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Antioxidation is very important in medicine and food. The current evaluation technologies

often have many shortcomings. In this work, an improved electrochemical sensing

platform for the evaluation of antioxidant activity has been proposed. A hydrogel was

prepared based on graphene oxide, zinc ions, and chitosan. Zinc ions play the role of

crosslinking agents in hydrogels. The structure of chitosan can be destroyed by injecting

hydrogen peroxide into the hydrogel, and the free zinc ions can diffuse to the surface of

the electrode to participate in the electrochemical reaction. This electrochemical sensor

can evaluate the antioxidant activity by comparing the current difference of zinc reduction

before and after adding the antioxidant. With the help of graphene oxide, this hydrogel

can greatly enhance the sensing effect. We conducted tests on 10 real samples. This

proposed electrochemical platform has been successfully applied for evaluating the

antioxidant activity of Scutellaria baicalensis, and the results were compared to those

obtained from the 2,2-diphenyl-1-picrylhydrazyl-based traditional analysis technique.

Keywords: antioxidant activity, Scutellaria baicalensis, electrochemical analysis, hydrogel, graphene oxide

INTRODUCTION

Antioxidants are substances that effectively inhibit the oxidation of free radicals when present in
low concentrations. They can capture excess free radicals, neutralize them, and reduce the damage
caused by oxidative stress. Antioxidants can effectively clean up excess free radicals in the body and
prevent various diseases (Apak et al., 2018; Moteshakeri et al., 2018; Aghdam et al., 2019; Karimi-
Maleh et al., 2021a). Antioxidants can be divided into exogenous antioxidants and endogenous
antioxidants. Among them, exogenous antioxidants are the antioxidants that are taken into the
human body through food, such as flavonoids, vitamins, hormones, phenolic acids, and esters
(Brainina et al., 2019; Karimi-Maleh et al., 2019; Masek et al., 2019; Kurtulbaş et al., 2020).

Many studies have proved that Chinese herbal medicine has antioxidant active ingredients
that can clean up and reduce the damage of the free radicals in the organism (Han et al., 2017;
Jin et al., 2018; Malekmohammad et al., 2019). At the same time, Chinese herbal medicine
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can also effectively enhance immunity. According to the main
antioxidant components present, the antioxidants in Chinese
herbal medicine can be divided into phenylhexoside, ginsenoside,
flavonoids, alkaloids, anthraquinone, and polysaccharides
(Karimi-Maleh et al., 2021b). However, evaluating the
antioxidant activity of Chinese herbal medicine is still a
difficult problem.

So far, the main methods used to evaluate antioxidant
activity include the hydrogen atom transfer method, the single-
electron transfer method, the chromatographic method, and the
electrochemical method (Shabani et al., 2020; Ye et al., 2020;
Carp et al., 2021). These methods all have some disadvantages.
For example, the hydrogen atom transfer method is when the
antioxidants transfer hydrogen atoms to free radicals, making
them inactive (Xu et al., 2020; Zhang et al., 2020; Zhou et al.,
2020). The advantage of this method is that it can be used
to determine water-soluble and oil-soluble substances, but the
disadvantage is that the light probe is sensitive and the method
is time-consuming (Boudier et al., 2012). The reaction rate of
the single-electron transfer method is usually very low, and it
takes a long time to complete the detection. Chromatography
allows quantification of the antioxidant capacity of OH, H2O2,
and peroxynitrite. However, this method is not easily adaptable
for high-throughput analysis requiring quality control, because it
requires multiple injections to measure the ethylene production
(Shui and Leong, 2004; Cimpoiu, 2006).

On the other hand, electrochemical methods have attracted
a lot of attention because of their rapidity and efficiency
(Kilmartin, 2001; Blasco et al., 2007; Teixeira et al., 2013; Apak
et al., 2016). The non-radical electrochemical methods include
cyclic voltammetry, enzyme voltammetry, and potentiometric
analysis (Ghanei-Motlagh et al., 2019; Ghanei-Motlagh and
Baghayeri, 2020; Naderi Asrami et al., 2020; Karimi-Maleh
et al., 2021c; Nodehi et al., 2021). Electrode poisoning is the
reduction of efficiency on the electrode surface due to the

FIGURE 1 | (A) FTIR spectra and (B) XRD patterns of GO, chitosan, and C/GO/Zn.

deposition of reactants (Karimi-Maleh et al., 2020). Recently,
an electrochemical method based on hydrogel has been used
for evaluating the antioxidant activity (Fu et al., 2018a,b). This
method uses the signal from the metal ions in the hydrogel
linkage, which could provide sensitive determination of the
antioxidant activity in the whole electrolyte system. In this work,
we further developed an advanced hydrogel using chitosan,
graphene oxide (GO), and zinc ions. The presence of GO in
the hydrogel system accelerates the electron transfer rate of the
metal ions during the sensing, which improves the performance
of the platform. Scutellaria baicalensis Georgi has been used as
a real example for evaluating the practical application of the
proposed method.

MATERIALS AND METHODS

All materials used in this work were analytical grade. Zinc
acetate, acetic acid, ascorbic acid, ascorbic acid, 2,2-diphenyl-
1-picrylhydrazyl (DPPH), and gallic acid were purchased
from Aladdin Reagent Inc (Chuhuazhi Rd, Shanghai, China).
Chitosan (50,000–190,000 Da) was purchased from Sigma-
Aldrich (St. Louis, MO, United States). Graphite powder was
purchased from Linke ChemTech Co. Ltd. (College Street,
Kolkata, India). The morphology of the hydrogel was observed
using a field emission scanning electron microscope (FESEM,
Apreo, FEI). The x-ray diffraction (XRD) patterns of the
sample were collected using an X-ray diffractometer (Broker
Philips PW1730). Thermal gravimetric analysis (TGA) was
carried out using a TGA instrument (BÄHR-Thermoanalyse
GmbH, Altendorfstraße 12 D-32609, Hüllhorst). The Fourier-
transform infrared spectroscopy (FTIR) spectra of the sample
were characterized using an FTIR spectrophotometer (Bruker
vector FTIR).

Preparation of the hydrogel: GO was prepared using a typical
Hummers’ method (Chen et al., 2013). The prepared GO was
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FIGURE 2 | (A) TGA curves of GO, chitosan, and C/GO/Zn. (B) SEM image of C/GO/Zn.

dispersed into water to form a 0.5 mg/ml dispersion for further
use. For the synthesis of the hydrogel, a certain amount of GO
dispersion was added into 10ml of 1 wt% chitosan solution
(in 1% acetic acid) under stirring. Then, 0.1ml of zinc acetate
solution was added as well. After half an hour of stirring,
NaOH (0.1M) was added drop-by-drop until the initiation of the
gelation process. The formed hydrogel was denoted as C/GO/Zn.
The hydrogel without GO was prepared using a similar process
without the addition of GO dispersion. This product was denoted
as C/Zn.

Preparation of Scutellaria baicalensis extract: A 5 g sample of
Scutellaria baicalensis powder was weighed and 70% ethanol was
added in the mass ratio of 1:30 (powder:solvent). The ultrasonic-
assisted extraction method was used for extraction three times,
20min each time. After filtration, the supernatant was taken as
the extract.

Antioxidant activity test: the antioxidant activity test was
carried out using two methods. The first one is the DPPH
measurement. Typically, 5mg DPPH was dissolved in 125ml of
C2H5OH. Then, 0.8ml of DPPH solution was mixed with 0.2ml
of the Scutellaria baicalensis extract or different concentrations of
tocopheryl, and the reaction was kept away from light for 15min
at room temperature. Then, the UV-Vis spectrophotometer
was used to determine the spectrophotometry value of the
solution, which was determined to be at 514 nm. The second
method is the hydrogel-based electrochemical method. Typically,
after the addition of the Scutellaria baicalensis extract or
different concentrations of tocopheryl, a certain amount of
H2O2 solution was injected. Sonication was conducted for 30 s
to accelerate the diffusion. Then, a glassy carbon electrode
(GCE), Ag/AgCl (3M), and a Pt wire were inserted into
the hydrogel. Either cyclic voltammetry (CV) or differential
pulse voltammetry (DPV) was used for measuring the redox
of the Zn ions for evaluating the antioxidant activity of
the samples.

FIGURE 3 | Current value of C/Zn and C/GO/Zn before and after the injection

of 0.1ml H2O2 (10%) after 10min.

RESULTS AND DISCUSSION

Figure 1A shows the FTIR spectra of GO, chitosan, and
C/GO/Zn. As shown in the figure, the spectrum of GO shows the
peaks located at 1,042, 1,626, 1,725, and 3,397 cm−1, which can be
assigned to the stretching vibrations of the C-O, C=C, C=O, and
O-H bonds (Strankowski et al., 2016), respectively. The presence
of the peaks at 1,042 and 3,397 cm−1 indicate the successful
formation of GO. The spectrum of chitosan shows a series of
peaks between 1,750 and 600 cm−1, indicating the stretching
of the C-H, C=O, C=C bonds (Manoratne et al., 2017), while
the peaks between 3,000 and 3,500 cm−1 can be ascribed to the
stretching of the OH group (Lawrie et al., 2007). In addition,
the spectrum of C/GO/Zn shows the combination of both the
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FIGURE 4 | Effect of (A) concentration of Zn ions, (B) amount of GO dispersion, and (C) depolymerization time on the current difference recoded from CV.

FIGURE 5 | Current value of C/GO/Zn after the injection of 0.1ml of H2O2

(10%) and different concentrations of ascorbic acid.

materials, indicating the successful formation of the composite
in the hydrogel.

Figure 1B shows the XRD pattern of GO, chitosan, and
C/GO/Zn. The pattern of GO shows a typical peak at around 11◦

due to the plane (200) of GO (Stobinski et al., 2014). The chitosan
shows a series of peaks between 10◦ and 30◦ due to the polymeric
networks (Tang et al., 2003). The C/GO/Zn shows a very similar
pattern compared with that of the chitosan. However, we can still
observe the appearance of the peak corresponding to the plane
(200) of GO.

Figure 2A shows the TGA profiles of GO, chitosan, and
C/GO/Zn. It can be seen that the GO shows a poor thermal
property, which causes weight loss at <100◦C. This weight loss
can be ascribed to the evaporation of water. Then, the GO
shows a fast decline loss between 150 and 200◦C, indicating the
reduction of oxygen-containing groups of the sheets plane (Li
et al., 2012). The curve of the chitosan shows that the mass loss

TABLE 1 | The antioxidant capacity of 10 samples of Scutellaria baicalensis

detected using the DPPH method and the proposed electrochemical method.

Sample No. DPPH (mgTrolox/mg) Electrochemical method (µA)

1 46.21 ± 1.07 40.1

2 37.44 ± 0.78 29.8

3 36.51 ± 2.21 35.2

4 42.01 ± 1.04 33.5

5 44.28 ± 1.22 31.6

6 36.89 ± 1.50 24.7

7 50.36 ± 1.42 22.2

8 31.04 ± 0.94 42.1

9 39.98 ± 0.71 37.5

10 41.20 ± 1.03 36.9

begins at 230◦C and continues until 400◦C. It can be due to the
depolymerization of chitosan and the degradation of glycosidic
units. The further decline of the weight above 400◦C can be
ascribed to the breakdown of the structure of chitosan (Corazzari
et al., 2015). The curve of C/GO/Zn shows that the main weight
loss starts at above 205◦C. The decline of the thermal stability
of the hydrogel can be ascribed to the formation of a network
between the two materials. The poor stability of the GO lowers
the thermal stability of the hydrogel.

Figure 2B shows the Scanning electron microscopic (SEM)
image of the C/GO/Zn hydrogel. It can be seen that the hydrogel
shows a very porous structure. This structure can be ascribed
to the successful formation of cross-links between zinc ions and
chitosan. In addition, the presence of GO in the hydrogel network
can be clearly identified.

Since chitosan needs to be dissolved in an acetic acid solution,
an acetic acid buffer solution was selected for the preparation of
the sensor platform. In the C/GO/Zn hydrogel, zinc ions are used
as crosslinking agents to connect chitosan and GO. Therefore,
if electrochemical scanning is carried out in the hydrogel, the
Zn ion will not be able to move freely from the hydrogel to the
electrode surface, hence, the electrochemical response will be low.
After the injection of hydrogen peroxide, the free zinc ions in the
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hydrogels becomemore diverse due to the slow destruction of the
structure of chitosan by the hydrogen peroxide. These free zinc
ions can rapidly diffuse to the electrode surface to participate in
the redox reaction. We use −0.6V as the reduction potential of
the zinc ions and reflect the content of free zinc ions in hydrogels
according to the current value. At the same time, by comparing
the current values before and after the injection of hydrogen
peroxide, we can evaluate the damage effect of free radicals on
chitosan. It can be seen from Figure 3 that without GO, a certain
amount of hydrogen peroxide produces a current difference of
72 µA. However, with the participation of GO, the same amount
of hydrogen peroxide produces a current difference of 109 µA.
There are two reasons for this increase in the current difference.
First, GO helps the electron transfer of the zinc ions. The second
reason is that GO affects the stability of hydrogels, so that more
zinc ions will be released in the C/GO/Zn hydrogel under the
injection of the same amount of hydrogen peroxide.

Zinc ion addition is a very important factor. If the amount of
zinc added is not enough, the hydrogel will not be formed. If there
are too many zinc ions, the free zinc ions in the hydrogel will
affect the accuracy of the detection. Figure 4A shows the effect
of different zinc ion concentrations on hydrogels. It can be seen
from the figure that zinc ions increase the corresponding current
from 2 to 10mM. Above 10mM, the difference in the value of
current begins to decrease. Therefore, we chose 10mM zinc ions
for the preparation of hydrogels.

The addition of GO is also a very important factor. GO in
fewer amounts will not be able to enhance the detected signal.
By contrast, too much GO will hinder the formation of the
hydrogels. As can be seen from Figure 4B, the current intensity
increases from 1 to 6 µl and reaches the saturation point.
Increasing the amount of GO will only have a small impact. If
the amount of GO is more than 11 µl, the C/GO/Zn hydrogel
will not be formed. Therefore, 6 µl of GO has been selected
for preparation.

The waiting time for the hydrogen peroxide to depolymerize
is also important. Sufficient time for depolymerization time
can make enough zinc ions participate in the electrochemical
reduction. As shown in Table 1, the reduction current gradually
increases from 1 to 10min and remains stable. Although
increasing the depolymerization world can further increase the
current, these tests have large errors. Therefore, we chose 10min
as the depolymerization time.

Ascorbic acid is used as a detection molecule to measure
the antioxidant activity evaluation performance of the
electrochemical platform. After 5min of hydrogen peroxide
injection, we added different concentrations of ascorbic acid,
and then tested it at 10min. Because ascorbic acid prevents
the free radicals from attacking the chitosan molecules further,
the reduction current of zinc ions will be reduced. Compared
with the current value without ascorbic acid and with ascorbic
acid, it can be used to evaluate the antioxidant activity of
ascorbic acid. Figure 5 shows the current values against the
addition of 0.5 to 500µM of ascorbic acid. It can be seen
that the increase in the concentration of ascorbic acid lowers
the current response. It can be seen that in the range of
2–450µM, the decrease of the current value presents a linear

relationship, so it can be used to evaluate the antioxidant activity
of ascorbic acid.

We tested the antioxidant activity of Scutellaria baicalensis
purchased from 10 different samples. In addition to the
electrochemical detection method proposed in this paper, the
DPPHmethodwas also used for comparison. InDPPHdetection,
Trolox was used as the reference material. The antioxidant
capacities of these 10 samples were calculated by measuring
the absorbance of different concentrations of Trolox and DPPH
at the same time. The results are shown in Table 1. It can be
seen from the table that the antioxidant capacities of the 10
samples of Scutellaria baicalensis are not the same. This may
be because of the fact that they come from different places of
origin or use different processing technologies. Although the
two detection techniques cannot be compared horizontally, it
can be seen from the comparison of the differences between
the samples that the results of the proposed electrochemical
detection method are basically consistent with those of the
DPPH detection method. In both detection techniques, sample
7 shows the strongest antioxidant activity, while sample 8 shows
the weakest.

CONCLUSION

In this work, we proposed an electrochemical platform based
on a hydrogel synthesized using graphene, chitosan, and zinc
ions. This electrochemical platform can be used for evaluating
the antioxidant capacity by monitoring the current change with
the reduction of zinc ions. The addition of GO significantly
enhances the current response, which could be used for high-
sensitivity sensing. The proposed electrochemical platform was
successfully used for evaluating the antioxidant capacity of
Scutellaria baicalensis.
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