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ABSTRACT

Changes in DNA methylation have been found to be
strongly correlated with age, enabling the creation of
‘epigenetic clocks’. Previously, studies on the rela-
tionship between ageing and DNA methylation have
assumed a linear relationship. Here, we show that
several markers show a non-linear behaviour. In par-
ticular, we observe a tendency for saturation with
age, especially in the cerebellum. Further, we show
that the relationships between significant methyla-
tion changes and ageing are different in different tis-
sues. We suggest a straightforward method of as-
sessing all methylation-age relationships and clus-
ter them according to their relative fold change. Our
fold change selection outperforms the most common
epigenetic clocks in predicting age for the cerebel-
lum, but not for Blood or the Frontal Cortex. Further,
we find that the saturation of methylation observed
at older ages for the cerebellum explains why epi-
genetic clocks consistently underestimate the age
there. The findings imply that assuming linear corre-
lations might cause biologically important markers
to be missed.

INTRODUCTION

Ageing is a process experienced by most organisms, but why
ageing occurs and how to define it on a biological level
remains elusive. Epigenetic changes, such as alterations in
DNA methylation, histone modifications and changes in
chromatin states, are related to ageing in animal models (1),
suggesting an epigenetic role in regulating lifespan (2).

In particular, the role of DNA methylation on CpG
sites has been used to relate chronological age (CA) to
DNA methylation age (DNAmAge), deemed the ‘epigenetic
clock’ (3). The original clock, by Steve Horvath, uses a lin-
ear combination of 353 CpG methylation sites selected by
elastic net regression (4) and can predict CA with a corre-

lation of 0.96 and an average error of 3.6 years using 51
healthy tissues. Another model by Hannum (5), using only
blood, uses the same principle to obtain a correlation of 0.96
and an accuracy of 3.9 years.

Non-linear models have been used to improve the DNA-
mAge predictions resulting in higher correlations between
DNAmAge and CA (6,7). These models were built using
preselected methylation markers, using elastic net regres-
sion and analysis of Pearson correlations, thereby favouring
selecting probes based mainly on only linear relationships
between CA and DNA methylation levels.

However, reports of ‘systematic underestimation of the
epigenetic clock and age acceleration in older subjects’ ex-
ists (8). This could be explained if the relationship between
methylation change and CA is non-linear. Although it may
have a sizable linear regime since the non-linear effect is
most prominent in older individuals. The underestimation
is observed in all examined tissues but most apparent in the
cerebellum.

Methylation levels at only a few CpG sites, used in epi-
genetic clocks, can be sufficient for predicting ageing and
accompanied death risk to a certain extent (3,5,9,10). At-
tempts to analyse the real effect on gene expression from
these markers experimentally found hypomethylation being
associated with ageing (11). Longitudinal studies have fur-
ther attempted to validate methylation markers by looking
at marker consistency across measurements and their rela-
tion to ageing and disease (12,13).

The studies mentioned above assume a linear relation-
ship between ageing and important methylation markers by
either correcting for ageing or correlating age with methy-
lation change in a linear combination. Even though a lin-
ear feature combination allows for a non-linear predic-
tion, selecting features using linear methods favours con-
stant, linear relationships. However, there is no biologi-
cal reason that this assumption is valid, i.e. that the most
important relationships between ageing and methylation
are linear. Therefore, we here compare the relationship be-
tween methylation markers and ageing without making as-
sumptions on the relationship between methylation and
ageing.
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MATERIALS AND METHODS

Data preparation

We utilise Illumina Infinium 450k Human DNA methyla-
tion profiles from a set of 656 blood samples from healthy
patients from the ArrayExpress database (E-GEOD-40279,
(5)) and Illumina 27k Human DNA methylation profiles
from 428 frontal cortex and 402 cerebellum samples, both
from healthy patients. Both brain regions contain samples
from both E-GEOD-36194 and E-GEOD-15745 (14) (Fig-
ure 1). The samples span a vast range of ages (19–101 years
for blood and 0–102 years for the frontal cortex and cere-
bellum, Figure 2, and have balanced sex distributions.

In brief, for the blood samples (5), the methylation sta-
tus of all autosomal chromosomes have been measured us-
ing the Illumina Infinium 450k chip. The relative intensity
difference between the methylated and unmethylated probe
values were adjusted with Illumina’s GenomeStudio for in-
ternal controls.

For the E-GEOD-15745 samples, briefly, 150 neurologi-
cally normal Caucasian subjects were used to collect tissue
samples from the cerebellum and frontal cortex in frozen
form. For E-GEOD-36194, frozen tissue samples were ob-
tained from 318 healthy patients from the frontal cortex
and cerebellum.The methylation status was interrogated us-
ing the illumina 27k methylation array and analysed us-
ing Illumina’s GenomeStudio for both of these studies
(14).

Since no normalization of the beta values was performed
(nor in the original studies from which these originate), the
beta values from a study can be used directly without any
potential bias that may arise due to different normaliza-
tion procedures, increasing the robustness of the analysis.
Further quality control was performed by removing probes
with known overlapping SNPs (17 032 out of 473 034 for
blood and 336 out of 27 476 for brain) and cross-reactive
probes (15) (28 219 out of 456 002 for blood, 1009 out of
27 476 for blood) and markers with more than ten missing
beta values (37 514 out of 456 002 from the blood samples
but 0 out of 26 467 from the frontal cortex and cerebellum
samples). We then calculated the mutual information (16)
for the beta-value distribution of each sample by compar-
ing it with the mean beta value distribution. We removed
samples with a mutual information score of less than three
standard deviations away from the mean (eight from blood,
two from frontal cortex and five from cerebellum, see Sup-
plementary Figure S1).

Creation of age group running medians

To investigate not only linear relationships between marker
methylation change and age. We create a running median of
the methylation beta values for each probe. The median is
less sensitive to outliers compared to an average. To avoid
grouping effects, we select 10% of the closest samples by age
for each age with steps of one year from the lowest to the
highest age. For example, the starting age for blood, 19, only
has one sample, why samples up to the age of 45 are included
in the median calculation. By including samples selected by
age distribution, it is ensured that each calculation has equal
sampling.

To avoid edge effects that may arise due to low sample
representations at high and low ages, where the samples
are fewer, only the groups whose midpoints are close to the
ages being represented were used in the analysis (ages 32–
90 years for blood, 8–96 for the frontal cortex and 8–95
for the cerebellum). From these age group medians, which
we call the running medians, the maximum fold change
(FC) for each marker is assessed, by calculating the relative
change between the minimum and maximum methylation
medians.

Statistical analysis of running median age groups

A two-sided t-test was made by comparing the samples used
to calculate the maximum FC observed for each marker.
The markers with a false discovery rate (FDR) below 0.05
(according to the Benjamini–Hochberg procedure (17) in
statsmodels (18)) and having a FC higher than two were se-
lected.

To ensure that the median values are stable, we analysed
the standard deviation for each interval used. We compute
the relative standard deviation by dividing the standard de-
viation with the median in each interval. If the average rel-
ative standard deviation is >0.5, we consider the spread
too large and do not include this methylation marker in the
analysis.

Absolute value and overlap selection

The procedure used for the FC was also used to calculate
the maximum change in beta values for each marker. The
points resulting in the maximum FC are identical to those
resulting in the maximum difference, meaning that the sub-
sequent analysis of FDR and relative standard deviations
apply here as well. All maximum beta value changes were
calculated, and the markers whose maximal change in run-
ning median were at least 0.2 were selected. In addition, the
overlapping markers between the FC and absolute value se-
lections were selected to analyze a joint selection process.

Gradient analysis

The gradients of the running medians were calculated to
analyze the tendency for marker beta values being linearly
related to ageing. The beta values for the gradients were
normalised with the highest beta value for each marker, to
obtain the same relative change for each marker and thus
make them comparable. The gradients were thereafter clus-
tered using k-means clustering (19). To select the number of
clusters, t-SNE embeddings were computed from the gradi-
ents (20). After analysis of the first two components of these
embeddings, the number of clusters was chosen to ensure a
sound separation of the two-dimensional points. The gra-
dients are noisy and were for visualisation purposes, there-
fore, smoothed using a Savitzky-Golay filter (with window
length 21 and polynomial order 2) (21).

Statistical significance for the overlap of two sets of markers

To calculate the probability of the selected markers overlap-
ping with those from the Hannum and Horvath epigenetic
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Figure 1. Flow chart of data preparation for blood, frontal cortex and cerebellum, respectively. After quality control (removing outlier samples, cross-
reactive probes, probes with known overlapping SNPs and markers with missing values), 648 samples are available for blood, 428 for the frontal cortex
and 402 for the cerebellum.

Figure 2. The top row shows the age distribution of all samples and divided by sex for blood (A), frontal cortex (B) and cerebellum (C) respectively. The
ages range from 19–101 for blood and 0–102 for the brain samples. The bottom row displays the inclusion limits for the running median groupings using
the closest 10% of samples for each year displayed as horizontal blue and red lines for blood (A), frontal cortex (B) and cerebellum (C), respectively. The
red lines show the groups used in the analysis, while blue show those that were excluded. The age histogram in grey and the age are grouped marked in
black, blood, frontal cortex and cerebellum, respectively.

clocks, one must first calculate the probability of choosing
the markers from each selection and then consider the prob-
ability that a certain number of these match. This is done
by consulting the Hypergeometric distribution or a normal
approximation of this since the exact hypergeometric prob-
ability is difficult to calculate (due to the large products for

large factorials and the problem with representing these in
computers).

x = number of markers in common between two groups.
n = number of markers in group 1.
D = number of markers in group 2.
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N = total number of markers The normal approximation
is used when:

p ± 2 ·
√

p · q
n

> 0 and n · 10 < N,

where p = D/N and q = 1 – p.
The normal approximation is:

Z = abs
(

x − 0.5 − n · p√
npq

)

Probability = P Z , where Z is a standard normal variation
from N(0,1).

PZ = 1 −
er f f ( Z√

2
+ 1)

2
,

where erff is the error function, see http://nemates.org/MA/
progs/overlap stats.html for code and calculations.

Comparing age predictions from linear, absolute value and
fold change selection

To ensure the presented absolute value and fold change se-
lections result in more informative markers, we build ma-
chine learning models in the form of random forest regres-
sion with scikit-learn (22) using the selected markers. We
compare the accuracy from our models with that of predic-
tions using both the Hannum (5) and Horvath (3) models
for blood and the Horvath model for the cerebellum and
frontal cortex. We use a 5-fold cross-validation (CV) to re-
duce training bias and display the strength of the selected
markers. We perform training on 80% of the data and val-
idate the remaining 20% using the default parameters in
scikit-learn.

Gene Ontology enrichment

To analyze the biological importance of the selected mark-
ers, Gene Ontology (GO) enrichment was performed us-
ing PANTHER, version 14 (23). The enrichment was per-
formed for each cluster in each tissue for the best perform-
ing selection (FC, absolute value or overlap) to analyze po-
tential differences and similarities between markers with
different age relationships.

RESULTS

Marker selection

For the markers that are statistically significant on false dis-
covery rate (FDR) 0.05, there are 120 and 540 out of 432 924
methylation markers for blood, which running medians dis-
play a fold change (FC) higher than two and which have
beta value changes of 0.2 for the FC and absolute value se-
lection respectively. There are 23 overlapping markers iden-
tified between these selections. Further, 514 out of 27 476
markers from the cortex hava FC higher than two, 190 are
identified by the absolute value selection, and 55 of these
markers are overlapping. For the cerebellum, 152 markers
are found by FC, 240 for the absolute value selection, and
55 of these markers are found by both methods.

Blood markers and ageing

For the FC selection, one of the clusters found in blood dis-
plays a negative correlation (cluster 1, 56 markers) and the
other positive (cluster 2, 47 markers) correlation with age
(Figure 3). These clusters show clear separation from each
other and contain only a few outliers. For the positive rela-
tionship in blood, the methylation rate is steady throughout
ageing. The negative relationship in the blood is a more ex-
treme inverse of the positive, steady states before and after
a large drop around age 60 are observed. The beta values
for both clusters are low (0.2–0.1), with outliers of higher
values (Supplementary Figure S2A and B).

Only one cluster is visible for the absolute value selection
and, therefore, also in the overlap selection, Figure 3E. This
cluster has 108 markers in the absolute value selection and
23 in the overlap and negatively correlates with age (Figure
3E and H). This decrease is moderate, and the cluster points
for the absolute value selection are collected, comparable to
that of cluster 2 in the FC selection. The gradients are small
and show a slow decrease by age.

Frontal cortex markers and ageing

For the FC selection in the frontal cortex (Figure 4A–
C), only one central cluster with 514 markers was found.
This cluster only displays significantly positive relationships
with ageing. The gradients for this cluster are very stable
throughout all ages (8–96 years). At age 8, the gradients
are positive, with a median change of about 0.4% of the
maximal observed beta value per year. As ageing proceeds,
the gradients decline towards zero. The number of points
rapidly declines, and the spread increases in this area. The
beta values range from close to 0 to 0.1–0.2 (Supplementary
Figure S2C).

There are three different clusters with 85, 77 and 28 mark-
ers for the absolute value selection (Figure 4D–F). Cluster
2 resembles the FC selection, while cluster 1 instead shows
an initial slow decrease, followed by a rapid decrease in beta
value between ages 50–75. Cluster 3 arises due to a large
spread in the points making up the running median, al-
though there is very little overall change in the running me-
dian throughout all ages. The gradients are noisy, but con-
firm the overall relationships as largely positive or negative
with a diminishing derivative (Figure 4G). The overlap se-
lection only has one cluster (like the FC selection) with 12
markers, showing an increasing relationship with age.

Cerebellum markers and ageing

Two distinct clusters were found for the FC selection in the
cerebellum (Figure 5). Cluster 1 contains 44 markers and
displays a negative correlation with ageing, having increas-
ing gradients to the age of 30, where the gradients flatten
out and remain steady. Most beta values in cluster 1 range
from 0.1 to 0.6 (Supplementary Figure S2D). Cluster 2 has
93 markers and shows an accelerating methylation up to age
30 and flattening out towards older ages (beta values of 0.1–
0.6, Supplementary Figure S2E).

Using absolute value selection, three different clusters
with 130, 38 and 61 markers are identified (Figure 6A–C).

http://nemates.org/MA/progs/overlap_stats.html
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Figure 3. Significant running medians for marker clusters from blood for the FC (A and B) and absolute value (E) selections and the overlap (H) between
these. The black points represent the median value for each sample, and the black lines the running median for each cluster. The beta values have been
normalized with the highest beta value for each marker. (C), (F) and (I) visualize the t-SNE cluster embeddings on two components for the FC, absolute
value and overlap selections, respectively. (D), (G) and (J) Gradients of running medians against age, smoothed medians using a Savitzky-Golay filter (21)
with window length 21 and polynomial order 2 for the FC, absolute value and overlap selections, respectively.
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Figure 4. Significant running medians for marker clusters from the frontal cortex for the FC (A) and absolute value (D–F) selections and the overlap (I)
between these. The black points represent the median value for each sample, and the black lines the running median for each cluster. The beta values have
been normalized with the highest beta value for each marker. (B), (G) and (K) show the visualization of the t-SNE cluster embeddings on two components
for the FC, absolute value and overlap selections, respectively. (D), (G) and (J) Gradients of running medians against age, smoothed medians using a
Savitzky-Golay filter (21) with window length 21 and polynomial order 2 for the FC, absolute value and overlap selections, respectively.
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Figure 5. (A–D) Running medians for significant marker clusters from the cerebellum. The black points represent the median value for each sample, and
the black lines the running median for each cluster. The beta values have been normalized with the highest beta value for each marker. (E) Visualization
of the t-SNE cluster embeddings on two components. (F) Gradients of running medians against age, smoothed medians using a Savitzky-Golay filter (21)
with window length 21 and polynomial order 2.

Clusters 1 and 3 resemble clusters 2 and 1 from the FC se-
lection, respectively. These clusters are also present in the
overlap selection (21 and 28 markers respectively, Figure 6F
and G). These gradients, as a result, follow those of clusters
2 and 1 in the FC selection. Cluster 2 in the absolute value
selection has 38 markers, as in the frontal cortex, this clus-
ter arises due to a large spread in the points making up the
running median, although there is very little overall change
overall.

Comparing marker selections from direct age correlations,
epigenetic clocks and running medians

For the FC selection, out of the 103 significant methylation
markers for blood, 514 for the frontal cortex and 137 for
the cerebellum 99, 510 and 134 markers were significant on
FDR 0.05 when analyzing the Pearson correlation coeffi-
cient between age and marker values.

For the absolute value selection, the corresponding num-
bers are 84 out of 108, 153 out of 190 and 185 out of 229
markers for blood, the frontal cortex and the cerebellum,
respectively. The correlation analysis deemed 170206 (44%),
10235 (39%) and 5744 (22%) unique markers significant on
FDR 0.05 for blood, frontal cortex and cerebellum, respec-
tively. When selecting markers with significant age correla-
tions (FDR < 0.05), one obtains a bimodal distribution of
Pearson correlations (Figure 7). Other distributions are ob-

tained from both the FC and absolute value running me-
dian selections, showing that even poorly correlated mark-
ers can portray significant methylation changes. However,
the frontal cortex selection shows almost only positively
correlating markers for the FC selection.

For the FC selection, of the 103 significant blood mark-
ers, eight overlap with the 71 markers used in the Hannum
epigenetic clock (5), all belonging to cluster 2 (Figure 3).
Of the 514 and 137 significant markers in the frontal cortex
and cerebellum, 7 and 15 overlap with the 353 markers used
in the Horvath epigenetic clock (3), respectively. All seven
in the frontal cortex belong to the only cluster (Figure 4),
while of the 15 in the cerebellum 11 belong to cluster 2 and
4 to cluster 1 (Figure 5). For the absolute value selection,
only 2 out of 108 significant blood markers overlap with the
Hannum markers and belong to cluster 1 (Figure 3). Seven
out of 190 markers overlap with the Horvath markers in the
frontal cortex, and 2 out of 229 in cerebellum (Figures 4 and
6). The overlapping markers have positive or negative coeffi-
cients for the cerebellum and blood, while the frontal cortex
has only positive correlations (Figure 8). The probability of
selecting the significant markers randomly and that the ob-
served overlap with the epigenetic clock markers for the FC
selection would be found is P < 1.870 × 10−19, P < 0.469
and P < 4.987 × 10−10 for blood, frontal cortex and cerebel-
lum respectively (see Materials and Methods). For the abso-
lute value selection, these numbers are P < 0.019, P < 0.014
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Figure 6. Significant running medians for marker clusters from the cerebellum for the absolute value (A–C) selections and the overlap (F, G) selections.
The black points represent the median value for each sample, and the black lines the running median for each cluster. The beta values have been normalized
with the highest beta value for each marker. Furthermore, (E) and (H) show the visualization of the t-SNE cluster embeddings on two components for the
absolute value and overlap selections, respectively. (D) and (H) Gradients of running medians against age, smoothed medians using a Savitzky-Golay filter
(21) with window length 21 and polynomial order 2 for the absolute value and overlap selections, respectively.
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Figure 7. The distribution of the Pearson correlation coefficients from the markers with significant age correlations and those selected from the running
medians. Blood (A, B), frontal cortex (C, D) and cerebellum (E, F), for the FC and absolute value selections respectively.

and P < 0.409 for blood, frontal cortex and cerebellum re-
spectively. The only significant overlap is thus from the FC
selection for blood and cerebellum. None of the overlaps
with the absolute value selection are significant, suggesting
that the FC selection has a higher correspondence with the
epigenetic clock markers than the absolute value selection.

Comparing the prediction accuracy between epigenetic clocks
and running median selections

The results from fitting a random forest regressor to the run-
ning median selections display a decrease in error only for
the cerebellum (Table 1, Figure 9). The errors are consis-
tently lower for the FC selection across tissues, and higher
for the overlap selection. Compared to the Horvath clock, a
reduction in error is obtained using the FC selection for the
cerebellum (6.66 versus 9.48 years), but a slightly higher er-
ror for the frontal cortex (6.79 versus 5.35 years). For blood,
the error is 5.52 years for the Hannum clock and 4.85 for the
Horvath clock versus 4.99 years for the running median se-
lection, although the Hannum clock has been trained on the
same dataset (5). The Pearson correlation coefficients are
lower for the random forest models in blood and the frontal
cortex but higher in cerebellum. The previously reported
underpredictions for the cerebellum (8) manifest here as
well.

Genes regulated by significant methylation markers and GO
enrichment

Since several markers may regulate the same gene, the mark-
ers were grouped by gene for the best performing FC selec-
tion and further analysed. The relationship of all genes with
at least two significant methylation markers was assessed to
investigate potential differences in methylation change for
these markers. There are 88, 438 and 127 unique genes for
blood, frontal cortex and cerebellum, respectively. In blood,
3 out of 88 genes are regulated by two significant markers,
32 out of 438 for the frontal cortex and 5 out of 140 for the
cerebellum. The 3, 32 and 5 genes are regulated by 7, 65 and
10 markers, respectively. All of these show positive relation-
ships with age (Supplementary Figures S3–S5), belonging
to clusters 2, 1 and 2 for blood, frontal cortex and cerebel-
lum, respectively.

GO enrichment of the unique genes suggests what pro-
cesses the markers regulate (Supplementary Figures S6 and
S7). The two marker clusters for blood are mostly related
to metabolic and cellular processes and biological regula-
tion with similar frequencies. This is valid also for the Han-
num selection, although cluster 1 and the Hannum selec-
tion show relationships with more divergent processes than
cluster 2. The frontal cortex enrichment (only one clus-
ter) shows various processes, substantially overlapping with
the Horvath marker GO terms. The two different cerebel-
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Figure 8. The coefficients for the linear marker combination in the Hannum (71 markers) and Horvath (353 markers) clocks and the overlapping markers
selected from the running medians in blood (A, B), frontal cortex (C, D) and cerebellum (E, F) for the FC and absolute value selections, respectively.

Table 1. Average errors and Pearson correlations for the Hannum, Horvath and random forest models fitted to each tissue type and for the FC, absolute
value and overlap selections, respectively

Model Error PCC

Blood Hannum 5.52 0.95
Blood Horvath 4.85 0.91
Blood FC 4.99 ± 0.23 0.91 ± 0.01
Blood absolute value 5.06 ± 0.49 0.90 ± 0.01
Blood overlap 6.55 ± 0.22 0.83 ± 0.01
Frontal cortex Horvath 5.35 0.95
Frontal cortex FC 6.79 ± 0.61 0.92 ± 0.02
Frontal cortex absolute value 7.04 ± 1.06 0.92 ± 0.03
Frontal cortex overlap 7.68 ± 0.89 0.91 ± 0.02
Cerebellum Horvath 9.48 0.93
Cerebellum FC 6.66 ± 0.76 0.94 ± 0.01
Cerebellum absolute value 6.72 ± 0.57 0.94 ± 0.01
Cerebellum overlap 8.14 ± 0.73 0.91 ± 0.02

lum clusters show a wide variety of GO terms, although
metabolic processes, cellular processes and localization are
important in all. Both clusters overlap with the Horvath
terms. All clusters show essential differences, supporting the
validity of their division.

DISCUSSION

An issue with investigating marker correlation with age is
not evaluating the fold change (FC), only the correlation
itself. A very high number of markers are significant on

FDR 0.05 from the Pearson correlation analysis. However,
a marker that changes only 1% in total but does so with
0.01% a year from year 0-100 will have a Pearson correla-
tion coefficient of 1.0 with age. When evaluating the FC,
larger relative methylome changes are assessed, capturing
changes that likely have a higher impact on gene expression.
An issue with both FC and correlation selection is that the
absolute value change might be minimal. To address this
issue, we analyzed the outcome of both absolute value se-
lection and the overlap between absolute value and FC se-
lections, finding that FC selections are the most robust and
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Figure 9. Results from fitting a random forest regressor to the blood (A), frontal cortex (B) and cerebellum (C) markers and comparing with the Hannum
(blood) and Horvath (blood, frontal cortex and cerebellum) results for the FC, absolute value and overlap selections respectively. One can see that the
results are substantially improved using the running median selection method for the cerebellum but not for the frontal cortex or blood.



12 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

produce the lowest errors when applied to biological age
prediction.

The number of individuals for each age is not uniform,
which is usually the case in clinical studies (see Figure 2). We
solve this problem by selecting 10% of the closest samples
in age for each year, thus creating equal sample representa-
tions for each age. This selection may, on the other hand,
result in the methylation values from under-represented age
groups not being considered appropriately. The alterna-
tive is to represent each age with very few samples, which
we find worse. Further, we ensure all significant changes
throughout ageing are assessed by analysing the running
median across all ages. A t-test of the significance between
the samples is used to construct the median points related
to the FC, and absolute value selections ensure statistical
soundness.

To investigate all possible significant relationships be-
tween ageing and methylation change, k-means clustering
was performed on the normalized gradients for all selec-
tions. The number of clusters was evaluated through t-
SNE, ensuring sufficient separation between gradient clus-
ters. No cluster in any tissue displays methylation-age rela-
tionships equal to another. However, there are similarities,
e.g. cluster two in blood, one in frontal cortex and three in
cerebellum are all very similar for the FC selection. This
suggests age-related methylation is highly tissue-specific,
as suggested from studies of tissue-specific age predictors
(7).

In the cerebellum, all methylation-age relationships have
a tendency for saturation as ageing proceeds, explaining
why there is a consistent underprediction of the age in older
samples for the epigenetic clocks that use linear combi-
nations of methylation change (8). This tendency should
not be due to the underrepresentation of older samples,
as the equal age representations and control for edge ef-
fects (see Materials and Methods) prevent such issues. How-
ever, we did not perform covariate adjustments for e.g. BMI
due to lack of data, meaning that some inter-individual
variability may not be considered. Regardless, no relation-
ship is strictly linear which is why such adjustments may
not be meaningful, although the one found in the frontal
cortex is quite close. However, analysis of the gradients
provides a clearer picture of how the medians change,
which is difficult to capture when analyzing only the direct
relationships.

All tissues contain clusters that have linear regimes, al-
though the cerebellum clusters display largely non-linear
relationships with ageing (Figure 5). The linear regimes
explain why the epigenetic clocks and age adjustments in
previous studies (3,5,9–13) work, although predominantly
markers with non-significant changes are included.

Blood is the tissue with the most protrusive methylation
relationships. Why the methylation levels change rapidly at
age 60 is unclear. An explanation may be a downregulation
of immune responses at older ages (24), as DNA from blood
is mostly from leukocytes (25), although this requires fur-
ther studies to draw any conclusions. The running medians
constituting the blood clusters have substantial spread as
well. This creates noise for the total cluster medians (black
lines in Figures 3–5), impacting the observed relationships.

The Savitzky-Golay filter applied to the gradients should be
able to counteract such noise, potentially capturing signifi-
cant signals.

The frontal cortex displays only hypermethylation for
the FC selection, while blood and cerebellum display both
hypo- and hypermethylation. Although, in the absolute
value selection, the frontal cortex cluster one exhibits hy-
pomethylation. Since hypomethylation is related to in-
creased gene expression (26,27), the continuous hyperme-
thylation observed, in the frontal cortex by the FC selec-
tion, suggests gene expression is continuously downregu-
lated. This corresponds well with previous findings in the
prefrontal cortex, where DNA methylation changes have
been found to be fast during the prenatal period, and later
slow down and do so continuously with ageing (28).

The beta values were normalised to enable comparison
of relative change in methylation and thus obtain compara-
ble gradients. In Supplementary Figure S2, unnormalised
relationships are displayed for the FC selection. The beta
values of the selected markers for blood and the frontal cor-
tex are very similar for the majority of the running medians
but low, only amounting to maximal 20% methylation. The
beta values for the selected markers in the cerebellum, on
the other hand, are both larger and show greater variabil-
ity, most ranging from 0.1 to 0.5. This suggests that the gene
expression in the cerebellum may be more drastically altered
during ageing, compared with the smaller changes observed
in the other tissues.

When comparing the significant markers for the FC se-
lection with those of the Hannum (only blood) (5) and Hor-
vath (multi-tissue) (3) epigenetic clocks, there is significant
overlap only from the FC selection for blood and cerebel-
lum. Despite the significant overlap, few markers overlap.
This suggests that most of the significant changes are missed
by linear analysis. The argument for selecting markers that
correlate highly with age is thus still without support, some-
thing highlighted in the non-linear findings here. This holds
for the absolute value selection as well since the markers do
not display significant overlaps.

The FC selection random forest prediction errors are
only better in the cerebellum compared to the Horvath
and Hannum clocks. This is likely due to the largely non-
linear relationships observed. However, the Horvath clock
was created using fewer markers (21 639 versus 26 467). It
should be noted that the markers selected here were also
not chosen for the objective of predicting age, which is the
case in the epigenetic clocks. This suggests that selecting
markers based on fold change enables capturing biologi-
cal age relationships, while linear selection does not man-
age when the age relationships happen to be essentially
non-linear.

The GO enrichment for the FC selected markers shows
sound annotations for all tissues and epigenetic clock com-
parisons. Interestingly, different clusters display GO terms
related to different biological processes within the same tis-
sue. The overlap with the epigenetic clocks is largest for the
clusters with more linear relationships. Without evaluating
the effect size of the methylation change, it is difficult to
know if a marker will have much impact on gene expression
or development.
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CONCLUSIONS

Here, we provide a new way to investigate all possible
methylation-age relationships and group them according to
their relative change rates. Across all tissues, the fold change
(FC) selection consistently outperforms the absolute value
and overlap selections for biological age prediction. This
suggests that the FC selection is a more robust selection
method of these three. The relationship between significant
DNA methylation changes and ageing varies between tis-
sues and life periods. The variability of the relationship be-
tween methylation and age, especially the saturation ob-
served at older ages, might provide important insights. The
regions of semi-linearity explain why epigenetic clocks and
age adjustments that assume linear relationships produce
successful results. The saturation explains why ageing is un-
derpredicted in older samples, especially in the cerebellum.
When analyzing the relationship between methylation lev-
els and age, one has to evaluate not only linear relationships
between DNA methylation and age but also non-linear re-
lationships. We show that the FC selection outperforms the
epigenetic clocks in predicting age in the cerebellum. This
is true even though the objective of age prediction was not
sought after, and no parameter optimization was performed
for the models built with these markers. In blood and the
frontal cortex the most common epigenetic clocks are more
successful however.
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