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Inmedical image diagnosis, identifying the attention region, i.e., the region of interest for which the diagnosis is made,
is an important task. Variousmethods have been developed to automatically identify target regions fromgivenmedical
images. However, in actual medical practice, the diagnosis is made based on both the images and various clinical re-
cords. Consequently, pathologists examine medical images with prior knowledge of the patients and the attention re-
gions may change depending on the clinical records. In this study, we propose a method, called the Personalized
Attention Mechanism (PersAM)method, by which the attention regions in medical images according to the clinical re-
cords. The primary idea underlying the PersAM method is the encoding of the relationships between medical images
and clinical records using a variant of the Transformer architecture. To demonstrate the effectiveness of the PersAM
method, we applied it to a large-scale digital pathology problem involving identifying the subtypes of 842 malignant
lymphoma patients based on their gigapixel whole-slide images and clinical records.
Introduction

Medical images are often diagnosed on the basis of specific regions of
interest in the images rather than their entirety. For example, cancer pathol-
ogists typically focus on specific tumor regions rather than the entire path-
ological tissue specimen. In this study, we refer to such regions as attention
regions. Developing computational methods to estimate the attention re-
gions is an important task in medical image analysis to obtain high perfor-
mance and explainability. In existing methods, the attention regions are
predominantly estimated based solely on the images themselves.1–3 How-
ever, in clinical practice, pathologists use both the imaging information
and various clinical records (including basic demographic details such as
patient age and gender, the results of various medical examinations, and
genetic information). It is well-recognized among pathologists that
patient-specific information can help them focus on specific tissues in the
specimens or narrow the diagnostic target classes. In practice, the region
to be focused on in a tissue slide changes depending on the type of organs
fromwhich a tissue specimen is sliced, or the results of a medical interview
and some medical tests narrow down suspected diseases. It is known that
the additional use of clinical record information can enhance the perfor-
mance also in medical image analysis.4–7 In this study, we introduce a
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framework, called the Personalized Attention Mechanism (PersAM) frame-
work, that adaptively changes the attention regions in medical images ac-
cording to patient-specific information. The PersAM framework mimics
pathologists' decision-making and provides high explainability by model-
ing the relationship between medical images and clinical records.

In this paper, we focus on the PersAM framework in the context of dig-
ital pathology. Particularly, we deal withmalignant lymphoma as the target
disease, whereas the proposed PersAM framework can be applied to other
images in similar problem settings. In digital pathology, whole slide images
(WSIs) are used as image data, which are large digital images scanned by a
scanner. The image size of WSIs can be up to 100000×100000 pixels and
the tissue regions of WSIs have both tumor and normal regions mixedly.
Therefore, it is especially important in digital pathology to identify the at-
tention regions in a vast image and diagnose focusing on some areas in
the tissue specimen. For examples of malignant lymphoma, pathologists di-
agnose diffuse large B-cell lymphoma (DLBCL) focusing on large cells in a
tissue specimen, while they diagnose follicular lymphoma (FL) focusing
on follicular structures in a tissue specimen. In practical diagnosis, as men-
tioned above, pathologists observe such regions considering a patient's clin-
ical record information that includes basic profiles and results of some
examinations. As the main target problem, we are concerned in this paper
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with the PersAM framework in a digital cancer pathology task, where clin-
ical records can be used together with the WSIs of tissue specimens as
patient-specific information.

The problem of attention region estimation in digital cancer pathology
can be formulated as a weakly supervised learning problem because only
the class label for the entire image is given—the annotations for the atten-
tion region are not. Some public database has pathologists' annotations for
tumor regions, but most problem settings that employ other private
datasets have no patch-level annotations and only patient-level annota-
tions. Hence, in digital pathology using WSIs, attention region estimation
and each machine learning task should be generally performed with only
patient-level annotations. Multiple Instance Learning (MIL)1,8,9 is one
method used for such weakly supervised attention region estimation prob-
lems. In MIL, an image patch is considered an instance and the entire image
(or set of a large number of patches) is considered a bag. The problem then
reduces to estimating the label of each image patch given the label of the
bag (e.g., tumor or normal), where the image patches estimated to be tu-
mors are interpreted as the attention regions. In the context ofMIL in digital
pathology, attention-based MIL is well-known as a successful method.1–3

An attention-based MIL can compute attention weights that indicate how
each instance contributes to the classification result. Instances that have
higher attention weights in WSI are interpreted as tumor regions in
attention-basedMIL for digital pathology. In this study, wewould like to in-
troduce the PersAM framework that can adaptively change attention re-
gions depending on different clinical record information even if input
WSI is the same. In the case of the aforementioned attention-based MIL,
there is no mechanism to change the attention regions when different clin-
ical record information is input to the sameWSI since attention weights are
calculated independently for each instance without considering the rela-
tionship between medical images and clinical records. The proposed
PersAM method employs a variant of the Transformer architecture to en-
code the relationships between the medical images and corresponding clin-
ical records. In the Transformer architecture, the relationships between
multiple components are expressed in the form of attentions.10 The applica-
tion of Transformer architecture to computer vision can calculate attention
regions calculated by encoding the relationship between image patches.11

The Transformer architecture could be expanded even into multimodal in-
puts such as images and table data, which encodes the relationship between
Fig. 1. Overview of the proposed PersAM method. A WSI and a clinical record are fed i
attention regions in each output. The PersAM method provides us the personalized a
clinical factors, even if the same WSI is input. (For interpretation of the references to co
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each instance of multimodal inputs.12,13 By combining the medical images
and clinical records and then computing the attentions, the proposed
method enables personalized attention, which represents the strength of the
relationship between each clinical record and each region (patch) in the
image.

In this study, we present a weakly supervised attention region estima-
tion problem formulated as an MIL problem and propose the PersAM
method to obtain attention regions that can be adaptively changed accord-
ing to patient clinical records. Fig. 1 illustrates the concept of the proposed
PersAMmethod, where different clinical record information is given to the
same WSI as inputs. Regions with red color in Personalized attention repre-
sent attention regions in each output, and the PersAMmethod can provide
different attention regions depending on different clinical records even if
input WSIs are the same. This mimics a pathologist's decision-making
where he/she observes tumor-specific regions in the tissue specimen con-
sidering the corresponding patient's clinical record. With a slight abuse of
terminologies, we refer to both the framework and our proposed method
as PersAM in this work. The proposed PersAMmethod enables us to pro-
vide 2 types of personalized attentions: exploratory and explanatory at-
tentions. Exploratory attention is a class-independent attention that is
determined solely by a WSI and a clinical record, i.e., the first regions
of interest to the pathologist when observing a tissue specimen. On
the other hand, explanatory attention is a class-dependent attention
that is determined by a WSI, a clinical record, and class information,
i.e., the regions of interest to the pathologist when predicting a disease.
To obtain these attentions, the proposed model has a Transformer archi-
tecture that can encode the relationship among images, clinical records,
and class information.

To demonstrate the effectiveness of the proposed PersAM method, we
applied it to the pathological subtype classification of 842 patients withma-
lignant lymphoma. The training dataset consisted of WSIs and clinical re-
cords, where each WSI was a gigapixel image of an entire pathological
tissue slide: the clinical record included the age, gender, target organ of
the tissue section, interview with a doctor, and blood test results. By com-
bining pathological images and clinical records, the proposed method per-
formed better than several baseline methods. Furthermore, we confirmed
that the proposed PersAM method can successfully provide personalized
attention in the Transformer architecture.
nto the model together. Regions with red color in Personalized attention represent
ttention according to the clinical record, where attentions change depending on
lor in this figure legend, the reader is referred to the web version of this article.)
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The main contributions of this work are summarized as follows.

1. Inspired bymedical image diagnoses by pathologists in clinical practice,
we introduce a framework for a personalized attention mechanism in
which the attention is determined on the basis of patient-specific infor-
mation.

2. For the problem of weakly supervised attention region estimation based
on MIL, we propose a variant of the Transformer architecture.

3. We apply the proposed model to a large-scale digital pathology task to
demonstrate the effectiveness of the proposed framework and method.

Preliminaries

Problem setup

In this paper, we focus on the PersAM framework in the context of sub-
type classification for digital cancer pathology. Let [N] = {1,…,N} be the
set of natural numbers up to N. The training dataset is denoted as
Xn,Tn,Ynð Þf gn∈ N½ �, where N is the number of patients and each of Xn, Tn,

and Yn represents the pathological image, clinical record, and subtype
class label of the nth patient, respectively. The image Xn is a digitally
scanned WSI of the entire pathological specimen. Because the WSI Xn is
usually a huge image of gigapixel size, it is too large to be directly fed
into the model. Therefore, image patches extracted from Xn are used as
the inputs to the model, and we write Xn ¼ xn,‘f g‘∈ Ln½ � where xn,‘ is the
‘th image patch taken from the nth patient and Ln is the number of image
patches taken from Xn. The clinical record Tn is represented as a set of nu-
merical vectors and denoted as Tn ¼ tn,mf gm∈ M½ �, where tn,m is themth clin-

ical factor represented as a vector and M is the number of clinical factors.
For example, in Experimental evaluation, we consider the case with M = 2
where the first clinical factor is the patient profile (such as age and gender)
and the results of a medical interview, whereas the second clinical factor is
a set of blood test results. In our clinical records, the patient profiles are rep-
resented by integer values or binary labels, the results of a medical inter-
view are represented by binary labels, and the blood test results are
represented by continuous values, respectively. If a clinical record has
text information as findings, it can be used as a clinical factor t after
vectorizing in somemanner. The details of clinical record information is ex-
plained in Experimental evaluation. The subtype class labelYn is represented
as a C-dimensional one-hot vector.

In digital cancer pathology, aWSI includes both tumor cells and normal
cells, and subtype diagnosis is conducted on the basis of a subset of the
tumor cells. This means that, among the image patches taken from a WSI,
only some of them are considered to contain useful information for subtype
classification. We regard that image patch subset as the attention region.
We represent the attention degree of each image patch as an attention
weight. Given a pathological WSI and a clinical record, our model provides
the attention weights—which each represents the importance of each
image patch—and then makes a subtype classification based on the atten-
tion weights. As an example of the application of the PersAM framework
in the digital pathology problem, we consider the case where the attention
weights vary according to the clinical records. Clinical records possibly con-
tain 2 types of information: (i) the parts of the pathological specimen that
should be observed and (ii) which subtype it is likely to be classified
under. In this study, we consider 2 types of personalized attentions, called
exploratory and explanatory attentions, each of which is respectively ob-
tained from each of these 2 types of information. We introduce a variant
of the Transformer architecture that can provide both the exploratory atten-
tion weight and the explanatory attention weight of each image patch.

Related works

Digital pathology. Pathological diagnosis plays an important role in med-
icine. Various computer-aided diagnosis methods for pathological images
have been developed for various problems, such as classification,2,14,15
3

tumor region identification,16–18 segmentation,19–22 survival
prediction,23–25 and similar image retrieval.26–28 In digital pathology, a dig-
ital scan of the entire pathology specimen, called aWSI, is used as the target
image. Because aWSI is usually huge (e.g., 100000×100000 pixels), it can-
not be directly fed into a model. Therefore, image patches extracted from
the WSI are often used as the inputs to a model. In pathological diagnosis
based on WSIs, it is important to note that WSIs contain both tumor cells
and normal cells. Therefore, if there is no annotation of the tumor cell re-
gion, it is necessary to first identify the tumor cell region and then make a
pathological diagnosis. This problem is a weakly supervised learning prob-
lem in the sense that only theWSI is labeled and the tumor cell region is not.

Multiple instance learning (MIL). MIL is a weakly supervised learning
problem in which labels are not given for instances but for a group of in-
stances called a bag. In an MIL formulation of a binary classification prob-
lem, it is assumed that a positive bag contains at least 1 positive instance,
whereas a negative bag contains only negative instances. By considering a
WSI as a bag and an image patch as an instance, the subtype classification
problem can be interpreted as an MIL problem in which class-specific
image patches (e.g., tumor patches) are considered positive instances. Several
MIL approaches have been developed for digital pathology tasks.1,8,9 Among
them, attention-based MIL1–3 is particularly useful because the identified at-
tention regions can be interpreted as class-specific image patches.

Attention and explanation. Although the development of deep learning
techniques has dramatically improved the accuracies of many medical
image analysis tasks, it is critically important for medical practice to de-
velop techniques that provide explanation of the results. Various visualiza-
tion methods, such as Grad-CAM,29 have been proposed to interpret and
explain the rationale for classification results. Singla et al.30 proposed a
method that visualizes the medical image regions that serve as the basis
for the classification of diseases for each concept derived from clinical re-
port analysis. However, most visualization methods visualize the regions
that contribute to the classification results after the classifier is applied to
given images (rather than using clinical reports for finding and visualizing
the image regions that contribute to the classification results, as in our pro-
posed method). The attention-based MIL described above can also be con-
sidered as a method to provide explanation of the results because
attention can be visualized as an informative region for making decisions.
In this study, we employ the Transformer architecture10 as a basis for esti-
mating the attention region in medical images. Although the Transformer
was originally developed for natural language processing (NLP) tasks, it
has been demonstrated to be effective for general computer vision
tasks,11 including medical image analysis.31–34 In particular, the Trans-
former has been effectively used to aggregate bag features in an MIL
setting.32 The Transformer architecture can encode the relationship
among a pair of components in input data, e.g., between 2 words in the
case of NLP tasks, and between 2 image patches in the case of computer vi-
sion tasks. This studywas inspired by the use of the Transformer in the con-
text of vision and language,12,13 where it has been demonstrated that a
change in the language token can change the attention of the image
token. The Transformer has a mechanism to quantify the relevance of mul-
timodal information in the form of attentions. The encoding mechanism for
the relationship of input data can be expanded into multimodal input in-
cluding image patches and table data, which enables computing attention
from an image patch to table data, or attention from table data to an
image patch. We expect that encoding the relationship between image
patches and clinical factors can provide more appropriate personalized at-
tentions based on the clinical record.

Multimodal learning. In clinical practice, doctors obtain additional infor-
mation from patients' clinical records and image diagnoses are performed
by considering such clinical factors as prior information. In multimodal
analysis, clinical records that include the basic information of patients
and some examination results can often be used in addition to digital
images.4–7 Yala et al.4 used a combination ofmammography images and pa-
tient data (basic information, medical history, etc.) and demonstrated that
the performance of breast cancer risk prediction could be improved. Multi-
modal analysis of dermoscopic images and patient data (age, gender, and
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body location) has also been studied to enhance the accuracy of skin lesions
classification and melanoma detection.5

Multimodal analyses of medical images and clinical records have pri-
marily been performed on radiology images, but recent works have re-
ported that pathological images can also be combined with clinical
records to improve the task performance. Li et al.9 combined tabular clini-
cal data with histological images in an MIL setting, where 18 attributes, in-
cluding age, genes, and tumor location, were used as inputs withmultiscale
histological images. Additional clinical factors have also been used in a
mixture-of-experts model as inputs of a gating network.8 Chen et al.35 pro-
posed a Transformer-based multimodal model for survival prediction using
images and genetic data. Their method could visualize co-attentions be-
tween images and genetic information. However, these previous works pri-
marily focused on performance improvement by using multimodal inputs,
and detailed effects on attention regions by additional clinical factors
have not been reported. The advantage of the proposed PersAM method
is that it can provide personalized attention regions according to the clinical
records, which mimics the actual pathological practice of human expert pa-
thologists.

Proposed method

This studywas conducted to develop an AI system for pathological diag-
nosis thatmimics the actual diagnosis process of human pathologists.When
a pathologistmakes a diagnosis, they have patient information based on the
clinical record, which is used as prior knowledge of the parts of the patho-
logical image on which to focus. We call such an attention region in the
early exploratory phase of the diagnosis exploratory attention. Exploratory
attention is a class-independent attention that is determined solely by a
WSI and a clinical record. Furthermore, after a pathologist has made a diag-
nosis, they should be able to explain which part of the pathological image
they focused on. We call such an attention region in the later explanatory
phase of the diagnosis explanatory attention. Explanatory attention is a
class-dependent attention that is determined by a WSI, a clinical record,
and class information.

Given theWSI and the clinical record of a patient, the proposed PersAM
method can identify both exploratory and explanatory attention regions
and make a diagnosis based on those identified attention regions. In Pro-
posed network structure, we first introduce a Transformer-based network
structure that enables pathological diagnosis based on the 2 types of atten-
tions. Then, in Exploratory/explanatory attentions and subtype classification,
we describe how the network can be used to identify both exploratory
and explanatory attention regions to make a pathological diagnosis. The
key property of the proposed PersAM method is that both exploratory and
explanatory attentions can be adaptively changed according to patient clin-
ical records even if the sameWSI is given to the model. This mimics the ac-
tual diagnostic process employed by human pathologists, making the AI
system highly explainable.

In this section, for ease of notation, when there is no ambiguity, we omit
the subscript n in referring to the nth patient.

Proposed network structure

To realize pathological diagnosis based on exploratory and explanatory
attentions, as shown in Fig. 2, we propose a new network structure
consisting of 3 components: (i) feature extractor, (ii) multimodal encoder,
and (iii) multimodal aggregator. We describe each of these 3 components
below.

Feature extractor
In this section, to simplify the notations, we describe the MIL setting

where the entireWSI is considered as a bag and each of themultiple patches
taken from the WSI as an instance. In Experimental evaluation, we consider
the MIL setting where a WSI contains multiple bags. See experimental evalu-
ation for details. Let X ¼ x‘f g‘∈ L½ � be the WSI and T ¼ tmf gm∈ M½ � be the
4

clinical record of a patient, where x‘, ‘ ∈ [L], is the ‘th patch image taken
from the WSI X, whereas tm, m ∈ [M], is the mth clinical factor. The role
of the feature extractor is to compute a feature vector for each of the
image patches and clinical factors so that input data can be used in the
Transformer architecture. For image patches, we employ a convolutional
neural network (CNN) f: x‘ ↦ h‘

p that maps an image patch x‘ to a feature
vector h‘

p ∈ℝR, where R is the dimension of the feature vector. For clinical
factors, we employ a simple multi-layer perceptron (MLP) gm: tm ↦ hm

t that
maps the vector of themth clinical factor into a feature vector hm

t ∈ℝR that
has the same dimension as h‘

p. We denote the sets of trainable parameters
for f and {gm}m∈[M] as θf and θg, respectively. We denote the combined fea-
ture vectors as

H ¼ hp
‘

� �
‘∈ L½ �∪ ht

m

� �
m∈ M½ �: (1)

Multimodal encoder
The multimodal encoder characterizes the relationship between multi-

modal information. We implement this component using a Transformer.
The Transformer was initially developed for NLP tasks, where each feature
vector is called a token. In the proposed network structure, in addition to the
image patch tokens {h‘p}‘∈[L] and clinical factor tokens {hm

t }m∈[M], we
introduce class tokens {hc

cls}c∈[C], which are considered trainable param-
eters. Let

~H ¼ hp
1 ;…;hp

L ;h
t
1;…;ht

M ;h
cls
1 ;…;hcls

C

h i⊤
þ Etype; ð2Þ

where Etype ∈ ℝR×(L+M+C) is called token type embedding and is used to
characterize the type of tokens. Here, the token type embedding is de-
fined as

Etype ¼ ep, . . . , ep
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{L

, et1, . . . , e
t
M , 0, . . . ,0

zfflfflfflfflffl}|fflfflfflfflffl{C
2
4

3
5
⊤

, (3)

where 0 denotes a C-dimensional zero vector. Each token in ~H is character-
ized as either of image patch, clinical factor, or class token by this token em-
bedding. Note that the same type token ep is used for all L image patches
because the image patches are randomly sampled from WSI. Token
type embedding parameters ep and {emt }m∈[M] are considered trainable
parameters.

We denote the Transformer as a function T : ~H ↦ bH, where bH is the col-
lection of the outputs of the Transformer called Transformer-encoded tokens,
denoted as

Ĥ ¼ ĥ
p
‘

n o
‘ ∈ L½ �

, ĥ
t
m

n o
m ∈ M½ �

, ĥ
cls
c

n o
c ∈ C½ �

� �
: (4)

We denote the set of trainable parameters for the Transformer as

θenc ¼ ep, et1, . . . , e
t
M ,h

cls
1 , . . . ,hcls

C ,θtf
n o

, (5)

where θtf is the other general parameters in the Transformer. By feeding to-

kens into the Transformer encoder several times repeatedly, bH can encode
the relationship among image patches, clinical factors, and class tokens.

Here, each element of the self-attention map for bH corresponds to the rela-
tionship between 2 tokens, and represents how a token is focusedwhen the
other token is given together as input data.



Fig. 2. Illustration of the proposed network structure. The network consists of 3 components: (i) feature extractor, (ii) multimodal encoder, and (iii)multimodal aggregator. The
feature extractors compute feature vectorsH for each of the image patches and clinical factors to be fed into the Transformer architecture. The multimodal encoder has a role
to characterize the relationship amongmultimodal information consisting of image patches, clinical factors, and class information. Themultimodal aggregator aggregates the
Transformer-encoded tokens for obtaining exploratory/explanatory attentions and subtype classification results.
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Multimodal aggregator
Themultimodal aggregator aggregates the Transformer-encoded tokens

for obtaining exploratory/explanatory attentions and subtype classification
results. Let

qcls
c ¼ Wq

bhcls
c , c ∈ C½ �, (6)

kp
‘ ¼ Wk

bhp
‘ ,v

p
‘ ¼ Wv

bhp
‘ , ‘ ∈ L½ �, (7)

qt
m ¼ Wq

bht
m,k

t
m ¼ Wk

bht
m, m ∈ M½ �, (8)

where {qccls}c∈[C] and {qmt }m∈[M] are called queries for class tokens and clin-
ical factor tokens, respectively; {k‘p}‘∈[L] and {kmt }m∈[M] are called keys for
image patch tokens and clinical factor tokens, respectively; and {v‘p}‘∈[L]
is called values for image patch tokens in the context of the Transformer.
The matrices Wq, Wv, Wk ∈ ℝR×R are trainable parameters. We denote
these 3 matrices collectively as θagg = {Wqq,Wv,Wk}.

The inner product between a query and a key represents the relevance
between the corresponding multimodal information. First, the relevance
between each image patch x‘ and each class c is written as

a‘,c ¼ σ qcls⊤
c kp

‘

� �
, ‘, cð Þ ∈ L½ � � C½ �, (9)

where σ(⋅) is the sigmoid function. Next, the relevance between each image
patch x‘ and the set of M clinical factors {tm}m∈[M] is written as

ψ‘ ¼
1
M

X
m∈ M½ �

σ qt⊤
m kp

‘

� �
; ‘∈ L½ �: ð10Þ

Furthermore, the relevance between each class and the set ofM clinical
factors {tm}m∈[M] is written as

ϕc ¼
1
M

X
m∈ M½ �

σ qcls⊤
c kt

m

� �
; c∈ C½ �: ð11Þ
5

The 3 types of relevance information in (9)–(11) are used to obtain ex-
ploratory/explanatory attentions and subtype classification results.

Exploratory/explanatory attentions and subtype classifications

Based on the relevance information in (9)–(11), we obtain 3 types
of attentions: (i) class-wise attentions, (ii) exploratory attentions, and
(iii) explanatory attentions. Fig. 3 illustrates the 3 types of attentions.
We call {a‘ ,c}(‘,c)∈[L]×[C] class-wise attentions because they are ob-
tained as the relevance between the ‘th image patch and the cth class
token without clinical factors. We regard {ψ‘}‘∈[L] as exploratory atten-
tions because they are obtained as the relevance between the ‘th image
patch and the set of clinical factors {tm}m∈[M]. Note that the explor-
atory attentions are class-independent; thus, they can be considered
as the attention regions in the WSI in the early exploratory phase of
the diagnosis. The explanatory attentions are obtained by combining
the class-wise attentions and the exploratory attentions as follows:

a′‘,c ¼ a‘,cϕcψ‘, ‘, cð Þ ∈ L½ � � C½ �: (12)

It can be interpreted that the explanatory attentions are obtained by fil-
tering the class-wise attentions with the exploratory attentions.

The subtype classification results are obtained based on a linear combi-
nation of the aggregate feature vector

z ¼ ∑
‘∈ L½ �

a′‘
∑L
ρ¼1a

′ρ
vp‘ , (13)

where a0l ¼ maxða0l;1;…; a0l;CÞ; l∈½L�. Then, the class-wise probabilities

are obtained by using a neural network (NN) with the softmax operator gclf
: z ↦ bY as follows:

bY ¼ gclf z;θclfð Þ, (14)



Fig. 3. The 3 types of attentions considered in the proposed method. The class-wise attentions are obtained based on the relevance between image patches and class tokens.
For this example, the model focuses on the almost entire WSI to identify the case as class 2 when only theWSI is used for the class prediction. The exploratory attentions are
obtained based on the relevance between image patches and clinical factors and given to the regions focused on regardless of which class theWSI belongs to. The explanatory
attentions are obtained by filtering the class-wise attentions with the exploratory attentions and are provided as a reason for the final determination by considering the
relationship among multimodal information.
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where bY is a C-dimensional vector whose cth element represents the proba-
bility that the subtype of the patient is class c and θclf is the set of trainable
parameters.

When the network is trained, the loss function consists of 2 loss compo-

nents. The first loss component is simply the cross-entropy loss LceðY, bYÞ
between the true one-hot class vector Y and the predicted class probability

vector bY. The second loss component is considered to take into account the
specific property of theMIL setting, where the bag (WSI) is positive if any of
the instances (image patches) is positive. To formulate this specific prop-
erty, we consider

πc ¼ 1 � ∏
‘∈ L½ �

1 � a′
‘,c

	 

, c ∈ C½ �, (15)

where πc is close to 1 if there exists at least 1 image patch with an attention
value a′ close to 1. The second loss component is defined as the binary
cross-entropy Lbce Yc,πcð Þ between Yc, the cth element Y, and πc. This loss
function is inspired by the probability aggregation approach studied in
Zhe et al.36

The proposed network contains trainable parameters θf, θg, θenc, θagg,
and θclf. All the parameters in themodel are simultaneously trained bymin-
imizing the following loss function:

L θf ,θg, θenc,θagg,θclf
� �

¼ ∑
n∈ N½ �

Lce Yn, bYn

	 

þ 1
C

∑
c∈ C½ �

Lbce Yn,c,πn,cð Þ
� �

:
(16)

The operations performed in the network structure are illustrated in
Fig. 4.
6

Experimental evaluation

In the experiments, we first compared the proposed PersAM MIL with
several baseline methods to confirm the improvement of classification per-
formance. Then, the effectiveness of exploratory and explanatory attentions
in the proposed method was evaluated.
Experimental setting

Dataset. Our database of malignant lymphoma was composed of N =
842 clinical cases with three subtypes: 277DLBCL, 270 FL, and 295 reactive
lymphoid hyperplasia (Reactive). Fig. 5 shows sample image patches for
typical DLBCL, FL, and Reactive cases. DLBCL has large tumor cells over a
wide region in the tissue specimen, and FL has follicular structures
which have tumor cells. In contrast, Reactive is classified as
non-lymphoma, which has diverse cell structures but no tumor cells. All
the patient data were clinically diagnosed by expert hematopathologists
and a WSI of a hematoxylin-and-eosin (H&E)-stained tissue specimen and
a clinical record were given for each case. A gigapixel digitized WSI of
the entire H&E-stained tissue slide, was used as an input image Xn. All
the glass slides were digitized using a WSI scanner (Aperio GT 450; Leica
Biosystems, Germany) at 40× magnification (0.26 μm/pixel), where the
maximum image size was approximately 100000×100000 pixels. The
OpenSlide37 software was used for handling WSIs and extracting image
patches from Xn. An original clinical record includes the definitive subtype
Yn and clinical factors Tn. Note that we cannot use patch-level annotations,
and the class labelYn is given only to aWSIXn, not image patches. The clin-
ical factorsTn consist of 28 elements that are summarized byM=2clinical
factors: an 18-dimensional vector with patient basic information and



Fig. 4. Operations performed in the proposed network structure. Given a set of image patches and a set of clinical factors, the network predicts the subtype based on
exploratory attentions and explanatory attentions. Class-wise and explanatory attentions are computed for each class, whereas exploratory attention is calculated for a
case since it is a class-independent attention based solely on a WSI and a clinical record. Both exploratory and explanatory attentions can vary depending on clinical
records even when an input WSI is the same. This mimics the actual pathological diagnosis by human pathologists.
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interview results and a 10-dimensional vector with blood test results. The
details of items included in each clinical factor are listed in Tables 1 and 2.

Implementation details. In the experiment, 224 × 224-pixel image
patches were randomly extracted from an entire WSI and 100 image
patches were used as a bag due to the amount of computation andmemory.
The corresponding labelYn was assigned to a bag generated from aWSIXn,
e.g., a bag generated from image patches of a WSI of DLBCL was labeled as
DLBCL. Amaximum of 30 bags were generated from a singleWSI in our ex-
periment. The length of the feature vector was set to R = 512 inspired by
TransMIL.32 To obtain feature vector of image patches h‘

p, f employed an
ResNet5038 pre-trained with ImageNet and a two-layer NN that had 1024
hidden units, 512 output units, and ReLU as its activation function, where
Fig. 5. Samples of typical image patches for lymphoma cases. Each subtype has individu
specimen, FL has follicular structures which have tumor cells, and Reactive has diverse
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a 2048-dimensional vector after global average pooling layer in ResNet50
was converted into the 512-dimensional feature vector. Clinical factors
were mapped to hm

t by a 2-layer NN that had 256 hidden units, 512 output
units, and ReLU as its activation function, where both 18-dimensional and
10-dimensional clinical factors were converted into 512-dimensional fea-
ture vectors. Class tokens {hc

cls}c∈[C] were designed as three 512-
dimensional vectors, and then we could obtain input data for the Trans-
former architecture ~H ∈ R512�105. In (15), to prevent underflow comput-
ing, 1 − a′ was normalized to [0.95,1.0]. The dataset was divided into
training, validation, and testing data in the ratio of 3:1:1, and the models
were evaluated via 5-fold cross-validation where the model that had the
smallest validation loss after third epoch was used for testing.
al histological features; DLBCL has large tumor cells over a wide regions in the tissue
cell structures but no tumor cells.



Table 1
The detailed items in clinical factor t1 consisting of patient basic information and in-
terview results. Other items than age are represented as binary labels, e.g., “fever”
indicates 1 if a patient had a high fever in the interview.

Item Value type

Age Non-negative
integer

Gender, organ (lymph node, tonsil, others), fever, weight loss,
hepatomegaly, splenomegaly, swelling (none, whole body, neck,
armpit, deep abdominal cavity, mouse diameter, septum, others)

Binary

Table 3
Comparison of mean accuracy and standard error in 3-class classifica-
tion by 5-fold cross-validation. The proposed method achieved the
highest classification accuracy.

Method Accuracy

Clinical MLP 0.5795 ± 0.0071
Img MIL 0.8195 ± 0.0090
Img-clinical MIL 0.8230 ± 0.0085
Img Transformer 0.8219 ± 0.0140
Img-clinical Transformer 0.8147 ± 0.0141
Proposed 0.8313 ± 0.0149
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For the setting on Transformer, the number of layers and heads were set
to 2 and 8, respectively, where dropout rate was set to 0.1. The classifier gclf
was an NN that had a hidden layer with 256 units and an output layer with
3 units to compute the class probability from a 512-dimensional aggregated
feature vector z.

For stability in the optimization, label smoothing was applied as a regu-
larization technique in calculating the loss function Lbce Yn,c,πn,cð Þ, where
the label for a correct class was set to Yn,c ¼ 0:95 and the labels for incor-
rect classes were set to Yn,c ¼ 0:05. As an optimization method,
momentumSGD (nesterov, weight decay=10−4) was employed and the
training of the model was performed in nine epochs. Learning rates were
determined as 10−4 for optimizing the parameter θf, 2 × 10−4 for the pa-
rameters θenc, θagg and θclf, and 4×10−6 for the parameter θg in which the
learning rate was multiplied by 0.1 every 3 epochs. Random horizontal flip
and random rotations (0°, 90°, 180°, 270°) were applied to the input image
patches as the data augmentation. All the parameters of themodelwere simul-
taneously optimized in the above setting. It took about 20 h to perform 5-fold
cross-validation by a computer with 8 Quadro RTX 5000 (NVIDIA, U.S.). Our
source code is available from https://github.com/PersAM-MIL/PersAM.
Subtype classification

We performed the 3-class classification experiment using the dataset
outlined above.

Baseline methods. The proposed PersAM model was compared with the
following baseline models:

1. MLP using clinical factors as input (clinical MLP)
Clinical MLP employs a three-layer NN that has hidden layers with 256

and 512units and uses a 28-dimensional vector indicating clinical factors as
input data. The training of clinical MLP was performed in 500 epochs,
where the learning rate was set to 10−3 without scheduling.

2. Attention-based MIL using images1 (img MIL)
Img MIL employs an attention-based MIL that aggregates 2048-

dimensional feature vectors in a bag and predicts the class label from an ag-
gregated feature vector using the classifier gclf with the hidden layer having
1024 units.

3. Attention-based MIL using images and clinical factors (img-
clinical MIL)

In img-clinicalMIL, in addition to a 512-dimensional aggregated feature
vector computed from image patches by the attention-based MIL, a
28-dimensional clinical factor is also used as an input for computing the
512-dimensional feature. By concatenating the aggregated feature vector
for images in a bag and the computed feature vector for clinical factors,
the classifier gclf predicts the class using the 1024-dimensional
concatenated feature vector through the hidden layer with 512 units.

4. Transformer-based MIL using images (img Transformer)
Table 2
The detailed items in clinical factor t2 consisting of blood test results. All
items are represented as continuous values indicating amount or percentile.

Item Value type

RBC, WBC, plt, LDH Amount
Stab, seg, eosino, baso, mono, lympho Percentile
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In img Transformer, only 1 class token was concatenated to feature vectors
for L image patches. The classifier gclf predicts the class using the encoded
class token (it is a common technique in the Transformer-based classifica-
tion model).

5. Transformer-basedMIL using images and clinical factors (img-clinical
transformer)

Similar to img Transformer, img-clinical Transformer uses only 1 class
token, and it is concatenated to feature vectors for L image patches andM
clinical factors. Img-clinical Transformer predicts the class using the
encoded class token as an input for the classifier gclf.

The setting for an optimization method and learning rates are the same
as above except for clinical MLP.

Results. The classification results are shown in Table 3, where each row
shows the mean accuracy and standard error in 3-class classification by 5-
fold cross-validation. The results show that the proposed method achieved
the highest accuracy compared to all the baseline methods. In particular,
whereas the baseline methods using image and clinical factors showed
low accuracy, our proposed method classified the subtype more accurately
by properly aggregating image and clinical features through the multi-
modal aggregator.
Attention visualization

Class-wise, exploratory, and explanatory attentions.We also performed vi-
sualization experiments to demonstrate that the proposed personalized at-
tentions could be adaptively changed according to input clinical records. In
the visualization results, attention weights ranging from 0 to 1 were assigned
in the range blue to red. Figs. 6 and 7 show the visualization results of class-
wise attentions, exploratory attentions, and explanatory attentions,where the
images on the right are thumbnails of the originalWSIs. In thematrices on the
left, the columns show the class-wise attentions {a‘, c}(‘,c)∈[L]×[C], the rows
show exploratory attentions {ψ‘}‘∈[L], and each element shows explanatory
attentions {a′}(‘,c)∈[L]×[C], where clinical records sampled from other cases
of 3 different subtypes were input with the WSI of a patient instead of the
original clinical factor of that patient. Fake clinical records were used to con-
firm that exploratory and explanatory attentions changedwhen different clin-
ical records were input with the same WSI.

Fig. 6 shows the results for an FL case. It is known that the follicular
structure, a subtype-specific region for FL, is important in the diagnosis of
FL cases. This case has large follicular structures in the tissue, and we can
confirm that exploratory attention {ψ‘}‘∈[L], i.e., the follicular region on
which focus is placed, changes depending on the clinical records. This
case should have some difficulty in the diagnosis using only images, and ex-
planatory attentions change according to the input clinical records.

Fig. 7 shows the result for a Reactive case. It is known that some Reac-
tive cases have a similar appearance to FL cases. This case also has small fol-
licular structures in the tissue, which is similar to FL, and exploratory
attentions {ψ‘}‘∈[L] are enhanced in those regions. Class-wise attentions
for FL focus on the follicular regions and those for Reactive focus on the out-
side follicular regions. Detailed discussions for these results will be done
with magnified image patches later.

The visualization results whose attentions were changed are observed
for parts of the dataset, and not all cases changed their attentions depending

https://github.com/PersAM-MIL/PersAM


Fig. 6. Three types of attentions for an FL case. The image on the right is a thumbnail of the originalWSI. Regions with red color in each attention represent attention regions
according to the color bar. The left column, top row, and each element of the matrix show the class-wise attentions, exploratory attentions, and explanatory attentions,
respectively. Note that the first (DLBCL) and the third (Reactive) rows are the results when fake clinical records are provided for confirming the change of attentions. The
explanatory attention for FL is enhanced when a clinical record of the FL case is input (2B), and the explanatory attention for Reactive is enhanced when a clinical record
of the Reactive case is input (3C), because the case should have some difficulty in the diagnosis using only image. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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on input clinical records. From the above results, it is expected that the
changes of attentions are caused by whether the inputWSI is pathologically
typical or not; a case whose disease can clearly be determined only from a
WSI does not change its attentions if a different clinical record is input to-
gether, and on the other hand, a case whose WSI has ambiguous features
to identify the subtype has the possibility of changes of attentions depend-
ing on the input clinical record. To qualitatively confirm this, an expert
hematopathologist (1 of the authors, who is an institution member with
over 15 years of experience diagnosing more than 10000 cases of lym-
phoma) investigated whether each case was typical or not in both cases
whose attentionwere changed and not.We targeted FL cases to easily inter-
pret the observation results. The pathologist observed many WSIs of FL
cases that changed attentions and did not change attentions when the
Fig. 7. Three types of attentions for a Reactive case (see the caption in Fig. 6). Note that
are provided for confirming the change of attentions. Class-wise attentions for FL focu
regions (C). With a Reactive clinical factor, explanatory attention for FL no longer has hig
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different (fake) clinical records were input and evaluated their typical-
ness of FL with blind whether the attentions of each case changed or
not. A case that was determined as FL only from a WSI was evaluated
as a typical FL case, and a case that cannot be determined as FL only
from a WSI and requires immunohistochemical (IHC) stains was evalu-
ated as an atypical case. The results are discussed in Pathological view-
point on attention.

Clinical-record-to-patch attentions.We call self-attentions in the bag rep-

resentation bH which indicates attentions from each clinical factor to
image patches “clinical-record-to-patch attentions”. As an additional experi-
ment, we visualized how clinical-record-to-patch attentions changed ac-
cording to input clinical factors. Fig. 8 shows the visualization result of
clinical-record-to-patch attentions for an FL case, where the clinical factor
the first (DLBCL) and the second (FL) rows are the results when fake clinical records
s on the follicular regions (B) and those for Reactive focus on the outside follicular
h values in the follicular region (3B) to strongly predict the subtype as Reactive (3C).



Fig. 8. The visualization result of clinical-record-to-patch attentions for an FL case, where the clinical factor of the original case is replaced with those of the representative
cases of k-medoids clustering result using 2-dimensional t-SNE embedded features. The plots on the left represent the embedded clinical factors, where ⋆ are the represen-
tative cases in each cluster. The images in the middle are the visualization results of clinical-record-to-patch attentions corresponding to blood test for each representative
case. The images on the right are the visualization results of clinical-record-to-patch attentions corresponding to interview for each representative case. We can confirm
that the proposed PersAM could adaptively change clinical-record-to-patch attentions depending on the input clinical records.
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of an original (real) case is replaced with the those of representative (fake)
case in the clustering results. Fake cases were used to confirm that clinical-
record-to-patch attentions changed when different clinical records were
input with the same WSI similarly to Figs. 6 and 7.

In the clustering, k-medoids method was applied to 2-dimensional t-
SNE embedded features that were calculated from 28-dimensional clinical
factors. We determined the number of clusters by looking at t-SNE embed-
ded features and set to k = 7. Instead of the original clinical factors, the
clinical factors of the representative cases in each cluster were input with
a WSI of the original case into the PersAMmodel. The plots on the left rep-
resent the embedded clinical factors, inwhich ⋆ are the representative cases
in each cluster. The images on the middle and right are the visualization
Fig. 9. The magnified image patches of attention regions in Figs. 6 and 7. (a) and (b) a
resolution image patches in Fig. 7(B) and Fig. 7(3C). Changed attention regions de
corresponding subtype.
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results of clinical-record-to-patch attentions corresponding to blood test
and interview, respectively. Attentionweights of image patches are normal-
ized in each case for visualization.

We can confirm that the proposed PersAM could adaptively change
clinical-record-to-patch attentions depending on the clinical records that
were input with an original WSI. The visualization results for the represen-
tative case 1, 2, 4, and 7 are similar to each other because the embedded
clinical factors were located close, but the result for case 3 focuses on the
follicular structures and the result for case 5 focuses on the outside follicular
structures. We confirmed that clinical-record-to-patch attention also
changed depending on clinical factors by effectively encoding the relation-
ship between image patches and clinical factors.
re high-resolution image patches in Fig. 6(2B) and Fig. 6(3C). (c) and (d) are high-
pending on different clinical records show typical image patches as seen in the



Fig. 10. Low- and high-resolution image patches of the cases evaluated as typical FL cases. The attention of all the cases did not changewhen the different clinical factors were
input with the original WSIs in the attention visualization. All WSIs have typical FL features and the pathologist can identify them as FL cases only from WSIs.
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Fig. 11. Low- and high-resolution image patches of the cases evaluated as atypical FL cases. The attention of all the cases changed when the different clinical factors were
input with the original WSIs in the attention visualization. All WSIs do not have definitive features to identify them as FL.
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Pathological viewpoint on attention

Here, we discuss the detailed results for the experiment of attention visu-
alization with the expert hematopathologist's comments. For Fig. 6, the
hematopathologist made a comment on this result that the change in the ex-
planatory attentions in this case is reasonable because pathologists need to
focus more on the follicular regions to identify FL cases (Fig. 9(a)) and on
the outside follicular regions to identify Reactive cases (Fig. 9(b)). In general,
12
asmentioned above, follicular region is important to identify FL cases, but the
case of Fig. 6 has a lot outside follicular regions compared to typical FL cases.
When a case has a large part of such outside follicular regions in theWSI, it is
expected that the classification model focuses on outside follicular regions
when the clinical factor of Reactive cases was input with the WSI.

For Fig. 7, the hematopathologist made a comment on this result that
the change in the explanatory attentions in this case is also reasonable be-
cause the model focuses less on the follicular structure to identify Reactive



Y. Takagi et al. Journal of Pathology Informatics 14 (2023) 100185
cases. This case has follicular regions as shown in Fig. 9(c), where histolog-
ical features of the entire tissue specimen were not typical Reactive case. In
such cases, the pathologist can not identify Reactive case only from a WSI
with confidence even if the outside follicular regions has typical features
of Reactive cases (Fig. 9(d)).

Furthermore, we discuss the results of the investigation of typicalness
with magnified images in Figs. 10 and 11. Fig. 10 shows cases, which
were evaluated as typical FL cases by the pathologist, in the cases where at-
tentions did not change regardless of input clinical records. All these cases
were evaluated as typical FL cases since follicular regions exist in the entire
tissue specimens, which enables pathologists to identify them as FL cases
only from WSIs. Fig. 11 shows cases, which were evaluated as atypical FL
cases by the pathologist, in the cases where attentions changed depending
on input clinical records. Most cases have less follicular regions in lowmag-
nification and the pathologist can not determine them as FL cases due to the
lack of definitive FL features. In Fig. 11(d), there are a lot of nodes in the tis-
sue specimen, and the pathologist expects other diseases and has to require
IHC stains. The proposed PersAM method can provide a reasonable expla-
nation that is similar to pathologists' decision-making where the subtype
of typical cases can be identified only from tissue specimens regardless of
clinical records and attention regions of atypical cases are affected by
clinical records.

Conclusion

In this study, to develop an AI system that mimics the diagnosis process
of human pathologists, we proposed the PersAMmethod, which adaptively
changes the attention regions according to patient clinical records. Our pro-
posed method provided 3 types of attention regions, whichwere calculated
considering the relationship among multimodal information. The results of
experiments conducted with 842 malignant lymphoma cases verify the
effectiveness of the PersAM method.
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