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Introduction: Measles elimination depends on the successful deployment of measles containing vaccine.
Vaccination programs often depend on a combination of routine and non-routine services, including sup-
plementary immunization activities (SIAs) and vaccination weeks (VWs), that both aim to vaccinate all
eligible children regardless of vaccination history or natural infection. Madagascar has used a combina-
tion of these activities to improve measles coverage. However, ongoing massive measles outbreak sug-
gests that the country was in a “honeymoon” period and that coverage achieved needs to be re-
evaluated. Although healthcare access is expected to vary seasonally in low resources settings, little evi-
dence exists to quantify temporal fluctuations in routine vaccination, and interactions with other immu-
nization activities.
Methods: We used three data sources: national administrative data on measles vaccine delivery from
2013 to 2016, digitized vaccination cards from 49 health centers in 6 health districts, and a survey of
health workers. Data were analyzed using linear regressions, analysis of variance, and t-tests.
Findings: From 2013 to 2016, the footprint of SIAs and VWs is apparent, with more doses distributed dur-
ing the relevant timeframes. Routine vaccination decreases in subsequent months, suggesting that addi-
tional activities may be interfering with routine services. The majority of missed vaccination
opportunities occur during the rainy season. Health facility organization and shortage of vaccine con-
tributed to vaccination gaps. Children born in June were the least likely to be vaccinated on time.
Discussion: Evidence that routine vaccination coverage varies over the year and is diminished by other
activities suggests that maintaining routine vaccination during SIAs and VWs is a key direction for
strengthening immunization programs, ensuring population immunity and avoiding future outbreaks.
Funding: Wellcome Trust Fund, Burroughs Wellcome Fund, Gates Foundation, National Institutes of
Health.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

often in the form of Supplementary Immunization Activities (SIAs),
are coordinated efforts between national and international organi-

Globally, considerable progress in reducing the burden of
measles has occurred from the delivery of an effective, inexpen-
sive, and fully immunizing vaccine [1]. However, since measles is
highly transmissible, the World Health Organization (WHO) rec-
ommends that 95% of susceptible children be vaccinated to reduce
transmission and prevent outbreaks [2]. Routine programs,
designed to vaccinate children at least 9 months old at health facil-
ities, are the backbone of the vaccine program and are designed to
provide the most reliable coverage. Supplementary programs,
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zations that deliver mass vaccinations for all children within a des-
ignated age bracket, regardless of disease or vaccination history.
These additional programs are intended to prevent measles out-
breaks when routine coverage is insufficient, or to target particular
high-risk groups, ages, and geographic areas [3-5]. Additionally,
since 2011, the WHO African region has implemented an annual
Vaccination Week (VW) that serves as an additional catch-up
campaign.

Understanding how routine and additional programs interact
and contribute to the successful vaccination of children is of clear
programmatic interest, as this knowledge will inform vaccination
program effectiveness, and aid in identifying gaps in coverage.
Additional measles campaigns may negatively impact routine
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programs by redirecting healthcare workers [6-9]. However, this
effect has not been systematically quantified and is difficult to
measure using commonly available ‘administrative coverage’ data
(i.e., doses/target population). Additionally, the age of vaccination
must also be taken into account, as vaccination may come too late
relative to the average age of measles infection, or too early to be
fully immunizing as a result of interactions with maternal immu-
nity [10,11]. In many low-income settings, road infrastructure, a
lack of healthcare workers, vaccine dose shortages and challenges
to cold-chain functioning affect vaccine delivery, reducing cover-
age in rural areas [12-15]. Seasonal variability in access to care
may also shape coverage [14,16,17], with gaps at particular times
of year.

In Madagascar, measles-containing vaccine was first introduced
in the 1970s [18] as part of the routine program. Since 2007, cov-
erage has increased through a combination of three activities: (1)
routine immunization (RI), (2) bi-annual VWs, and (3) SIAs every
three years. The vaccination schedule was designed as a single-
dose scheme, since up until 2017, Madagascar did not meet the cri-
terion for a two-dose schedule (noting that the most recent WHO
guidelines recommend that all countries include 2 doses regardless
of coverage achieved [2]). Recent analysis of serological data from a
convenience sample suggested that measles immunity may be
around 83%, far from the 95% WHO goal [1,4,19], and reported
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national coverage (85-95%) may be correspondingly inaccurate
[20]. Although Madagascar reported few measles cases in the last
decade [19], an ongoing outbreak that started in September
2018, and that has thus far reached over 91 districts with more
than 66,000 notified cases and more than 900 notified deaths, as
of January 2019, confirms these results [21]. This crisis illustrates
the need to understand how, when, and where coverage gaps
may be occurring.

We analyzed nationally reported vaccination data and detailed
individual level vaccination records to characterize vaccination
coverage and missed opportunities across the country. We identify
interactions between vaccination activities, and periods of disrup-
tion of RI. We conclude by discussing key factors that limit the
effectiveness of vaccination programs in Madagascar and similar
settings.

2. Materials and methods
2.1. Vaccination opportunities in Madagascar
Madagascar has 22 regions and 114 districts with an estimated

population of 26 million (Fig. 1A) [22]. The public health system
includes three levels: a primary level with basic healthcare facili-
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Fig. 1. The study site and measles vaccination schedule in Madagascar. (A) Madagascar’s population density is highly variable, with few densely populated areas. (B) There
are three measles vaccination mechanisms in Madagascar: routine immunization (RI), biannual vaccination weeks (VW), and Supplementary Immunization Activities (SIA)
every three years. The eligible age range also varies by each program (RI: 9-12 months, VW: 9-24 months, and SIA: 0-59 months). (C) Vaccination cards and healthcare
worker surveys were undertaken at 49 health centers from 6 districts throughout 3 regions across the country (Materials and Methods), yielding 15,951 cards digitized and 49
healthcare workers surveyed. (D) Differences in timing and age eligibility for vaccination leave children eligible for different vaccination activities throughout the year; and
this characterization is used to extrapolate how vaccination coverage and its timeliness vary.
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ties, a secondary level with district and regional hospitals and a
tertiary level with referral and university hospitals [23]. We
focused on public sector data, noting that little data is available
to characterize the role played by the private sector in providing
vaccinations [24]. The number of facilities per district varies, with
an average of 13.5 facilities per 100,000 people (Appendix Fig. STA,
S1B) and correlates with population density (adjusted R? = 0.675,
p <0.01) (Appendix, Fig. S1C). RI is provided at the primary level
with the exception of the BCG vaccine, which can also be given
at birth to infants who were born at hospital and private clinics
(secondary and tertiary levels).

Individuals aged 9-12 months are eligible for year-round RI
delivered at primary health facilities (Fig. 1B). VWs are national
campaigns designed to catch-up all children aged 9-24 months
who have missed any vaccine including measles. These bi-annual
campaigns (also referred to as ‘mother and child health weeks’)
are performed predominantly at primary health facilities, but also
can occur outside of the health facilities at households. SIAs occur
every three years and recent campaigns have targeted children
aged under 59 months. During SIAs, all children regardless of pre-
vious disease or measles vaccination history are vaccinated at pri-
mary health facilities and through outreach activities (Fig. 1B). We
assigned doses delivered to different vaccination opportunities (RI,
VWs, SIAs) based on the date of vaccination (Appendix, Tables S1,
S2).

2.2. National administrative data on vaccine delivery

Data was provided by the Ministry of Public Health describing
the number of doses of measles vaccine delivered per district per
month from 2013 to 2016 (Appendix, Fig. S2A). The number of
doses delivered was classified according to the age of the child
(9-12 months, >12 months). Based on the date of the different
opportunities, each month was classified as either RI, SIA, or VW
depending on the type of vaccination opportunity scheduled
(Appendix, Table S1), noting that VW and SIA doses may be over-
estimated, since these activities typically last less than a month.
To capture the effect of SIAs on dose delivery, we compared
months following an SIA to the months before an SIA. Vaccination
coverage estimates were calculated based on the number of doses
given over the estimated target population. Administrative annual
target populations (Appendix, Fig. S2B) were calculated from pro-
jected data estimated using a 3% linear growth rate since the most
recent (1993) census and adjusted each year by an expert panel of
health administrators based on previous doses delivered and
deaths.

The rainy season per region was the month with the highest
precipitation levels recorded by the National Direction of Meteo-
rology of Madagascar (Appendix). We explored the degree to
which the number of measles doses delivered Y, was explained
by season, the presence of additional opportunities (VW or SIA),
and region, using a multivariate linear regression (Appendix,
Fig. S3):

log(Yij) = B1Xuij + foXai + Boj + €,

where Xy;; is an indicator for month i in region j being rainy; p; cap-
tures the effect of a rainy month on doses delivered; this effect is
assumed to be constant across regions. Here, Xy; is an indicator for
month i containing an additional vaccination activity (activities
are conducted at the national level so there is no regional variabil-
ity); B2 captures the effect of a VW or SIA month on doses delivered.
Boj is a random effect for each region j and e;; are the residuals.

To characterize variation in the number of doses delivered
through RI, SIAs or VWs, these were compared via Chi-square
and t-tests, with a significance threshold of 0.05. Correlations

between population size and number of doses at regional and dis-
trict level was characterized using a Pearson-correlation test.

2.3. Individual vaccination cards data

The majority of health facilities across the country store a vac-
cination card for each child that lists the date each vaccine dose
was administered and birth date (see Appendix, Table S2). We ana-
lyzed vaccination cards from three regions representing low, inter-
mediate and high population numbers (Appendix, Table S3). We
collected 17,418 vaccination cards from 49 health facilities in six
health districts (Fig. 1C). Although these data include children born
between 2001 and 2017, most cards (16,031) are from children
born from 2014 to 2016 since these children are still completing
their vaccine schedule, and thus cards were consistently kept at
the health facility. If the date of birth was missing, we assumed
the child was born in the same month as their BCG vaccine (801
cards, 5% of all cards). Only 80 cards (0.5%) were excluded from
the study due to missing dates (Appendix, Fig. S4A).

Children were considered eligible for routine measles vaccina-
tion between 9 and 12 months, and were classified into ‘timeliness’
groups accordingly, including ‘early’ (vaccinated before 9 months),
‘on-time’ (9-12 months), ‘late’ (after 12 months), or ‘unvaccinated’
(i.e., eligible but unvaccinated at the time of data collection)
(Appendix, Fig. S4A, S4B). The vaccination mechanism is not
recorded; however, we assumed that if the date of vaccination cor-
responded to a VW or SIA, the child was vaccinated through this
mechanism instead of RI. It is likely that vaccination performed
outside healthcare facilities was under-recorded on vaccination
cards, reflecting real-life conditions on vaccination data accuracy.
Our estimates of coverage are thus likely to be conservative. Vacci-
nation cards do not record multiple doses of measles vaccine, so we
were not able to evaluate second doses.

We used the date of birth to create monthly birth cohorts
(Appendix, Fig. S4C) from January 2015 to March 2017. For each
timeliness group, we calculated the proportion of eligible children
who were vaccinated per month and the average proportion of
children who were vaccinated through routine vaccination (see
Appendix, Tables S4, S5). Since the direct effects of additional activ-
ities were difficult to measure (denominator data is lacking and
numerator data is likely under-reported) we focused on temporal
variation in routine immunization. We identified 3 time periods:
post-May VW (May to September 2015), post-October VW and
SIA (October 2015 to April 2016), and post-May VW (May to
September 2016) and used an ANOVA test and multivariate linear
regression to identify the impact of additional activities on RI
(Appendix Table S6, S7, Fig. S5).

Following standard comparisons e.g., of age and proportions
within timeliness groups across geographical settings and months
across the year, opportunities for vaccination were assessed with a
Lexis diagram [25,26] with cohorts created from birth months,
events (RI, SIA or VWs) from national data, and vaccination status
from vaccination cards (Fig. 1D).

2.4. Healthcare worker survey

We surveyed healthcare workers at the facilities where vaccina-
tion cards were digitized (Appendix, Tables S8, S9) about (1) geo-
graphic access to healthcare, (2) vaccine supply chain, (3) the
organization of the routine program, and (4) staffing for both rou-
tine and additional activities (see Appendix, Table S8 for complete
survey). Associations between facilities’ characteristics and num-
ber of children who were vaccinated early, late or remained unvac-
cinated was performed using Lasso regression. Each facility
characteristic was ranked 1 to 4, with 1 reflecting the least desir-
able situation and 4 the most desirable. We then assigned a weight
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Table 1

Number of doses delivered by region from 2013 to 2016. Doses are shown target population, estimated coverage and relative difference between average doses in routine and

during additional activities.

Region Population size Total number of doses Total target population Coverage (%) Relative difference Relative difference
RI/VW (%) RI/SIA (%)

Alaotra Mangoro 1,118,326 207,020 154,954 134 64 1255
Amoron’i Mania 781,715 111,749 109,964 102 87 718
Analamanga 3,778,682 474,449 438,082 108 19 598
Analanjirofo 1,109,983 174,360 162,451 107 104 661
Androy 788,786 61,707 93,241 66 305 890
Anosy 736,252 101,309 96,778 105 113 655
Atsinanana 1,395,039 201,297 185,902 108 60 685
Betsiboka 314,888 55,972 44,009 127 167 1167
Boeny 878,193 109,889 103,233 106 131 627
Bongolava 497,432 116,041 69,617 167 104 2775
Diana 767,684 98,082 100,137 98 162 698
Haute Matsiatra 1,311,621 184,674 172,631 107 78 595
Thorombe 334,189 119,671 43,557 275 171 5856
Itasy 789,054 148,505 106,182 140 56 1494
Melaky 313,855 78,413 41,645 188 362 3776
Menabe 650,942 185,774 92,858 200 248 4161
Sava 1,062,976 145,745 151,919 96 68 134
Sofia 1,342,241 202,795 176,676 115 271 944
Sud-Est 964,824 109,575 124,381 88 235 707
Sud-Ouest 1,451,997 189,167 183,684 103 132 601
Vakinankaratra 1,940,894 329,825 271,582 121 64 776
Vatovavy Fitovinany 1,523,416 228,798 218,201 105 126 429

Table 2
Repartition of children with cards by timeliness group and vaccination opportunities.
Children with cards (N=11,976)" %

Vaccinated children 6335 53
Timely vaccination 5125 42.8
Early vaccination 540 4.5
Late vaccination 670 5.6
Unvaccinated (+9 months) 5641 47
Vaccination opportunities
Routine immunization 6017 95
VW 138 2.2
SIA 176 2.8

@ Here are presented data for children over 9 months by the end of our study.

to each facility characteristic according to their Lasso coefficient
(Appendix, Table S10). We then created three scores for each
health facility, one for each vaccination scenario (late, early, or
unvaccinated), that we used to visualize health facilities’ barriers
to timely vaccination. Statistical analyses were done with R version
3.4.3; maps were produced using QGIS 2.18.

3. Results
3.1. National administrative data on dose delivery

From reported national data (Fig. 2A, B, Appendix, Table S11), an
estimated 3.7 million doses were delivered to a target population
of 3.2 million (Materials and Methods), suggesting that every child
aged 9-12 months was vaccinated (118%). At the regional level
yearly ‘administrative coverage’ (i.e. doses/target population)
ranges from 66 to 275% (Table 1), and in all but 11 districts, cover-
age regularly exceeds 100% (Fig. 2A), suggesting that administra-
tive estimates of target population size are inaccurate (Materials
and Methods). To mitigate these biases, we focus on the number
of doses delivered.

The majority of doses delivered per year were given as part of RI
(83%), followed by the VW months (8-17%), and SIA months (8%),
although this did vary temporally (Fig. 2B). The smallest number of
RI doses was delivered from November to January which corre-

sponds to the period of heavy rains (Fig. 2B, Multiple linear regres-
sion, F(23, 5192)=112, p<0.001, R*=0.30, Table S12). The
majority of children were vaccinated on time (9-12 months,
76%). Of children vaccinated late, most were vaccinated during
an SIA month (86.9%), indicating that the catch-up goal of addi-
tional vaccination opportunities was being achieved (ANOVA, F
(2,12) =7.409, p = 0.008, 1? = 0.478).

We compared doses delivered during months following an SIA
to doses delivered during months before an SIA (Methods, Appen-
dix, Table S13). The monthly average number of doses delivered
through routine immunization (M = 1025.3, SD = 966.2) was signif-
icantly lower in months following an SIA (M = 727.2, SD=678.1, t
(1932.1), p < 0.001), suggesting a potential disruptive effect of SIAs
(Appendix, Table S14). Surprisingly, the average number of doses
delivered in the months surrounding a VW were not different
before and after VWs (Student test, test, t(1693.6)=0.192,
p = 0.847), suggesting, either that VWs do not cause disruption or
that the aggregated data does not include sufficient temporal detail
to disentangle impacts on routine immunization from VW doses.

We explored spatial differences in the relationship between RI,
SIAs and VWSs (Material and Methods). The average number of
doses delivered during VWs was negatively correlated with the
average number of doses delivered during RI suggesting that where
RI was performing well, fewer children may require catch-up doses
(Fig. 2C). Additionally, more populated locations had the lowest
relative VW to RI doses (Fig. 2C).

3.2. Individual-level vaccination history data

Children with vaccination cards at sampled health centers
(Appendix, Fig. S6) who were vaccinated mostly received timely
vaccination (81%) and were vaccinated through RI (95%) (Table 2).
As in the national data, higher than expected numbers of doses are
delivered during months that include either an SIA or VW (Fig. 3A),
but the difference was less pronounced than in the national dose
data. In contrast to national data, doses given during the exact
week of a VW activity were identifiable in the individual data
(see Methods).

The highest rates of early vaccination occur after the October
2016 SIA (Welch-corrected ANOVA, F(2,16.8)=3.57, p=0.004,
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some health facilities in rural areas had a similar score to those in urban areas suggesting that the simplistic urban-rural divide for access is more nuanced.

R? =0.33, Appendix, Table S15), from November 2016 to February
2017 (Fig. 3B). Additional activities (such as the May or October
VW/SIA) may fulfill the aim of children receiving a second dose,
however it was not recorded on the vaccination cards. Timely rou-
tine vaccination has the largest relative reduction, before an SIA, in
March (Student-test, t(36) = —5.33, p <0.001) and April (Student-
test, t(24) = -2.11, p = 0.04, Fig. 3B) suggesting that the May VW
may be interrupting routine activities (Fig. 3C). Finally, of the
47% of children who remained unvaccinated, but eligible at the
end of our study, the most common birth month was June (16%).
Children in this birth cohort face a number of barriers to vaccina-
tion including entering routine eligibility age in March/April
(months with low routine coverage) (Fig. 3C).

However, the ability of these campaigns to catch up older chil-
dren varies spatially (Appendix, Fig. S7). In rural areas, the average
age of vaccination is higher (10.1 months vs 9.8 months, student-
test t(5083.5)=3.862, p<0.01), as is the proportion of unvacci-
nated children (52.1% vs 34.6%, % =372.5, p <0.001) suggesting
that these locations are more reliant on catch-up campaigns to
achieve vaccination of children. Overall, vaccination opportunities
in children over 12 months are low throughout the country, partic-
ularly during months offering only routine services.

3.3. Healthcare factors related to missed vaccinations

To identify which factors at health facilities, led to seasonal cov-
erage gaps, we conducted a survey in health centers where the vac-
cination cards were digitized (Fig. 1C, see Appendix, Table S8). A
Lasso regression (Fig. 4A) indicated that the most significant factor

determining the number of unvaccinated children was the fre-
quency of immunization sessions: daily, biweekly, weekly,
monthly, or unknown. Other significant factors were: geographic
location of the health facility (urban, rural on main road, rural on
secondary road), the ability of the health facility to remain open
during additional activities, the frequency of health facility closure,
and vaccine storage capacities. Centers that were unable to stay
fully staffed year-round, and unable to have permanent access to
vaccine were those most likely to have a high number of unvacci-
nated children with qualitatively similar patterns identified for
early and late vaccination (see Appendix, Fig. S8).

We used these results to construct a monthly varying score
integrating health facility characteristics that determine the num-
ber of unvaccinated children (Material and Methods). This score
decreased during March, August, October and November, which
aligns with additional vaccination activities. The aver-
age health facility performance score was higher in urban areas
(M=33.118 SD=3.017) than in rural areas (M=26.539,
SD =3.775, t(498)=-23.012, p<0.001). However, considering
the extensive heterogeneity in both urban and rural facilities per-
formance scores and the fact that many facilities in rural areas had
comparable performance to facilities in urban areas (Fig. 4B), we
conclude there is no clear difference betweenrural and
urban health facilities’ performance (Fig. 4B).

4. Discussion

Understanding the interaction between routine and additional
vaccination activities will contribute to successfully eliminating
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measles [3,27]. In Madagascar, national data indicates that addi-
tional activities (SIAs and VWSs) contribute a substantial number
of doses delivered, but also modulate RI during months following
these activities [6-9]. This relationship could reflect successful
activities, especially SIAs, leaving fewer children unvaccinated,
and hence driving a reduction in the need for routine coverage.
However, it could also be the result of health facilities’ inability
to conduct both an SIA and routine vaccination, with many
resources diverted to the SIA campaign as was reported in Camer-
oon [7]. Additionally, this effect may be partially confounded with
seasonal access to healthcare, since the lowest number of doses
delivered corresponded to the rainy season in Madagascar.

The national administrative data do not identify the exact route
of vaccination and exact age of vaccination. Using individual vacci-
nation cards that recorded the date of the first dose of measles con-
taining vaccine revealed that a high proportion of eligible children
(47%) remained unvaccinated, suggesting a high risk for a measles
outbreak in Madagascar. Timely routine vaccination (9-
12 months) decreased after SIAs, suggesting a negative interaction
between routine and additional activities. The large proportion of
children who were vaccinated early and would need a 2nd dose
after 9-12 months, given interference with maternal immunity,
supports that updating the vaccination card to record second doses
would help to fill the age gap in routine immunization. It would
also provide incentive for healthcare workers to catch-up children
while aligning with WHO measles vaccination recommendations.
In our data, late vaccination primarily occurred during the addi-
tional activities (SIAs and VWs) and decreased after the October
VW, implying that children missing these activities may have
few chances to be vaccinated. We also identified a specific birth
cohort (children born in June) who are the most likely to have
missed various vaccination opportunities. Overall, Madagascar
seems highly reliant on additional activities to catch-up children
who may not have received their routine vaccination on time, or
at all.

The recent measles outbreak suggests that Madagascar was
experiencing a honeymoon period [28] and the low immunity
levels from inadequate vaccination coverage resulted in a large
proportion of the population susceptible to measles infection
[29]. Our results may help to prevent future outbreak as they show
when and where routine immunization could be reinforced to pre-
vent missing opportunities to increase population-level immunity.
A description of healthcare facility characteristics revealed that
more remote facilities had a higher percentage of children who
were not vaccinated on time, reflecting the well-known barrier of
travel time to healthcare access [7,30,31]. Analyses indicated that
health facilities that could maintain routine immunization during
a supplementary program, had a permanent vaccine supply, and
had more staff members had the fewest unvaccinated children
highlighting the importance of healthcare functioning during the
rainy season. These may be important avenues to improve overall
vaccination rates and suggest that small changes such as providing
permanent vaccine access via a solar fridge and increasing the
number of healthcare workers during additional campaigns to
maintain staffing at health facilities may improve vaccination
coverage.

Limitations in the granularity and detail in both vaccination
data sets are a caveat of our analysis. We were unable to account
for additional vaccine doses (beyond the first), since these were
not recorded. This may be partially responsible for the mismatch
between estimates in doses given during an SIA or VW estimated
from the national data versus the vaccination cards. Vaccine doses
given as part of an SIA or VW were identified based on the date,
limiting our ability to directly measure their impact on routine ser-
vices. Monthly aggregated national data did not allow us to disen-
tangle routine immunization from additional activities when both

occurred in the same month. As a result, we may have underesti-
mated the effect of VWSs on routine vaccination, explaining the dis-
crepancy with the vaccination cards’ data. Moreover, individual
data provided more precision on vaccination prior to the SIA per-
iod, another potential source of the discrepancy in inferred effects.
Finally, we digitized vaccination cards that were available at health
facilities, but record-keeping likely varies between facilities, pre-
venting facility to facility comparison. Further, only short-term
temporal trends could be assessed, since only cards for children
born within the last few years are kept at facilities. Relying on vac-
cination cards may have led to an underestimation of the propor-
tion of children vaccinated, as all children in the center
catchment area might not have been included in our study, or vac-
cination delivered outside health facilities may not have been
reported on cards. Finally, although our analysis encompassed a
large array of settings, our individual data may be biased because
considerable spatial heterogeneity in Madagascar means that there
may be additional seasonal patterns and issues of vaccination pro-
grams that our study did not include. In particular, the southern
and northern areas of the country were not explored in detail,
and may feature region-specific factors related to healthcare access
and immunization. However, consistency of the findings across the
three very different regions suggests that our findings could be
generalizable across the country.

Our detailed investigation of the routine vaccination program in
Madagascar characterizes spatial and temporal differences in how
children are vaccinated, and timeliness of vaccination, with impli-
cations for introduction of additional vaccines such as rotavirus.
Evaluating how the interacting seasonal components of immuniza-
tion have effects on the variation in age eligibility for vaccination
(which will vary across antigens), will be an important line of
information in evaluating how to prevent pockets of unvaccinated
children. Further, evidence for interactions between additional
activities and RI for measles suggest a need for evaluating this phe-
nomena for other antigens delivered via multiple campaigns,
whether scheduled (such as VWs or SIAs), or outbreak response
(such as poliovirus outbreaks [32,33]).
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