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Abstract
Precision psychiatry is attracting increasing attention lately as a recognized priority. One of the goals of precision
psychiatry is to develop tools capable of aiding a clinically informed psychiatric diagnosis objectively. Cognitive,
inflammatory and immunological factors are altered in both bipolar disorder (BD) and schizophrenia (SZ), however,
most of these alterations do not respect diagnostic boundaries from a phenomenological perspective and possess
great variability in different individuals with the same phenotypic diagnosis and, consequently, none so far has proven
to have the ability of reliably aiding in the differential diagnosis of BD and SZ. We developed a probabilistic multi-
domain data integration model consisting of immune and inflammatory biomarkers in peripheral blood and cognitive
biomarkers using machine learning to predict diagnosis of BD and SZ. A total of 416 participants, being 323, 372, and
279 subjects for blood, cognition and combined biomarkers analysis, respectively. Our multi-domain model
performances for the BD vs. control (sensitivity 80% and specificity 71%) and for the SZ vs. control (sensitivity 84% and
specificity 81%) pairs were high in general, however, our multi-domain model had only moderate performance for the
differential diagnosis of BD and SZ (sensitivity 71% and specificity 73%). In conclusion, our results show that the
diagnosis of BD and of SZ, and that the differential diagnosis of BD and SZ can be predicted with possible clinical
utility by a computational machine learning algorithm employing blood and cognitive biomarkers, and that their
integration in a multi-domain outperforms algorithms based in only one domain. Independent studies are needed to
validate these findings.

Introduction
Precision psychiatry is attracting increasing attention

lately as a recognized priority. One of the goals of preci-
sion psychiatry is to develop tools capable of aiding a

clinically informed psychiatric diagnosis objectively1. A
particularly challenging problem faced by clinicians is the
lack of objective, quantitative diagnostic tools to establish
differential diagnosis of bipolar disorder (BD) or schizo-
phrenia (SZ)2–5. Both disorders have symptoms that
overlap considerably and share genetic and environmental
risk factors6, for instance, both can present with psychotic
symptoms, alterations in cognition and alterations in
cytokines, and acute mania can be very difficult to clini-
cally differentiate from acute SZ. A critique of standard
psychiatric diagnosis is the absence of a valid signature of
biological and cognitive abnormalities to inform
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diagnosis1. In fact, this is one of the major limits of tra-
ditional, phenotypic-based psychiatry which today are
based on a descriptive collection of behaviors without
objective markers to confirm diagnosis1. It is now broadly
accepted that cognitive, inflammatory, and immunological
factors are altered in both BD and SZ7, however, most of
these alterations do not respect diagnostic boundaries
from a phenomenological perspective and possess great
variability in different individuals with the same pheno-
typic diagnosis and, consequently, none so far has proven
to have the ability of reliably aiding in the differential
diagnosis of BD and SZ1,8. More critically, these bio-
markers related to cognition, inflammation and immu-
nology are known to be altered at a group level in both BD
and SZ but the extent of these alterations at an individual
level is far less characterized. The latter is a pivotal point,
since the clinically relevant question is not if patients with
BD or SZ in general have these biomarkers altered, but if a
particular, individual patient at an individual level, has
these alterations.
One important task that has to be carried out for this

goal to be achieved is the analysis of how cognitive and
immune markers in peripheral blood behave at an indi-
vidual level across different nosological categories. Given
the complexity of psychiatric disorders, it is unlikely that a
single biomarker, or even several biomarkers pertaining to
the same unit of analysis within a given biological system,
i.e., a single domain, will have good enough diagnostic
properties to aid real life clinical decisions. However, the
analysis of several potential biomarkers assessed simul-
taneously related to several units of analysis with different
levels on information in more than one domain, such as a
probabilistic multi-domain data integration approach
consisting of cognitive and peripheral blood-based
inflammatory and immunological factors, in unison as
predictors of differential diagnosis of BD and SZ in an
agnostic fashion, possibly helps with this task. From a
traditional, inferential statistics paradigm, this is compli-
cated, since inferential statistics cannot appropriately
handle high dimensional data. The feasibility of making
more accurate predictions using a myriad of complex
non-linear high-dimensional interactions that might
inform prediction is now facilitated by machine learning
methods, which are well-suited for the identification of
subtle patterns of information in the data and, as a con-
sequence, are useful to better predict diagnosis at the
individual patient level1.
In this study, we applied, we believe for the first time,

machine learning techniques to two different domains
previously described as altered in BD and SZ at a group
level—cognitive and peripheral blood-based immune-
inflammatory biomarkers—to assess their predictability in
ascertaining a differential diagnosis of BD or SZ, in indi-
vidual patients, with sufficient clinical validity and utility.

Our overarching goal is to develop a multi-domain algo-
rithm-based biosignature with good enough diagnostic
properties to be able to inform clinical decisions per-
taining to the differential diagnosis of BD and SZ in a
meaningful way.

Methods
Inpatients and outpatients between 18 and 65 years,

meeting DSM-IV criteria (American Psychiatric Asso-
ciation, 1994), for BD or SZ, were consecutively
recruited at a university-affiliated psychiatric depart-
ment (Mondor hospital, University of Paris-Est, Créteil,
France) after approval by a French ethic committee and
after written informed consent. Controls were included
via a clinical investigation center, also in Créteil, France
(Center for Biological Resources, Mondor hospital,
Créteil, France).

Inclusion and exclusion criteria
Exclusion criteria for patients and controls were current

or past immunosuppressive treatment; recent infection or
ongoing inflammatory disease, such as arthritis ankylosing
spondylitis, Crohn disease, asthma, or systemic lupus
erythematous; a positive serology for HIV-1/HIV-2 or
hepatitis A, B, or C; or a comorbid neurologic disorder
with cognitive impairment, such as multiple sclerosis,
Parkinson disease, head injury, cerebrovascular accident,
or Alzheimer’s disease. Healthy controls were included
after checking for the absence of personal or first-degree
family history of psychiatric disorder and without a per-
sonal or family history of autoimmune diseases, inflam-
matory or infectious past history. Patients were
interviewed with a French version of the Diagnostic
Interview for Genetic Studies (DIGS) for the assessment
of lifetime clinical characteristics of their psychiatric dis-
order as well as for demographic characteristics. At
inclusion, manic symptoms were assessed with the Young
Mania Rating Scale (YMRS) and depressive symptoms
with the Montgomery-Asberg Depression Rating Scale
(MADRS) for BD. Participants with SZ were evaluated
using Positive and Negative Syndrome Scale (PANSS). To
be included, BD participants had to be in outpatients and
in a stable status defined by YMRS score <8 and MADRS
score <12, while SZ participants had to have a PANSS
score <60.
The cognitive evaluation was conducted in ambulatory

care; while for inpatients (also reaching YMRS < 8,
MADRS < 12, and PANSS < 60); blood sampling was done
very close to the cognitive assessment. Patients were
interviewed with a French version of the “Diagnostic
Interview for Genetic Studies” (DIGS, 1994) for the
assessment of lifetime clinical characteristics of BD and
SZ as well as for demographic characteristics (i.e., edu-
cation level, working status, season of birth, birth place/
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country). Current medications as well as hospitalization
status were recorded.

Blood-based immunological biomarker profiling
All laboratory analyses were done by personnel blinded

to diagnosis status.

Serological testing for immunoglobulins (IgGs)
Total IgG, IgA, and IgM were quantified by immuno-

turbidimetry using commercially available immunoassay
reagents (COBAS). IgG sub-classes, i.e., IgG1, IgG2, IgG3,
and IgG4 levels were determined on a SPAPLUS analyzer
(The Binding Site, Birmingham, UK) using commercially
available kits (The Binding Site, Birmingham, UK).

Other immune and inflammatory biomarkers
C-reactive protein (CRP) serum level was measured by

nephelometry using the cardio-phase high-sensitivity CRP
(hs-CRP) kit (Siemens, Germany). Anti-nuclear antibodies
(ANA) were detected by indirect fluorescent antibody
method on hep2000 cells (Immuno Concepts Inc., CA,
USA). Quantification of anti-double strand DNA (anti-
dsDNA) antibodies was performed using enzyme-linked
immunosorbent assay (ELISA) (anti-ADN-NcX IgG kit;
Euroimmun AG, Lübeck, Germany). Anti-extractable
nuclear antibodies (anti-centromere CENP-B, anti-JO1,
anti-RNP, anti-Scl70, anti-Sm, anti-SSA/Ro, and anti-
SSB/La antibodies), anti-phospholipids i.e., anti-
cardiolipin (aCL) and anti-β2GP1 (IgG and IgM anti-
bodies as well as anti-Anti-Cyclic Citrullinated Peptide
(CCP) were both analyzed using the multiplex immu-
noassay method (BioPlex™ 2200 Anti-Nuclear Antibody
Screen; Bio-Rad Laboratories Inc., France). Anti-
neutrophil cytoplasmic antibodies (ANCA) were detec-
ted by indirect immunofluorescence (Inova diagnostics,
USA) and in case of positivity, specificity (anti-PR3, anti-
MPO, anti-elastase, anti-lactoferrin, anti-cathepsin G, and
anti-bactericidal/permeability increasing protein [BPI]
antibodies) was characterized using the ANCA-Profile
ELISA kit (Euroimmun AG, Lübeck, Germany). Rheu-
matoid factor (RF) was evaluated on the turbidimetric
SPAPLUS (Binding Site, Birmingham, UK) Anti-myelin-
associated glycoprotein (MAG) IgM and anti-myelin IgM
autoantibodies presence were tested by ELISA (BÜHL-
MANN laboratories AG, Switzerland) and indirect
immunofluorescence on slide by (IMMCO diagnostic,
NY, USA), respectively.

Serological testing for Toxoplasma gondii exposure
On enrollment, solid-phase enzyme immunoassay was

performed to assess IgG, IgM, and IgA antibodies against
Toxoplasma gondii as previously described9. Qualitative
(positive/negative) assay was performed at the Stanley

Laboratory of Developmental Neurovirology, Johns
Hopkins School of Medicine, Baltimore, Maryland, USA.

Cognitive data
We employed the Wechsler Adult Intelligence Scale

(WAIS) 3rd Edition, which provides a measure of general
intellectual function in older adolescents and adults.
Seven subtests short forms were used to estimate the full
scale IQ (FSIQ), verbal IQ (VIQ), and performance IQ
(PIQ), and allowed exploration of the following cognitive
areas: picture completion (visual exploration and detail
perception), digit-symbol coding (visual-motor coordina-
tion, motor, and mental speed), similarities (abstract
verbal reasoning), arithmetic (mathematical problem
solving), matrix reasoning (nonverbal abstract problem
solving, inductive spatial reasoning), digit span (attention,
working memory, and mental control), information
(general information acquired from culture, semantic
memory). An additional subtest, letter-number sequen-
cing, was administered, which along with two other pri-
mary subtests, digit span and arithmetic.
The California Verbal Learning Test (CVLT) was also

employed. It is designed to measure episodic verbal
learning and memory using a multiple-trial list-learning
task. The examiner reads the word list and records the
patient’s oral responses verbatim in the order in which
they are given. It assesses measure rate of learning,
learning strategy, short-term and long-term retention and
retrieval, recall errors, interference effects and ability to
profit from learning cues. Learning efficiency, strategies,
interference management and learning bias are measured.
A validated French version of the task was used in
this study.
Finally, we applied the National Adult Reading Test

(NART), which provides an estimate of premorbid
intellectual and general cognitive ability level from a
word reading test, which provides an estimate of voca-
bulary size. The participant was required to correctly
pronounce the list of NART words presented on a
computer screen. In this study, the French version of the
NART was used10.

Machine learning strategies and data analysis
Data pre-processing
We undertook a complete cases approach, including

only participants without missing observations. Usually,
when a participant had a variable related to cognition
missing, the participant had all variables related to cog-
nition missing, because the cognitive battery was not
applied. The same holds true for the blood biomarkers. In
this study, 102 blood-based biomarkers and 19 cognitive
biomarkers were initially selected for analysis. Among
them, any biomarker that was missing in more than 30%
of the participants were removed; within each selected
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biomarkers, subjects with any missing biomarker were
also removed. This filtering resulted in a total of 416
participants, being 323, 372, and 279 subjects for blood,
cognition and combined biomarkers analysis, respectively,
with 27 blood biomarkers and 19 cognitive biomarkers
selected for final analysis. Therefore, in the selected set
there were no missing values and no imputation process
was required. All cognitive and blood biomarkers vari-
ables were converted into z-scores.

Univariate and multivariate analysis
For univariate analysis, nonparametric (Kruskal–Wallis)

and chi-square tests were used to identify variables with
significant p-values for continuous and categorical vari-
ables, respectively. In case of the three groups compar-
ison, Tukey–Kramer post-hoc test was performed to
check significance between different pairs. For continuous
variables, mean ± SD (standard deviation) values were
showed to portray the distribution of the variables across
different groups. Percentage of positive results (having
value 1) was reported for categorical variables.
With the data recorded we built a predictive model, and

internally cross-validated the model. Principal component
analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) were used for multivariate analysis.
PCA is used to identify new variables, called principal
components, which are a linear combination of the ori-
ginal variables. The new variables are uncorrelated to each
other and they are sorted based on their capacity to
describe the variance of the original signal11. Thus, the
first principal component describes the largest variation of
the original signal and the last one the smallest. In this
study, we applied PCA to extract uncorrelated principal
components from the blood-based and cognitive bio-
markers to study their capacity to differentiate one group
from another in each of the three pairs (BD vs. controls,
SZ vs. controls, and BD vs. SZ).
PLS-DA can be regarded as a linear two-class classifier.

We used the PLS1 algorithm12, where there are always
two diagnostic groups (i.e., BD vs. controls, SZ vs. con-
trols, and BD vs. SZ), or pairs of classifiers, of samples and
the aim was to measure the importance of variables. The
variable influence on projection (VIP) was then calculated,
which is the measure of the contribution of each variable
according to the variance explained by each PLS com-
ponent12. Once VIP values were calculated, they were
used for selecting variables for classification. In this study,
we selected the six variables with the top VIP values for
classifying BD vs. controls, SZ vs. controls, and BD vs. SZ,
which was verified to be the optimum number of variables
in our models that maximized the discriminant properties
without unnecessarily overcomplicating, and therefore
overfitting, the models. Six is also the number selected as

the optimum number to balance practical usability with
model performance.

Validation and area under the curve (AUC) calculations
We built linear discriminant (LD) binary classifiers for

three diagnosis pairs: BD vs. controls, SZ vs. controls, and
BD vs. SZ. We used the 10-fold cross-validation strategy.
In this strategy, the data is randomly divided into ten
equal parts. For each fold, one part is used as validation
set and the rest as training set. The process was repeated
for all ten parts so that the union of validation sets equals
the original data set. The prediction on the ten validation
sets is then combined. We reported the AUC value as the
predictive measure of the final model. Receiver operating
characteristic (ROC) plots13 were derived from linear
discriminative analysis (LDA) based on the top six bio-
markers from the PLS-DA approach. Three different
models according different domains were developed using
selected biomarkers from blood (single immune-
inflammatory factors in the peripheral blood domain),
cognition (single cognitive domain) and their combined
pool (multi-domain composed of immune-inflammatory
factors in peripheral blood and cognitive biomarkers). The
summary index of the optimal sensitivity and specificity—
when both sensitivity and specificity are maximized
(summary index equals positive predictive value plus
negative predictive value minus 100)—of the set of
selected biomarkers for the three models were determined
by the ROC curve and the AUC13. In a general situation,
an AUC of 0.90–1.0 is regarded as very high (excellent), of
0.80–0.89 high (good), of 0.70–0.79 moderate (fair), of
0.60–0.69 low (poor), and of 0.50–0.59 as very low (fail or
useless)14. In addition, based on the ROC curves, we
determined the true positive rate (TPR) (sensitivity), the
true negative rate (TNR) (specificity), the false positive
rate (FPR) (1—specificity), and the false negative rate
(FNR) (1—sensitivity)15. To better analyze clinical validity
and utility, we calculated the positive predictive value
(PNV) and the negative predictive value (NPV) in differ-
ent simulated settings with different prevalence16,17. All
analyses were performed in Matlab R2014b.
We conducted this study according to the STARD

statement (Standards for reporting diagnostic accu-
racy)18,19 and transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis
(TRIPOD)20,21 statement.

Ethical aspects
The study was carried out in accordance with ethical

principles for medical research involving humans (WMA,
Declaration of Helsinki). The assessment protocol was
approved by the relevant ethical review board. All data
were collected anonymously. As this study include data
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coming from regular care assessments, a non-opposition
form was signed by all participants.

Results
The total population sample consisted of 416 partici-

pants. Twenty-seven blood-based biomarkers and 19
cognitive biomarkers were selected for final analysis after
biomarkers with missing data, as defined in the “Methods”
section, were excluded. This resulted in 323 persons
contributing to the blood-based domain (121 with BD, 71
with SZ, and 131 controls), 372 persons contributing to
the cognitive domain (117 with BD, 84 with SZ, and 171
controls), and 279 persons contributing to the multi-
domain composed by the immune blood-based domain
plus the cognitive domain (98 with BD, 58 with SZ, and
123 controls). Characteristics of the sample are shown in
Table 1.

Univariate analysis
Univariate analysis was carried out to identify single

blood biomarkers and cognitive biomarkers signals that
were associated with disease status and to establish
information and methodology applicable to multivariate
approach in subsequent analysis.
Results from nonparametric tests showed significant

differences between the BD and control pair, between the

SZ and control pair of classifiers, and also between the BD
and SZ pair, with larger differences observed for partici-
pants with SZ related to the cognitive biomarkers and for
BD with the immune blood biomarkers (Supplementary
Table 1). Supplementary Fig. 1 show the relative differ-
ence (fold changes with confidence intervals) for each
single biomarker when comparing participants with BD
versus controls and participants with SZ versus controls.
To obtain a common scale, all results presented are based
upon log transformed data.

Multivariate analysis
Multivariate analysis was also carried out to explore

correlations within the dataset, and to identify whether
multiple analytes could increase the discrimination
between cases and controls. The analysis was performed
in two stages: (1) principal components analysis (PCA) for
unsupervised analysis of the full dataset, aimed at deter-
mining whether a multivariate signal was present;
(2) partial least squares discriminant analysis (PLS-DA) to
help determine the identity of the biomarkers responsible
for the separation.
Supplementary Fig. 2 shows the PCA plots obtained.

Similar to the results of the univariate analysis, separation
can be observed, in particular for SZ and BD from con-
trols, for both blood-based biomarkers and for cognitive

Table 1 Demographic characteristics of the sample with both immune blood-based and cognitive biomarkers.

Characteristic Bipolar disorder N= 98 Schizophrenia N= 58 Control N= 123 p

Masculine sex1 50 (51.02) 43 (74.14) 49 (39.84) <0.001

Age2,a,b,c 45.14 ± 12.93 35.26 ± 10.97 39.19 ± 13.17 <0.001

Age of onset of the disorder2 26.86 ± 10.53 24.05 ± 7.11 NA 0.074

Length of illness2,a 18.13 ± 12.26 11.21 ± 9.36 NA <0.001

BMI2 24.69 ± 3.76 25.12 ± 5.56 24.43 ± 4.16 0.605

Smokers1 20 (20.41) 5 (8.62) 18 (14.63) 0.124

YMRS2,a 3.96 ± 1.65 4.66 ± 3.38 NA 0.003

MADRS2 6.19 ± 4.88 7.89 ± 6.20 NA 0.151

PANSS total2,a 37.38 ± 13.21 55.69 ± 14.65 NA <0.001

PANSS positive total2,a 7.98 ± 2.85 12.52 ± 6.62 NA <0.001

PANSS negative total2,a 9.08 ± 4.50 18.87 ± 9.03 NA <0.001

History of suicide attempt1,a 39 (39.80) 19 (32.76) NA <0.001

Current hospitalization1,a 25 (25.51) 26 (44.83) NA <0.001

Drug-free#,1,a 4 (4.08) 2 (3.45) NA <0.001

1Chi-square test. Values shown as raw numbers and (%).
2Values shown as mean and standard deviation. Bipolar disorder, schizophrenia, and controls, analyses by analysis of variance (ANOVA) followed by Tukey-Kramer
post-test. Bipolar disorder and schizophrenia, analyses by t-test.
aBipolar disorder is significantly different from Schizophrenia.
bBipolar disorder is significantly different from control.
cSchizophrenia is significantly different from control.
#Drug-free defined as without use of psychiatric medication for at least 7 days.
NA not applicable.
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biomarkers. It should be noted that these graphs were
produced by PCA without previous disease classification
information, in contrast to the partial least squares (PLS)
approach, which is known to split classified groups even
from random data sets. Having established a separation by
PCA, the step of PLS-discriminant analysis was used
solely to compute a series of scores (VIPs) to assess the
contribution of individual blood-based and cognitive
biomarker to these dimensions.
The contribution of each blood or cognitive biomarker

to the separation of participants with BD or SZ from
controls, according the VIPs found, were computed for SZ
and BD, to derive the most informative biomarkers. For
the immune blood-based biomarkers, IgG1, IgG2, IgG3,
and anti-cardiolipin antibodies A (ACA A) showed the
best properties for discriminating BD from controls, and
cytomegalovirus (CMV), herpes simples virus 2 (HSV2),
and Toxoplasma Gondii for SZ from controls. For the
cognitive biomarkers, WAIS deterioration showed the
best discriminant properties for BD from controls, and
CVLT total number of correct answers during list a short
delay cued recall (CVLT SDCR) and CVLT total number
of correct answers during list a long delay cued recall

(CVLT LDCR) for SZ from controls. WAIS digit symbol
coding (WAIS DSC) also showed significant discriminant
capacity, however less than the others described above.
When considering the capacity of both domains together
in separating BD from controls and SZ from controls, the
peripheral blood-based biomarkers domain showed better
discriminating properties for BD and the cognitive
domain showed better discrimination for SZ.
Therefore, the blood-based biomarkers that were nee-

ded for the multi-domain model are IgG1, Toxoplasma
gondii IgG, and anti-cardiolipin antibodies (ACA). The
cognitive biomarkers are related to all batteries applied
(WAIS, CVLT, and NART33). The biomarkers that con-
tributed to the algorithms of all three final models are on
Table 2.
We wanted to verify if a multi-domain approach con-

sidering both the immune blood biomarkers and the
cognitive domains would produce an algorithm with
better diagnostic properties than each of the domains in
isolation. To assess the capability of our diagnostic set of
markers to discriminate correctly between cases and
controls, we derived ROC plots based on a linear dis-
crimination analysis model (LDA) built upon the six

Table 2 Biomarkers contributing to the multi-domain model composed of immune blood-based and cognitive
biomarkers.

Model BD vs. CT SZ vs. CT BD vs. SZ

Single-domain IgG1 HSV2 IgG1

Immune blood biomarkers IgG3 Toxoplasma gondii IgM HSV2

Anti-cardiolipin CMV IgG4

IgG2 IgG2 Toxoplasma gondii IgM

Anti-TTGG IgG Anti-gliadin A

Anti-CCP ANCA Anti-TTGG

Single-domain WAIS deterioration WAIS DSC WAIS DSC

Cognitive biomarkers WAIS DSC CVLT LDCR CVLT LDCR

WAIS inform CVLT SDCR WAIS DS

NART33 IQ WAIS deterioration CVLT SDCR

WAIS Let-Num Seq WAIS Let-Num Seq NART33 IQ

CVLT LDCR WAIS DS WAIS BD

Multi-domain WAIS deterioration WAIS DSC WAIS DSC

Immune blood and WAIS DSC CVLT LDCR IgG1

cognitive biomarkers IgG1 CVLT SDCR WAIS DS

Toxoplasma gondii IgG WAIS deterioration WAIS Obj Ass

Anti-cardiolipin WAIS arithmetic CVLT LDCR

WAIS inform WAIS Let-Num Seq NART33 IQ

WAIS DSC WAIS digit symbol coding total score, WAIS Inform WAIS information total score, CVLT SDCR CVLT total number of correct answers during list a short delay
cued recall, CVLT LDCR CVLT total number of correct answers during list a long delay cued recall, WAIS DS WAIS digit spam total score, WAIS Obj Ass WAIS object
assembly total score, NART33 IQ NART 33 items total IQ score, WAIS BD WAIS block design total score.
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markers with the highest contribution as determined by
PLS-DA.

Predictive diagnostic properties and clinical validity and
utility of the algorithms for the immune blood-based,
cognitive, and combined domains
General predictive diagnostic properties
The general diagnostic predictive properties of each

domain varied in the three diagnostic pairs of classifiers.
The general accuracy was slightly lower than the AUC for
all three models and all pairs of classifiers.
The single immune blood-based domain showed a

moderate AUC and sensitivity for discriminating BD from
controls, SZ from controls, and BD from SZ. The speci-
ficity, however, was low in all three pairs.
The single cognitive domain showed better predictive

properties for separating BD from controls than the single
immune blood-based domain, with a high AUC and
moderate sensitivity and specificity. The predictive prop-
erties of the cognitive domain was also better than in the
immune blood-based domain for separating SZ from
controls, with all three parameters showing high dis-
crimination of SZ from controls. Regarding the SZ vs. BD
pair, the parameters were all of moderate value.
Finally, the model combining both the immune blood-

based and the cognitive domains was superior in correctly
predicting BD from controls than the models considering
each domain in isolation, with a high AUC and sensitivity
and a moderate specificity. However, its predictive prop-
erties were exactly the same as the single cognitive
domain in separating the SZ from control groups, and
only slightly better for discriminating the BD from SZ
groups than the cognitive domain (Fig. 1a–c and Table 3).

Clinical usefulness and validity of the multi-domain and
cognitive-domain predictions algorithms as diagnostic tests
In clinical practice, a clinical test with high diagnostic

properties is considered useful, and therefore worth
ordering for a patient, while a test with moderate diag-
nostic properties is possible useful and a clinician would
consider ordering it depending on the circumstances, and
a test with low or very low diagnostic properties is con-
sidered without clinical value, and, consequently, should
not be ordered in the great majority of cases15,22. Taking
this into consideration, we classified the algorithms pre-
dictions based on the multi-domain (the one with the best
properties) and in the cognitive domain (the second best)
as “success”, “moderate success”, or “failure”, [i.e., with
high (≥80%), moderate (70–79%), or low (<70%) diag-
nostic properties, respectively]14. The general predictions
of both models were a “success” as a possible test, in a
scenario in which both sensitivity and specificity are max-
imized, for the SZ vs. control pair, and a “moderate success”
for the BD vs. SZ pair. However, for the BD vs. control pair,

the multi-domain model was a “success” regarding sensi-
tivity (the TPR), while both models were a “moderate
success” regarding specificity (the TNR) (Fig. 2a, b).
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Predictive diagnostic properties and clinical validity in very
high sensitivity or very high specificity scenarios
Depending on the clinical situation, a clinician might

consider a diagnostic test more useful if it has a high
sensitivity (i.e., high TPR) or if it has a high specificity (i.e.,
high TNR)15,22. In order to verify this, we built another
two different scenarios, one in which the models would
perform with high sensitivity, in which we set the sensi-
tivity at 90%, and one with high specificity, in which we set
the specificity at 90%. In both scenarios, we then verified
which would be the correspondent specificity in the 90%
sensitivity scenario and which would be the sensitivity in
the 90% specificity scenario. In these scenarios, it is
expected that the counterpart sensitivity or specificity will
be lower, and, therefore, the test can be considered a
“success” when the correspondent sensitivity or specificity
is at least 70%, as a “moderate success” when it is from 50
to 69%, and a “failure” when it is below 50%15,22. In both
scenarios, the algorithm of the multi-domain model
composed of immune blood and cognitive biomarkers
outperformed the algorithm of the single-domain com-
posed only for the cognition model (Fig. 2c–f).

Clinical utility in scenarios with different prevalence
The most clinically relevant diagnostic information that

a diagnostic test can provide is the PPV and the NPV,
which better inform clinical utility. These parameters are
highly dependent on the prevalence of the condition of
interest in a given clinical setting17. In order to calculate
the PPV and the NPV, we simulated nine different clinical
settings with prevalence ranging from 10 to 90%. There-
after, we calculated these values considering the multi-
domain algorithms for all three pairs of classifiers in the
three different scenarios (i.e., balanced sensitivity and
specificity, high sensitivity, and high specificity). In a
clinical setting with a relatively low prevalence ranging

from 10 to 30%, the NPV varied from 83 to 98%, and the
PPV from 17 to 77%; the scenarios with balanced pre-
valence and with high specificity performed better, with
the high sensitivity scenario having no advantage over the
other two; the scenario with high specificity showed the
highest rates of PPV. In a clinical setting with a relatively
high prevalence ranging from 70 to 90%, the PPV varied
from 86 to 99%, and the NPV from 18 to 76%; the sce-
narios with balanced prevalence and with high sensitivity
performed better, with the high specificity scenario having
no advantage over the other two; the scenario with high

Fig. 1 Receiver operating characteristics (ROC) plot derived from
the linear discriminate analysis (LDA) using blood-based markers
based on the top finding from PLS approach. a Receiver operating
characteristics (ROC) plot derived from the linear discriminate analysis
(LDA) using blood-based markers based on the top finding from PLS
approach. ROC plot of sensitivity (true positive rate) vs. 1-specificity
(false positive rate) based on a LDA build upon the six markers with
the highest contribution as determined by the PLS discriminant
analysis. b ROC plot derived from the LDA using cognitive markers
based on the top finding from PLS approach. ROC plot of sensitivity
(true positive rate) versus 1-specificity (false positive rate) based on a
LDA build upon the six markers with the highest contribution as
determined by the PLS discriminant analysis. c ROC plot derived from
the LDA using blood-based markers and cognitive markers based on
the top finding from PLS approach. ROC plot of sensitivity (true
positive rate) vs. 1-specificity (false positive rate) based on a LDA build
upon the six markers with the highest contribution as determined by
the PLS discriminant analysis.

Table 3 Predictive value of the final models: area under
the curve and discrimination parameters of the models
obtained by the three linear discriminant (LD) binary
classifiers.

BD vs. CT SZ vs. CT BD vs. SZ

Single domain—immune blood

General AUC 0.73 0.71 0.75

Accuracy 69.17% 70.30% 71.73%

True positive rate (Sensitivity) 72.31% 71.48% 79.10%

True negative rate (Specificity) 64.39% 61.27% 64.49%

False positive rate (1—Specificity) 35.61% 38.73% 35.51%

False negative rate (1—Sensitivity) 27.69% 28.52% 20.90%

Single domain—cognition

General AUC 0.81 0.90 0.77

Accuracy 75.35% 87.06% 72.14%

True positive rate (Sensitivity) 76.12% 84.43% 71.39%

True negative rate (Specificity) 71.19% 81.14% 71.27%

False positive rate (1—Specificity) 28.81% 18.86% 28.73%

False negative rate (1—Sensitivity) 23.88% 15.53% 28.61%

Multi-domain—immune blood+ cognition

General AUC 0.86 0.89 0.80

Accuracy 79.73% 86.18% 76.43%

True positive rate (Sensitivity) 88.29% 84.46% 71.29%

True negative rate (Specificity) 71.11% 81.39% 73.33%

False positive rate (1—Specificity) 28.89% 18.61% 26.67%

False negative rate (1—Sensitivity) 11.71.% 15.54% 28.71%

AUC sensitivity (true positive rate), specificity (true negative rate), and false
positive (1—specificity) and false negative (1—sensitivity) rates. Receiver
operating characteristic (ROC) plots were derived from linear discriminative
analysis (LDA) based on the top six biomarkers from the PLS-DA approach. Three
different pairs of classifiers (BD vs. control, SZ vs. control, and BD vs. SZ) were
analyzed using selected biomarkers from blood, cognition, and their combined
pool. Optimal sensitivity and specificity of the set of selected biomarkers for the
three models and were determined by the ROC curve and the AUC. An AUC of
0.90–1.0 is very high (excellent), of 0.80–0.89 high (good), of 0.70–0.79 moderate
(fair), of 0.60–0.69 low (poor), and of 0.5–0.59 is very low (fail or useless). Color
code: “success” showed in green, moderate “success” showed in yellow, “failure”
showed in red.
AUC area under the curve, BD bipolar disorder, SZ schizophrenia, CT control.
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sensitivity showed the highest rates of NPV. In clinical
settings with a moderate prevalence of 40–60%, all three
scenarios are useful, with different advantages. As
expected, the high sensitivity scenario showed the highest
NPV, and, conversely, the high specificity scenario
showed the highest PPV (Table 4).

Discussion
We developed a probabilistic multi-domain data inte-

gration model consisting of immune and inflammatory
biomarkers in peripheral blood and cognitive biomarkers
using machine learning to predict diagnosis of BD and
SZ, two severe psychiatric disorders that have a differ-
ential diagnosis that can be challenging23. This is parti-
cularly true for the diagnosis of BD and for the
differential diagnosis of BD and SZ2–5,14. Our multi-
domain model performances for the BD vs. control

(sensitivity 80% and specificity 71%) and for the SZ vs.
control (sensitivity 84% and specificity 81%) pairs are
high in general, and are relatively similar to other diag-
nostic tests already employed in general clinical practice.
Just in order to make a comparison, in multiple sclerosis,
which, similar to what happens in psychiatry, is a com-
plex condition with heterogeneous presentation and a
variety of pathophysiology mechanisms, and that thus
might be better called a syndrome rather than a distinct
disease, the combination of brain magnetic resonance
scan imaging and cerebrospinal fluid analysis have a
sensitivity of 84% and a specificity of 74%24. However, our
multi-domain model has only moderate performance for
the differential diagnosis of BD and SZ (sensitivity 71%
and specificity 73%). This is the most challenging and
crucial differentiation and these findings were somehow
expected, since people with BD and SZ share many more

Fig. 2 True positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR) showed as percentage (%) of
the values for the multi-domain of immune blood and cognitive biomarkers predictions for the bipolar disorder vs. control pair, for the
Schizophrenia vs. control pair, and for the bipolar disorder vs. Schizophrenia pair. a, b General performance maximizing both sensitivity and
specificity. The predictions were categorized as “success” when the predictions of TPR and FNR were based on high sensitivity (i.e., 80% or more) and
also as “success” when the predictions of TNR and FPR were based on high specificity (i.e., 80% or more). The predictions were categorized as
“moderate success” when the predictions of the above were based on moderate sensitivity or specificity (i.e., from 70 to 79%), and the predictions
were categorized as “fail” when these predictions were based in low or very low sensitivity or specificity (i.e., 69% or less). c, d High sensitivity (90%)
scenario. The predictions were categorized as “success” when the FPR was below 30%, as a “moderate success” when those values were from 31 to
50%, and as “failure” when those values were higher than 50%. e, f High specificity (90%) scenario. The predictions were categorized as “success”
when the FNR was below 30%, as “moderate success” when those values were from 31 to 50%, and as “failure” when those values were higher than
50%. Color code: “success” showed in green, “moderate success” showed in yellow, and “failure” showed in red.
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similarities than people with one of these disorders share
with healthy people;4,14 as a matter of fact, other studies
that employed peripheral blood biomarkers, neuroima-
ging, or cognition as single-domains have systematically
found this3,5,14,25–29.

Clinical validity and utility
For a machine learning algorithm to be clinical valuable,

to show that a test has higher than chance statistical
significance is not enough, the prediction has to be high
enough to change decision-making in real life2,3,30,31. For
this reason, we categorized our predictions according to
their perceived clinical validity and utility.
In diagnostic medicine, a highly sensitive test is less

likely to overlook a positive and a highly specific test is
less likely to register a positive in the absence of the dis-
ease. Preferably, a test would have both high sensitivity
and specificity, with high percentage of true positives and
true negatives and, consequently, low percentage of false

positives and negatives16. Tests with high diagnostic
properties are preferable, and usually ordered for a
patient, while those with moderate properties are ordered
depending on the circumstances. Taking this into con-
sideration, we classified the predictions based on the
multi-domain and in the cognitive domain as “success”,
“moderate success”, or “failure” (i.e., at least high, mod-
erate, and low diagnostic properties, respectively). In this
classification, the multi-domain based predictions were
generally superior, albeit not by a large margin, to the
single-domain ones, particularly for BD.
In a clinical situation where not missing a positive case

is more important, when being inclusive is better (for
instance, when deciding if a patient should be kept in a
high risk program for further follow-up and observation),
it is preferable to maximize sensitivity to the detriment of
specificity, and the cutoff of the diagnostic instrument can
be set at a value in which the test will have a higher
sensitivity. Conversely, in a clinical situation where
avoiding to misclassify a person without the condition as
having the condition is more important (for instance,
mislabeling a patient as having SZ, since diagnosing SZ in
the absence of the disease can have deleterious reper-
cussions to the patient) it might be preferable to maximize
specificity to the detriment of the sensitivity, and the
cutoff of the diagnostic instrument can be set at a value in
which the test will have a higher specificity19. In the for-
mer scenario, our predictions were also a “success” in
preserving at least moderate or high specificity, meaning
that the test is also a “success” in keeping the mis-
classification of persons without the condition of interest
as persons with the condition relatively low (specificity
moderate or high, with low FPR) only in the multi-domain
model. In the later scenario, our predictions were also a
“success” in preserving at least moderate or high sensi-
tivity, meaning that the test is also a “success” in keeping
the misclassification of persons with the condition of
interest as persons without the condition relatively low
(specificity moderate or high, with low FNR) in both
models only for the SZ vs. control pair, and a “success” for
the BD vs. control and for the BD vs. SZ pairs only in the
multi-domain model. These results mean that the multi-
domain models are in general better and more versatile.
Another point to consider when implementing a diag-

nostic device is the feasibility and practicality of the test.
Selecting the top six features, as we did here, as opposed
to the full set, increases the clinical applicability, and
consequent implementation, of the approach. This means
that our algorithms have increased clinical utility. A sec-
ond advantage is that the laboratory tests used in the final
algorithms are available in routine clinical laboratories at
the moment, meaning that the long process of developing
a test with sufficient laboratory validity can be bypassed.
The algorithms related to the multi-domain require the

Table 4 Positive and negative predictive values of the
multi-domain model in different simulated settings with
different prevalence.

Pair of classifier in Prevalence (%)

Different scenarios 10 20 30 40 50 60 70 80 90

Balanced Se and Sp

BD vs. SZ—PPV 23 40 53 64 72 80 86 91 96

BD vs. SZ—NPV 96 91 85 65 72 63 52 39 22

BD vs. HC—PPV 25 43 57 67 75 82 88 92 93

BD vs. HC—NPV 98 96 93 90 86 80 72 60 60

SZ vs. HC—PPV 32 53 65 75 82 87 91 95 93

SZ vs. HC—NPV 96 95 92 88 84 77 61 56 36

High Se—90% 10 20 30 40 50 60 70 80 90

BD vs. SZ—PPV 17 34 44 54 64 73 81 88 94

BD vs. SZ—NPV 98 92 92 88 84 77 68 56 36

BD vs. HC—PPV 19 34 47 58 68 76 83 89 95

BD vs. HC—NPV 98 96 93 90 85 79 71 59 39

SZ vs. HC—PPV 29 47 61 71 79 84 89 94 97

SZ vs. HC—NPV 99 98 95 92 88 83 76 65 45

High Sp—90% 10 20 30 40 50 60 70 80 90

BD vs. SZ—PPV 39 59 71 79 85 90 93 94 98

BD vs. SZ—NPV 95 90 83 76 68 59 48 35 18

BD vs. HC—PPV 40 60 72 80 86 90 93 96 98

BD vs. HC—NPV 95 90 84 77 69 59 48 35 20

SZ vs. HC—PPV 46 66 77 84 88 92 95 97 99

SZ vs. HC—NPV 97 94 90 85 79 71 62 48 29
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laboratory assessment of only three tests and the appli-
cation of the WAIS, of the CVLT, and of the NART 33.
The employment of laboratory exams and the application
of these cognitive batteries might be time consuming,
however, considering that BD and SZ are serious and
permanent conditions that have life-time consequences, a
battery of test capable of predicting a correct diagnosis,
even if time-demanding and possible expensive, will likely
be cost-effective in the long-term.

Limitations
Some limitations in our study should be noticed.

(1) This is a case-control study; in diagnostic studies with
this design, patients with borderline or mild expressions
of the disease, and conditions mimicking the disease, are
excluded, which can lead to an overestimation of both
sensitivity and specificity in what is called spectrum bias
because usually only persons with a more severe and well-
defined clinical presentation are included, and, therefore,
the spectrum of the participants in the study will not be
fully representative of the persons seen in most clinical
settings where the test will be applied29,30. Here, both the
SZ and the BD groups had a length of illness of more than
10 years. This signals that people in both the BD and SZ
groups probably had a more severe presentation. In
addition, there is evidence that both cognition and blood
biomarkers can change with the course of the disease,
with more accentuated alterations with an increased
length of illness. The fact that the mean length of illness in
our sample is more than 10 years might have been a
confounder, however, we adjusted our analysis for this
variable. (2) The selection of the threshold value for the
test that maximizes both the sensitivity and specificity of
the test may lead to overoptimistic measures of test per-
formance. The performance of this cutoff in an inde-
pendent set of patients may not be the same as in the
original study32. (3) The reference test, in this case clinical
diagnosis according to DSM-IV, can yield different results
over time and in different settings. Field tests of the DSM-
IV show pooled test-retest reliability Kappa’s of 0.46 in SZ
and 0.56 in BD. In this situation, when there is no perfect
gold standard, the diagnostic accuracy of the new test is
likely to be biased15, however, this is unavoidable in the
current psychiatric reality. (4) Since this is a cross-
sectional study, we cannot infer causality. There is evi-
dence that immuno-inflammatory markers and cognition
are altered since the beginning of these disorders, and it is
broadly accepted that inflammation has a causal role in
both BD and SZ. However, from a diagnostic perspective,
this is irrelevant. A given marker has only to discriminate
between two conditions, regardless if it is a cause, con-
sequence, or correlate of the pathophysiological process.
Interestingly, the blood biomarkers found altered in BD
were more related to inflammation, and the ones altered

in SZ were more related to immunology. This is in tan-
dem with Mendelian Randomization reports in which an
increase in CRP levels is causally related to BD and that
a decrease in CRP levels is causally related to SZ33.
(5) There is a difference in some of the demographic
parameters among the three groups regarding sex, age,
length of illness, current hospitalization, and history of
suicide attempt, though the results remained unchanged
when taking these into consideration as covariates. (6)
Ideally, an algorithm created by machine learning tech-
niques for diagnosis should be validated in an indepen-
dent dataset (the testing dataset). We employed only a
training dataset, however, we cross-validated our model
internally.

Future directions for the development of diagnostic tests
in psychiatry
There are some considerations that might help to move

the Precision Psychiatry field regarding diagnosis in psy-
chiatry and that ideally should be implemented whenever
logistically possible. (1) An important consideration in the
context of development of medical tests for disease clas-
sification is the differentiation between diagnoses. Rather
than distinguishing patients with BD or SZ from healthy
controls, a substantial part of clinical practice involves
laborious and error-prone differential diagnostic pro-
cesses to distinguish different patient groups from each
other rather than from healthy controls. To date, few
studies have investigated the potential of biomarkers,
either blood-based, cognitive, or neuroimaging, in diag-
nostic models to differentiate among diagnostic groups,
particularly for the crucial differentiation of BD in mania
from SZ and unipolar from bipolar depression1,3,34.
(2) Diagnostic studies should always follow and report
their results according to the STARD18 and TRIPOD21

guidelines to improve quality and transparency of the
reports. These guidelines are the diagnostic and prog-
nostic guidelines equivalents of the CONSORT guidelines
employed in clinical trials. (3) In most situations, the
analysis and computational algorithm created should be
done employing machine learning techniques, since
usually they outperform traditional inferential statistics.
(4) The inclusion of clinical variables into a diagnostic
algorithm might improve their discriminatory perfor-
mance. Also, including patients with a broader variety of
clinical presentations, including participantes with a
recent onset of the disorder, is desirable. (5) In diagnostic
studies in psychiatry, the gold standard against to which
any new possible test is compared is a clinical psychiatric
diagnosis following DSM or ICD criteria. However, clin-
ical phenotype diagnosis of psychiatric disorders lacks
validity and robust test–retest reliability, by the simple
reason that the DSM and ICD do not have a valid neu-
robiological basis. Thus, there is a circularity problem,
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since a new potential test is compared to an imperfect gold
standard. One possible solution to this problem would be
to perform an agnostic machine learning technique, such
as clustering, to identify biologically informed subtypes of
psychiatric disorders, and then develop and test the new
diagnostic algorithm against these clusters. (6) Most
diagnostic studies published so far report a PPV and a NPV
calculated according to the number of cases and number
of controls included. Yet, this is usually inappropriate,
particularly in studies employing convenience samples,
because the prevalence of cases in the study is artificial and
almost never reflects the real, clinical prevalence. The PPV
and the NPV are highly influenced by the prevalence, and
its calculations based on an artificial prevalence will not be
informative and are almost always misleading. This is a
difficult problem, however, because the prevalence of a
condition varies in different clinical settings. To account
for this, in this study, we chose not to calculate these values
based on the artificial prevalence of patients in our sample,
but to calculate the PPV and the NPV in several hypo-
thetical different clinical settings with varying prevalence.
We consider this more appropriate and suggest future
studies to do the same. (7) When developing new diag-
nostic algorithms, it would be desirable to include in the
training dataset as many relevant markers as possible,
including neuroimaging. As such, searching for possible
new blood biomarkers employing “omics” techniques, such
as proteomics and metabolomics, which can facilitate the
discovery of several biomarkers simultaneously in a com-
pletely agnostic fashion, is desirable1.

Conclusions
In conclusion, our results show, we believe for the first

time, that the diagnosis of BD and of SZ, and that the
differential diagnosis of BD and SZ, can be predicted with
possible clinical utility by a computational machine
learning algorithm employing blood and cognitive bio-
markers, and that their integration in a multi-domain
considering different units of analysis generally outper-
forms algorithms based in only one domain. Independent
studies are needed to validate such findings, particularly
studies with longitudinal and consecutively collected
samples, and test whether these predictive models might
be further enriched by additional clinical, neurobiological,
and neuroimaging information.
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