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Effectiveness of automated alerting system compared to usual
care for the management of sepsis
Zhongheng Zhang 1,12✉, Lin Chen2,12, Ping Xu3,4,5,12, Qing Wang6, Jianjun Zhang3, Kun Chen2, Casey M. Clements7,
Leo Anthony Celi8,9,10, Vitaly Herasevich 11 and Yucai Hong1

There is a large body of evidence showing that delayed initiation of sepsis bundle is associated with adverse clinical outcomes in
patients with sepsis. However, it is controversial whether electronic automated alerts can help improve clinical outcomes of sepsis.
Electronic databases are searched from inception to December 2021 for comparative effectiveness studies comparing automated
alerts versus usual care for the management of sepsis. A total of 36 studies are eligible for analysis, including 6 randomized
controlled trials and 30 non-randomized studies. There is significant heterogeneity in these studies concerning the study setting,
design, and alerting methods. The Bayesian meta-analysis by using pooled effects of non-randomized studies as priors shows a
beneficial effect of the alerting system (relative risk [RR]: 0.71; 95% credible interval: 0.62 to 0.81) in reducing mortality. The
automated alerting system shows less beneficial effects in the intensive care unit (RR: 0.90; 95% CI: 0.73–1.11) than that in the
emergency department (RR: 0.68; 95% CI: 0.51–0.90) and ward (RR: 0.71; 95% CI: 0.61–0.82). Furthermore, machine learning-based
prediction methods can reduce mortality by a larger magnitude (RR: 0.56; 95% CI: 0.39–0.80) than rule-based methods (RR: 0.73;
95% CI: 0.63–0.85). The study shows a statistically significant beneficial effect of using the automated alerting system in the
management of sepsis. Interestingly, machine learning monitoring systems coupled with better early interventions show promise,
especially for patients outside of the intensive care unit.
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INTRODUCTION
Sepsis is a leading cause of mortality and morbidity in hospitalized
patients1,2. A large body of published evidence shows the link
between delayed responses including lactate measurement,
antibiotic initiation, and fluid administration3–5 and adverse
clinical outcomes6. Thus, the sepsis surviving campaign guideline
recommends the prompt initiation of sepsis bundles for the
treatment of sepsis in a variety of clinical settings7. With the rapid
development of electronic health care records, the application of
automated alerting systems to provide early warning for sepsis
detection has triggered tremendous interest in the literature.
There have been several prediction algorithms developed
including rule-based and machine learning (ML) based methods.
The former typically include those with standard SIRS or qSOFA
criteria involving routine variables such as vital signs and
laboratory findings. The latter utilized a variety of ML methods
to alert sepsis including neural networks, random forests, and
support vector machines. These methods are found to have high
accuracy in predicting sepsis8–11. However, good statistical
performance of a prediction model does not necessarily mean
clinical usefulness of the model. It is more important for an
automated alerting system to be able to improve patient-
important outcomes. Thus, comparative effectiveness studies are
mandatory to provide high-quality evidence for clinical decision-
making.

There have been many studies exploring the clinical effective-
ness of an automated alerting system for the management of
sepsis12,13. Many investigators compared clinical outcomes
between pre-and post-implementation of an automated sys-
tem14,15. Systematic reviews evaluating the usefulness of auto-
mated alerting systems in sepsis have been reported in the
literature. However, most of these studies evaluated reporting the
diagnostic accuracy of the alerting system in predicting
sepsis12,16–18, and a few evaluated the effectiveness in terms of
clinically relevant outcomes, such as mortality and length of stay
(LOS). For instance, Hwang and colleagues analyzed studies
published between 2009 and 2018 and found that algorithm-
based methods had high accuracy in predicting sepsis. To our
knowledge, only one such analysis reported improved mortality
outcome19. A systematic review conducted by the Cochrane
collaboration included three RCTs and concluded that it was
unclear what effect automated systems for monitoring sepsis have
on clinical outcomes due to the low quality of included studies13.
The number of comparative effectiveness studies has been
steadily increasing in recent years with several new RCTs being
reported20,21. Thus, an updated systematic review is needed to
renew evidence for clinical practice. Furthermore, the results of
these studies are conflicting due to differences in the prediction
algorithm, clinical setting, and study designs. To address the
heterogeneity of these studies and to appraise the evidence for
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clinical practice, we performed a systematic review to critically
evaluate the quality of this evidence.

RESULTS
Study selection
The initial search identified 2950 articles from the databases, and
921 were screened after the removal of duplicated items. A total
of 823 citations were excluded by reviewing the title and abstract
because they were pediatric patients, non-relevant interventions,
reviews, and other non-original articles. The remaining 98 citations
were further screened for the full text, and finally, we included 36
articles for quantitative analyses (Fig. 1). The number of
publications were increasing until the year 2017 and then
declined (Supplementary Fig. 1).

Study characteristics
A total of 36 studies were included in the study, spanning from the
year 2010 to 2021 (Table 1). There were 6 RCTs20–25 and 30
NRS14,26–54. Four studies explored ML-based prediction for sepsis/
severe sepsis alert22,26,27,30. Six studies were conducted in ICU
setting14,22,23,25,44,51. The sample sizes of RCTs ranged from 142 to
1123. Burdick’s study included 17,758 subjects because this study
involved nine medical centers and all at-risk patients were
analyzed for clinical outcomes27.

Risk of bias in studies
The risk of bias was assessed with different tools for RCTs (Fig. 2)
and NRS (Figs. 3 and 4). While some studies did not report all the
necessary information to grade the methodology, the RCTs were
found to have less risk of bias. NRS studies had more risk of bias in
the selection of participants and outcome measurements.

Results of syntheses
The mortality outcome reported in individual studies were
inconsistent across studies (Fig. 5). While some studies reported
beneficial effects22,26,39, others reported harmful effects of the
automated alerting system23,38,45. By pooling risk ratios across
RCTs, there is a trend toward improved mortality in the
experimental group, but this does not reach statistical significance
(RR: 0.85; 95% CI: 0.61–1.17). However, there was a statistically
significant beneficial effect in the NRS (RR: 0.69; 95% CI: 0.59–0.80).
While there was no statistically significant heterogeneity in RCTs
(I2= 33%, p= 0.19), there was significant heterogeneity across
NRS (I2= 81%, p < 0.01). In subgroup analysis, it was interesting to
note that the automated alerting system had less beneficial effects
in the ICU (RR: 0.90; 95% CI: 0.73–1.11) than that in ED (RR: 0.68;
95% CI: 0.51–0.90) and ward (RR: 0.71; 95% CI: 0.61–0.82;
Supplementary Fig. 2). Furthermore, ML-based prediction meth-
ods showed a larger magnitude in reducing mortality (RR: 0.56;
95% CI: 0.39–0.80) than rule-based methods (RR: 0.73; 95% CI:
0.63–0.85; Supplementary Fig. 3). Bundle recommendation alert-
ing (RR: 0.63; 95% CI: 0.43–0.94; Supplementary Fig. 4) performed
better than sepsis alert in reducing mortality (RR: 0.78; 95% CI:
0.66–0.92; Supplementary Fig. 4). Bayesian meta-analysis of RCTs
with NRS as prior showed that automated alert was able to reduce
the mortality risk (RR: 0.71; 95% credible interval: 0.62 to 0.81;
Supplementary Fig. 5).
ICU length of stay was reported in 11 studies and there was no

evidence that automated alerts could significantly reduce the
length of stay in ICU (MD: -1.33; 95% CI: -3.34 to 0.67). There was
also substantial heterogeneity across these studies (I2= 97%,
p < 0.01; Supplementary Fig. 6). Other subgroup analyses failed
to find factors to explain the heterogeneity (Supplementary Figs.
7–9). Hospital length of stay was reported in 21 studies. Overall,
there was a significant reduction in hospital length of stay (MD:
-2.42; 95% CI: -4.43 to -0.41), with substantial heterogeneity
across studies (I2= 94%, p < 0.01). The heterogeneity could not
be fully explained by the study design (Supplementary Fig. 10).

Fig. 1 Flowchart of study selection. WOS web of science, CENTRAL Cochrane Central Register of Controlled Trials.
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However, studies conducted in hospital wards showed more
consistent results (I2= 77%, p < 0.01; Supplementary Fig. 11).
The methods (ML or rule-based), specific rules (SIRS, qSOFA, and

MEWS) used to alert sepsis, and purposes of alerting were not
able to account for the heterogeneity (Supplementary Figs. 12
to 14).
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Reporting biases
The reporting biases of included studies were assessed by p-curve,
which showed a right-skewed distribution with 73% of the

p-values between 0 and .01 (Fig. 6). The statistical tests against the
null hypothesis that all the significant p-values are false positives
were rejected with high statistical significance. Thus, at least some
of the p-values are likely to be true positives. Finally, the power
estimate is very high, 99%, with a confidence interval ranging
from 96% to 99%. The contour-enhanced funnel plots showed
that the distributions of studies were generally symmetric for
mortality and hospital LOS (Fig. 6). The supposed missing studies
are in the area of high statistical significance; thus, it is possible
that the asymmetry is not due to publication bias.

DISCUSSION
This study provides systematically updated evidence on the
effectiveness of automated alerts for the management of sepsis in
various settings. The results show that the management of sepsis
with an automated alerting system can reduce the mortality rate,
which is further confirmed by the Bayesian meta-analytic
approach. Although there is no evidence that the automated
alerting system can reduce ICU LOS, the hospital LOS is
significantly reduced. Subgroup analyses indicate that the
beneficial effect of automated alerting systems is less significant
in ICU settings than that in ED and general wards. ML-based
alerting systems appear to provide additional benefits as
compared to rule-based methods.
The main finding in our study is that an automated alerting

system can reduce mortality risk, probably attributable to the
increased awareness of the sepsis onset. There has been a large
body of evidence showing that early recognition of sepsis and
prompt initial of sepsis bundle are associated with improved
outcomes. For example, the reduction in time-to-antibiotic use is
consistently reported to be associated with improved survival
outcomes55,56. The same effects are also observed in other bundle
components such as lactate measurement and fluid administra-
tion57. The effect of the automated alerting system is more
prominent in the general ward and emergency setting than that in
the ICU setting. Probably, ICU is already equipped with advanced
monitoring modality, and physicians and nurses are in high acuity
for sepsis surveillance as their usual care. The addition of a further
automated alerting system will not provide further benefits.
The findings of the study have several novelties and clinical

implications. First, the Bayesian meta-analytic approach was
employed to integrate evidence from both RCTs and NRS.
Although RCT is the gold standard design for comparative
effectiveness, these data are sparse, smaller, and potentially
unrepresentative of the patient populations or conditions found in
real-world settings. Thus, real-world evidence from routine clinical
practice provided by NRS is important to complement information
from RCTs and potentially cover the ‘efficacy-effectiveness’ gap58.
The results from the Bayesian meta-analysis are consistent with
that from the frequentist meta-analytic approach.
Second, more in-depth subgroup analyses were performed to

explore potential heterogeneity in component studies. Our
analysis found that automated alerting systems deployed in ICU
settings had less beneficial effects as compared to other settings.
This is not surprising since ICU patients are already monitored
closely by both automated systems and additional, attentive staff.
In contrast, general wards and ED are equipped with much less
staff, and some deteriorating conditions may not be recognized as
quickly. In such situations, the use of an automated alerting
system can have additional benefits to improve clinical outcomes.
In line with this finding, other early warning scores have been
widely deployed outside ICUs to improve the early recognition of
deteriorating conditions59. Real-time automated alerting systems
based on EMRs could help identify unstable patients, and early
detection and intervention with the system may improve patient
outcomes60.
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Third, ML-based methods appear to be superior to other rule-
based methods in improving mortality. ML-based methods
estimate the presence of sepsis/severe sepsis by utilizing a higher
number of relevant data points/biomarkers and can better capture
the non-linear relationships between these variables61,62. Such
complex relationships cannot be recognized to the same degree
by humans. Rule-based methods are mostly based on established
diagnostic criteria for identifying sepsis and sepsis is usually
already present when a warning is triggered. Thus, the timeliness
of diagnosis might be more easily achieved by using ML
methods15.
Several limitations of the current study must be acknowledged.

First, the qualities of included RCTs were variable. The blinding is
difficult to achieve due to the nature of the intervention. The
changes in medical decision-making dictated by the alerting are
not necessarily well characterized. Additionally, the reported
beneficial effects in the intervention group could be biased
because clinicians know the allocation, and more attention may
have been given to patients in the intervention group. Second,
most component studies are NRS, which are prone to both
measured and unmeasured confounding factors. The biased effect
size from NRS was partly overcome by using a Bayesian meta-
analytic approach. Third, there is remarkable heterogeneity
among these included studies, which cannot be explained by
some prespecified variables. Thus, more homogeneous large RCTs
are needed to provide high-quality evidence63. Finally, machine-
learning algorithms are sensitive to changes in the environment
and subject to performance decay64. Continuous monitoring and
updating are required to ensure their long-term safety and

effectiveness. Healthcare processes of sepsis can change with
accumulating evidence, requiring the ML algorithms to adapt to
the new environment.
In conclusion, the study shows a beneficial effect of an

automated alerting system in the management of sepsis.
Interestingly, machine learning monitoring systems coupled with
better early interventions show promise, especially for patients
outside of ICUs. However, there is substantial heterogeneity and
risk of bias across component studies. Further experimental trials
are still required to improve the quality of evidence.

METHODS
Eligibility criteria
Studies comparing the effectiveness of automated alerting systems for the
management of sepsis were potentially eligible. The study population
included hospitalized patients who were at risk for sepsis or patients who
had sepsis. Patients who were at risk for sepsis were defined as per the
original studies, including those presented to the emergency department
(ED), general hospitalized patients, and ICU patients. Patients who were not
initially in ICU and subsequently transferred to ICU due to deteriorated
conditions were also included. The intervention was an automated alerting
system integrated into the electronic healthcare records. The algorithms
for the alerting system included ML-based methods and rule-based
methods. The control group received usual care in which the medical
providers would not receive any alerting messages. The outcomes
included hospital mortality, LOS in the intensive care unit (ICU), and
hospital. Evidence from non-randomized studies (NRS) was pooled with
those from RCTs using the Bayesian meta-analytic approach. Subgroup
analyses stratified by study design, setting, and methods of the alerting

Bias in selection of the reported result

Bias in measurement of outcomes

Bias due to missing data

Bias due to deviations from intended interventions

Bias in classification of interventions

Bias due to selection of participants

Bias due to confounding

0% 25% 50% 75% 100%

Critical risk   Low risk   Serious risk   Moderate risk 

Fig. 4 Summary of the risk of bias assessment for non-randomized studies. The bars show the percentage of studies with different levels of
quality as indicated by colors.
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system were performed. The study protocol was registered in the
International Prospective Register of Systematic Reviews (PROSPERO:
CRD42022299219).

Information sources
Electronic databases of PubMed, Scopus, Embase®, Cochrane Central
Register of Controlled Trials (CENTRAL) and ISI Web of science, and
MedRvix were searched from inception (the earliest year could date back
to 1917) to December 2021. The reference lists of identified articles were
also searched manually to identify additional references.

Search strategy
Key terms related to (1) sepsis (sepsis or septic shock or septicemia), (2)
automated alert (automated, ML, prediction, warning, and recognition), (3)
clinical outcomes (mortality, length of stay), and (4) study design
(randomized, controlled, pre-implementation and post-implementation)
were searched in the databases. The type of literature was restricted to
articles if a search engine had filtering functionality (Supplementary
Methods).

Selection process
Two authors (L.C. and P.X.) independently performed the literature
selection process. The duplicated references from each database were
removed by using the RefManageR package (version: 1.3.0). The title and
abstract of each reference were firstly screened to remove some irrelevant
articles such as reviews, animal studies, non-relevant interventions (such as
antimicrobial susceptibility testing), irrelevant subjects (such as delirium
management and prediction of AKI), pediatric patients (age < 16 years old),
and case reports. The full-text articles were then screened for the
remaining references. Conflicting results were solved in a meeting
participated by all the review authors.

Data collection process
A custom-made data collection form was prepared for data collection. Data
includes the name of the first author, publication year, sample size, study
design, prediction algorithm, number of patients in the intervention and
control aims, the summary effect of the length of stay, and relevant
standard deviation or interquartile range. Studies were classified into RCT
and NRS by the design. NRS included those comparing patients managed
with the automated alerting system versus historical controls. The studies
might report mortality at different follow-up time points. If a study
reported several mortality time points, we extracted the mortality in the
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hospital. The prediction algorithm was classified into rule-based or ML-
based methods. The rule-based method referred to those using existing
sepsis diagnostic criteria for the warning of the presence of sepsis. Two
authors independently extracted data. Any conflicting results were solved
by a third reviewer (Z.Z.).

Assessment of risk of bias
The risk of bias was assessed separately for RCT and NRS. RCT was assessed
from six aspects including sequence generation, allocation concealment,
blinding of participants and personnel, blinding of outcome assessment,
incomplete outcome data, selective reporting, and other sources of bias65.
The risk of bias of NRS was assessed using the Risk Of Bias In Non-
randomized Studies - of Interventions (ROBINS-I) tools, which included
several aspects of bias due to confounding, bias due to selection of
participants, bias in classification of interventions, Bias due to deviations
from intended interventions, Bias due to missing data, Bias in the
measurement of outcomes, Bias in the selection of the reported result66.
The risk of bias assessment was performed independently by two
reviewers (L.C. and K.C.) and any conflicting results were settled by a third
opinion (Z.Z.).

Effect measures and synthesis methods
The primary outcome was mortality and we reported risk ratio (RR) and
confidence interval as the effect measure. The LOS in the hospital and ICU
were reported as mean difference (MD). The evidence from NRS and RCT
were pooled separately by using a conventional frequentist meta-analytic
approach with the R meta package (version: 5.1-1)67. Due to the
heterogeneity of the component studies, the random-effects method
was employed to pool the effect measures. The Mantel-Haenszel estimator

was used in the calculation of the between-study heterogeneity statistic Q
which was used in the DerSimonian-Laird estimator68. Evidence from NRS
was pooled with those from RCTs using the Bayesian meta-analytic
approach. The effect measures of the NRS were used as the prior
distribution for Bayesian meta-analysis for integrating RCT data69. This
approach will ‘pull’ the treatment-effect estimates from the RCTs toward
the summary effects from the NRS. Subgroup analyses stratified by setting
(ICU, ED, or ward), methods of the alerting system (ML-based versus rule-
based), and alerting purpose (bundle compliance, sepsis/severe sepsis
alert) were performed.

Reporting bias assessment
The reporting bias of included component studies was assessed and
visualized using contour-enhanced funnel plots, which included colors to
signify the significance level of each study in the plot. The significance
level helps to differentiate asymmetry due to publication bias from that
due to other factors70. P-curve analysis was also performed to detect p-
hacking and publication bias in meta-analyses71. If the set of studies
contains mostly studies with true effects that have been tested with
moderate to high power, there are more p-values between 0 and 0.01 than
between 0.04 and 0.05. This pattern has been called a right-skewed
distribution by the p-curve authors. If the distribution is flat or left-skewed
(more p-values between 0.04 and 0.05 than between 0 and 0.01), the
results are more consistent with the null hypothesis than with the
presence of a real effect.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Fig. 6 Assessment of publication bias. a Visual inspection of the p-curve plot shows a right-skewed distribution with 73% of the p-values
between 0 and 0.01 and only 20% of p-values between 0.03 and 0.05. The statistical tests against the null hypothesis that all of the significant
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provides a significant test for the hypothesis that power is less than 33%. This test is not significant, which is not surprising given the
estimated power of 99%. The contour-enhanced funnel plots showed significant levels area at 0.1, 0.05, and 0.01 for b mortality, c ICU length
of stay, and d hospital length of stay. Some studies appeared to be missing in areas of high statistical significance, thus it is possible that the
asymmetry is not due to publication bias. ICU intensive care unit.
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