spinach puree after replacing the 
porcine bile extract with a mixture containing glycodeoxycholate, 
taurodeoxycholate, and taurocholate, three acids present in the 
human bile. Bovine bile extract appears to be a better candidate 
for mimicking the in vitro digestion conditions than porcine bile 
extract due to its similarity in bile acid composition to human du-
odenal contents as regards the main molecular species (Capolino 
et al., 2011).

In a previous study, the bioaccessibility of zeaxanthin from 
Spirulina was 4.93% and that of lutein from Chlorella 0.53% but the 
in vitro digestion conditions were not entirely provided and the in-
vestigated Chlorella strain was not mentioned throughout the study 
(O'Sullivan et al., 2011). In the current study, the higher bioaccessi-
bility of zeaxanthin from A. platensis (37.24%) could be explained by 
its facilitated release from the easily digestible cell wall (composed 
of proteins and peptidoglycans) and by the presence of a higher satu-
rated fatty acid content in lipid composition (Table 2). Yu et al. (2012) 
observed an increase of zeaxanthin concentration in human serum 

TA B L E  3   Fatty acid composition of coconut oil

Fatty acid
% of Total fatty 
acidsa 

Caproic acid (6:0) 0.55 ± 0.14

Caprylic acid (8:0) 10.51 ± 0.43

Capric acid (10:0) 6.14 ± 0.53

Lauric acid (12:0) 50.79 ± 1.55

Myristic acid (14:0) 18.69 ± 0.36

Palmitic acid (16:0) 6.87 ± 0.43

Stearic acid (18:0) 2.48 ± 0.25

Oleic acid (18:1 n−9) 3.41 ± 0.23

Linoleic acid (18:2 n−6) 0.44 ± 0.15

Arachidic acid (20:0) 0.11 ± 0.03

Σ SFA 96.15 ± 3.73

Σ MUFA 3.41 ± 0.23

Σ PUFA 0.44 ± 0.15

Σ MCFA 68 ± 2.65

Σ LCFA 32 ± 1.46

aMean ± SD (n = 3). MCFA represents medium-chain fatty acids (C6–
C12); LCFA represents long-chain fatty acids (C14–C24); SFA represents 
saturated fatty acids; MUFA represents monounsaturated fatty acids; 
PUFA represents polyunsaturated fatty acids. 

F I G U R E  3   In vitro bioaccessibility (%) of lutein from Chlorella 
pyrenoidosa and of zeaxanthin and β-carotene from Arthrospira 
platensis after the in vitro digestion using porcine bile extract as 
against bovine bile extract. Values are gives as mean ± SD (*** 
extremely significant p < .001)



1902  |     TUDOR eT al.

from 0.06 to 0.15 μmol/L after ingesting a single dose of Spirulina, 
emphasizing not only the high bioaccessibility but also the high bio-
availability of zeaxanthin from this source.

The bioaccessibility of zeaxanthin from A. platensis was greater 
than that of β-carotene (37.24% as against 19.35%). This higher 
capacity of polar xanthophylls such as lutein and zeaxanthin to 
accumulate in the micellar fraction was also observed in other 
studies (Chitchumroonchokchai et al., 2004; Kaulmann et al., 2016; 
O'Connell et al., 2008; Tudor et al., 2020) and could be explained 
by their higher solubility compared to apolar carotenes such as 
β-carotene. Being less hydrophobic, the location of xanthophylls 
in stomach lipid globules appears to be closer to the surface mono-
layer (along with proteins, phospholipids, and partially ionized fatty 
acids) as opposed to that of carotenes which reside inside the tri-
acylglycerol-rich core (Canene-Adams & Erdman, 2009). Thus, 
due to their position, xanthophylls are more readily incorporated 
into mixed micelles in the duodenum than the highly hydrophobic 
carotenes.

In the case of C. pyrenoidosa, because of its thicker cell wall com-
pared to other Chlorella strains (Duan et al., 2017), the disruption 
of the cellulose-rich walls during the drying process was specifically 
mentioned on the label. This is an important aspect as wall break-
down has been proven to contribute significantly to the enhance-
ment of lutein bioaccessibility from Chlorella vulgaris (from 26% to 
57% and 73% after microfluidization at two different pressures) (Cha 
et al., 2011). Nevertheless, more details regarding the processing 
method were not mentioned on the label; therefore, it is not possible 
to assess the impact of cellular breakdown on lutein bioaccessibility. 
A comparable value for lutein bioaccessibility (18%) was obtained by 
Gille et al. (2015) following the in vitro digestion of Chlorella vulgaris 
after sonication for 15 min.

3.3.2 | Lipophilic phase influence on carotenoid 
bioaccessibility

Upon addition of 5% coconut oil in the in vitro digestion of the two 
microalgal powders, a similar pattern to that obtained for bile source 
evaluation was observed, with a statistically significant increase in 
the case of zeaxanthin bioaccessibility from A. platensis (from 37.24% 
to 42.82%) (p < .05). Concerning the other major carotenoids, the 
increase in β-carotene bioaccessibility (from 19.35% to 20.29%) from 
A. platensis was not statistically significant, as well as the slight de-
crease in lutein bioaccessibility from C. pyrenoidosa (from 19.19% to 
18.48%) (Figure 4).

Against our expectations, the addition of a different source 
of lipids had no significant effect on lutein bioaccessibility, which 
may suggest that the amount of lipids already existing in the 
C. pyrenoidosa powder was sufficient for the release of lutein, or that 
other parameters had a much more predominant role in influencing 
lutein bioaccessibility than lipids. Previous studies have emphasized 
the negative impact of an increased amount of dietary fiber (Aschoff 
et al., 2015; Yonekura & Nagao, 2009) and of a higher degree of un-
saturation in lipid composition (Gleize et al., 2013; Yuan et al., 2018) 
on xanthophyll bioaccessibility. It appears that the unknown level 
of cellular breakdown during the drying process of the microal-
gal biomass, along with the high amount of dietary fiber (twofold 
higher than that of A. platensis) and of unsaturated fatty acid content 
(65.36% as against 38.92% for A. platensis), had a considerable influ-
ence in the overall bioaccessibility of lutein. In contrast, the absence 
of indigestible cellulose in A. platensis cell wall, together with a lower 
amount of both dietary fiber and unsaturated fatty acids, yielded a 
better zeaxanthin bioaccessibility from A. platensis, which seemed 
to be further enhanced by supplementation with coconut oil. The 
commercial supplement of A. platensis in powder form is added as a 
minor ingredient in meals, whereas that in tablet form is usually in-
gested between meals along with water. Based on this study, it could 
be presumed that the ingestion of A. platensis supplement in powder 
form would enable even a greater zeaxanthin bioaccessibility than in 
tablet form, considering that meals (such as smoothies, salads, yo-
gurt, sauces, or snacks), in contrast to tablets, contain at least a trace 
amount of lipids that could promote zeaxanthin bioaccessibility.

Other authors have included coconut oil in their studies in order 
to evaluate its effect on carotenoid bioaccessibility. Yuan et al. (2018) 
reported an increase in lutein bioaccessibility from 20.9% to 46.5% 
after mixing spinach puree with an excipient emulsion containing 
coconut oil and in another study the bioaccessibility of zeaxanthin 
from goji berries increased from 6.7% to 13.3% after the addition of 
1% coconut oil (Hempel et al., 2017). The beneficial impact of medi-
um-chain saturated fatty acids on xanthophyll bioaccessibility could 
be explained by the formation of smaller mixed micelles in the small 
intestine, which consequently implies a greater surface area for the 
more polar carotenoids to be incorporated (Yuan et al., 2018). By 
contrast, bigger mixed micelles formed after the digestion of long-
chain polyunsaturated fatty acids provide a larger hydrophobic core 
and are therefore more favorable for the incorporation of nonpolar 

F I G U R E  4   In vitro bioaccessibility (%) of lutein from Chlorella 
pyrenoidosa and of zeaxanthin and β-carotene from Arthrospira 
platensis after the in vitro digestion using bovine bile extract and 
with bovine bile extract along with 5% coconut oil. Values are gives 
as mean ± SD (* significant p < .05)
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carotenoids such as β-carotene (Zhang et al., 2015). This could also 
explain our insignificant increase in β-carotene bioaccessibility after 
the addition of coconut oil.

One of the most important findings of this study was the high in-
crease in zeaxanthin response after the in vitro digestion of A. platensis 
in different conditions (Figure 5a), and for this reason, special empha-
sis will be placed on this matter. On account of their accumulation in 
the retina, lutein and zeaxanthin are collectively known as the “macu-
lar pigments” (Krinsky et al., 2003), and among these two oxygenated 
carotenoids lutein is more abundant in nature and has been the focus 
of a larger number of studies compared to its structural isomer. Not 
only is lutein occurrence in natural food sources higher, but also its 
content and bioaccessibility (Tudor & Pintea, 2020). Consequently, 
research on plentiful and bioaccessible food sources of zeaxanthin 
other than the few already confirmed (Hempel et al., 2017; Tudor 
et al., 2020) is of great scientific interest. Apart from being an eas-
ily digested food matrix, one of the most important advantages of 
A. platensis as a source of zeaxanthin is represented by the deposition 
form of this xanthophyll. Zeaxanthin appears to be mostly present 
in its free form in microalgae (Cha et al., 2012; Granado-Lorencio 
et al., 2009), more readily available for micellization and intestinal 
absorption than from zeaxanthin-rich plant sources, in which case 
additional enzymatic cleavage of zeaxanthin mono- and diesters to 
free zeaxanthin during digestion is required.

In this study, zeaxanthin concentration in the micellar phase was 
gradually increased after the simulated digestion with the use of por-
cine bile extract, bovine bile extract, and after the addition of a di-
etary lipid rich in medium-chain saturated fatty acids (5.1 mg/100 g, 
7.7 mg/100 g and 8.9 mg/100 g, respectively) (Figure 5b). These val-
ues represent the actual amount of zeaxanthin transferred from the 
food matrix (i.e., dry microalgal biomass) into micelles that become 
available for absorption by the enterocytes. These data further 

translate into percentage of bioaccessibility and when compared 
to the values obtained by other research groups employing the 
same simulated digestion protocol, the current results seem above 
the average. Zeaxanthin bioaccessibility from A. platensis after the 
digestion with bovine bile extract and coconut oil (42.82%) was 
considerably higher than from several plant-based sources such as 
astringent persimmon (2.5%) (Cano et al., 2019), goji berries (13.3%) 
(Hempel et al., 2017), Pouteria lucuma fruit (1.6%–5.8%) (Gómez-
Maqueo et al., 2020), and from some maize-based food formula-
tions (boiled kernels, porridge and tortilla; 2.4%, 7.8%, and 18.4%, 
respectively) (Zhang et al., 2020) but lower than that obtained from 
hard-boiled egg yolk (90%) (Rodrigues et al., 2017). As regards, the 
other publication on carotenoid bioaccessibility from microalgae 
(Nannochloropsis sp.) involving the same simulated digestion proto-
col (Bernaerts et al., 2020), zeaxanthin bioaccessibility, was higher 
than from the untreated and high-pressure homogenized suspension 
of Nannochloropsis sp. (9% and 19%, respectively) but similar to that 
obtained from an oil-in-water emulsion prepared with the extracted 
Nannochloropsis sp. oil (54%).

4  | CONCLUSIONS

Carotenoid consumption has numerous benefits on human health. 
Several microalgae species can produce and accumulate carotenoids, 
especially β-carotene and xanthophylls. Considering the increase in 
population awareness of disease prevention through diet and the 
constant demand for natural rather than synthetic, microalgae will 
undoubtedly become an important food source of carotenoids and 
other valuable bioactive compounds in the future and investigation 
not only into their beneficial impact upon human health, but also into 
their gastrointestinal fate constitutes a valuable field of research.

F I G U R E  5   Zeaxanthin signal (a) and micellar concentration (mg/100 g) (b) after the in vitro digestion of Arthrospira platensis using porcine 
bile extract (PB), bovine bile extract (BB), and bovine bile extract along with 5% coconut oil (BB + 5% CO). Values are gives as mean ± SD (* 
significant p < .05, *** extremely significant p < .001)
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In summary, the use of the bovine bile extract instead of porcine 
bile extract in the in vitro digestion of the two microalgal supplements 
improved carotenoid bioaccessibility to a different extent and the ad-
dition of 5% coconut oil led to a significant increase in the bioacces-
sibility of zeaxanthin from A. platensis (from 37.2% to 42.8%). Even 
though many carotenoid-rich food sources are known, the fraction of 
these lipophilic compounds that becomes accessible for absorption is 
fairly low due to their restricted release from the food matrix. Based 
on our findings, microalgal powders could serve not only as a poten-
tial alternative for animal proteins, but also as a more-bioaccessible 
source of high-added value natural compounds such as carotenoids. 
The unpretentious cultivation conditions along with the faster grow-
ing rate render microalgae a suitable food source for carotenoid pro-
duction. Furthermore, in comparison with higher plants, large-scale 
cultivation of microalgae is not restricted to a certain period of the 
year and does not require arable land or burdensome operations.
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