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Electronic connection between Qo and Qi quinone catalytic sites of dimeric cytochrome bc1 is a central
feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers
were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter
remains unclear. Here, using a series of mutated hybrid cytochrome bc1-like complexes, we show that
inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the
two subunits in a dimer come from different species. This indicates that minimal requirement for bioen-
ergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic
sites, while the details of protein scaffold are secondary.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Cytochrome bc1 (ubihydroquinone:cytochrome c oxidoreduc-
tase or mitochondrial complex III) is a multi-subunit enzyme
which transfers electrons between quinone molecules and cyto-
chrome c and couples this electron transfer to proton translocation
across the membrane. This way cytochrome bc1 contributes to gen-
eration of the protonmotive force used for cellular ATP production
[1]. The enzyme operates according to the Q cycle, in which the net
translocation of protons is a result of the joint action of two qui-
none oxidation/reduction sites (named the Qo and Qi sites) located
at two opposite sides of the membrane [2]: the Qo site oxidizes
hydroquinone (quinol) and releases protons, the Qi site reduces
quinone and uptakes protons.

The Qo and Qi sites and cofactor chains are embedded within
three subunits: cytochrome b (harbors Qo, Qi, heme bH and heme
bL), cytochrome c1 (harbors heme c1) and the FeS subunit (harbors
2Fe–2S iron–sulfur cluster (FeS)) [1,3]. The Qo and Qi sites are con-
nected by a chain composed of two hemes (heme bL and heme bH),
while a chain composed of FeS and heme c1 connects the Qo site
with cytochrome c pool. In Fig. 1A, these two chains are depicted
as parts of the upper and lower branches, respectively. The scheme
also shows that cytochrome bc1 is a homodimer.
Each monomer contains all structural elements necessary to
perform the catalytic Q cycle: the Qo and Qi sites and cofactors of
the upper and lower branches. Intriguingly, crystal structures of
the dimer revealed short distance between two hemes bL, each
coming from a different monomer [4,5]. This creates a possibility
for inter-monomer electron transfer [6]. The idea of electron
exchange between the monomers was adopted in mechanistic con-
cepts describing operation of the dimer [7–11]. Recent experi-
ments have indicated that this reaction is an integral part of
ensemble of electron transfer reactions that take place within the
dimer [12–16]. The existence of this connection converts the cofac-
tor chains of a dimer into an H-shaped electron transfer system
that connects all four catalytic sites [12].

At present, the inter-monomer electron transfer in cytochrome
bc1 is a matter of intense debate [11,14,17,18]. In particular, its
physiological significance is not clear. This is because in the case
of the fully operational dimer, the inter-monomer electron trans-
fer can in principle be considered as an alternative to the intra-
monomer electron transfer. In this context an important question
that needs addressing is whether the inter-monomer electron
transfer can secure energetic efficiency of the enzyme at level
that allows supporting the cytochrome bc1-dependent growth of
cells. The results shown here not only confirm the physiologic
competence of inter-monomer electron transfer, but also demon-
strate that electronic connections in this system are generally
robust over structural alterations and can sustain in vivo the
catalysis in the non-native heterogeneous assemblies, when two
cytochrome b parts of the dimer core come from different
species.
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Fig. 1. Catalytic core of cytochrome bc1. (A) H-shaped electron transfer system formed by cofactor chains of: cytochrome b (blue), cytochrome c1 (purple) and FeS subunits
(green). Electron entry sites (double arrow), electron paths (dotted lines). (B) Crystal structure of R. capsulatus cytochrome bc1 dimer (PDB: 1ZRT). Heme and FeS cofactors are
blue. Cytochrome b subunit of one monomer is shown in red and depicts those amino acids that are different in R. sphaeroides (green sticks) to illustrate the heterogeneity of
hybrid fusion protein used in this study.
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2. Methods

2.1. Mutant strains

A genetic system for expression of hybrid BS complex and
hybrid fusion BS–B complex in Rhodobacter capsulatus was
described in [15]. Details of construction of expression vectors
for mutant derivatives of BSBS and BS–B is described in the Supple-
mentary material.

2.2. Bacterial growth, genes and proteins

R. capsulatus strains were grown under semiaerobic/dark or
photoheterotrophic conditions as described in [19,20]. When
describing the type of growth, the term ‘‘aerobic growth’’ referred
to aerobic growth under semiaerobic conditions (at relatively low
oxygen concentration), while ‘‘photoheterotrophic growth’’
referred to growth under anaerobic conditions in light as a source
of energy. For isolation of proteins from photoheterotrophically
grown cultures, 100 ll of overnight 2 ml liquid aerobic culture
was spread on each of 14 MPYE plates which then were incubated
in anaerobic jars (GasPak, BD) for 48 h.

2.3. Membrane proteins isolation and purification

Preparations of protein complexes from semiaerobic liquid cul-
tures were as described in [21] with modifications reported in [19].
Complexes were isolated by affinity chromatography, Strep-tag
purification was performed as described in [19]. SDS–PAGE of puri-
fied complexes was performed as described in [22]. To prepare the
membranes from the photoheterotrophically grown cultures, cells
from 14 MPYE plates were scraped to the MPYE medium and cen-
trifuged (6000g, 20 min). The obtained pellet was subjected to the
same purification steps as above.

2.4. Genetic analyses

The size and DNA sequence of the fusion genes present in cells
grown photoheterotrophically were verified by restriction analyzes
and DNA sequencing of plasmids isolated from R. capsulatus and
amplified in Escherichia coli HB101. The double restriction diges-
tion was performed with BstXI (New England Biolabs) and SfuI
(Roche Diagnostics) enzymes, yielding shorter DNA fragment
(1950 bp) in case of cytochrome b gene or longer DNA fragment
(3325 bp) for cytochrome bSb gene.
3. Results

Photoheterotrophic growth of R. capsulatus requires obligatory
presence of the functional cytochrome bc1, thus the most straight-
forward way to verify in vivo functionality of specific mutant
derivatives of this complex is to test the capability of the mutant
cells to grow under the photoheterotrophic conditions [20]. In this
work, we used this approach in combination with the asymmetric
mutagenesis to assess physiological relevance of the inter-mono-
mer electron transfer in cytochrome bc1. The asymmetric mutagen-
esis was accomplished using the system based on expression, in R.
capsulatus cells, of cytochrome bc1-like complexes in which two
separate cytochrome b subunits of the dimer core were replaced
with a hybrid fusion of Rhodobacter sphaeroides and R. capsulatus
cytochromes b (this protein complex is named BS–B) [15]. The
structures of these two cytochromes b are similar, but not identical
[3,23]. In fact, the 10% difference in amino acid composition makes
the fusion protein heterogeneous, offering a unique opportunity to
test electron transfers in vivo in an enzyme in which the asymme-
try does not concern just the point mutations knocking out parts of
individual branches of the system (see below), but also several
other amino acid positions randomly spread throughout the pro-
tein (Fig. 1B).

Fig. 2 depicts the cofactor knockout patterns that have been
tested using BS–B as the protein template for mutagenesis. With-
out any additional mutations, all the cofactors and the catalytic
sites of BS–B form an H-shaped electron transfer system. This sys-
tem, characteristic also for the native cytochrome bc1 dimer, con-
sists of two upper and two lower branches connected together
by the two-heme bridge (Fig. 2A). All the remaining patterns
shown in Fig. 2 refer to the derivatives of BS–B containing specific
mutations that knock out individual branches in various combina-
tions (Fig. 2B–F).

WBS–BW (Fig. 2B) contains mutations knocking out the Qo site in
both halves of the fusion protein, thus inactivating the two lower
branches of the system (the two subscripts ‘‘W’’ refer to equivalents
of mutation G158W in R. capsulatus cytochrome b [24]). WBS–BW

(Fig. 2C) contains mutations knocking out the Qi site in both halves
of the fusion protein, thus inactivating the two upper branches (the
two superscripts ‘‘W’’ refer to equivalents of H217W mutation in R.
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Fig. 2. Electron paths in hybrid fusion complexes with various cofactor knockout patterns. (A) BS–B complex contains all electronic connections characteristic of native
cytochrome bc1 (see Fig. 1A). (B and C) Symmetric patterns disrupt all connections between the Qo and Qi sites. (D–F) Three variants of asymmetric patterns cross-inactivate
the complex and leave one possible connection between the Qo and Qi sites (involving the inter-monomer electron transfer). Orange and blue show two halves of the fusion
protein corresponding to cytochromes b of R. sphaeroides and R. capsulatus, respectively. Red crosses indicate cofactor knockouts.
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capsulatus cytochrome b, which has knockout effects similar to
those described earlier for H217L [25]. WBS–BW and WBS–BW are
the two control forms of cytochrome bc1-like complexes contain-
ing the fused cytochrome b inactivated in such a way that a com-
plete turnover of the enzyme involving the joint action of the Qo

and the Qi sites is not possible.
Lower panel of Fig. 2 depicts three variants of the cross-inacti-

vated complex: NBS–BW, WBS–BW and N/WBS–BW. The cross-inacti-
vation refers to inactivation of the Qi site (upper branch) in one
half of the fusion protein and the Qo site (lower branch) in the
other half. The annotations ‘‘W’’ and ‘‘W’’ refer to the same muta-
tions that were described above (for the forms of Fig. 2B and C),
while superscript ‘‘N’’ refers to a mutation that knocks out heme
bH (‘‘N’’ is an equivalent of H212N in R. capsulatus cytochrome b
[6]). H212N inactivates the upper branch as H217W, but in a differ-
ent manner: while H217W blocks just the Qi site allowing elec-
trons to advance as far as to heme bH, H212N eliminates the
electron transfer from heme bL to heme bH. ‘‘N/W’’ combines both
ways of inactivating the upper branch in one monomer. All three
cross-inactivated forms preserve the electronic communication
between the active Qo site in one half and the active Qi site of
the other half. This communication is possible due to the presence
of the intact heme bL–bL bridge.

Fig. 3A shows aerobic growth in dark of the R. capsulatus strains
transformed with mutated genes coding for the BS–B derivatives
described above. In all cases the cells under these growing condi-
tions expressed the complexes with the fusion protein. This was
confirmed genetically by verifying the size and the sequence of
the plasmids isolated from the respective R. capsulatus strains
and also by analyzing the subunit composition of complexes iso-
lated by Strep-tag affinity chromatography. SDS–PAGE profiles of
BS–B and its four derivatives were compared with the profile of
wild-type cytochrome bc1 (Fig. 4A). The derivatives include all
three variants of cross-inactivated complex and one symmetrically
inactivated WBS–BW. The profile of WBS–BW is omitted here as it
was already shown in [15]. It is clear that in lanes 3–7 the predom-
inant band of �100 kDa corresponds to the fusion protein (cyto-
chrome bSb) that replaces the native cytochrome b (lane 2). The
SDS profiles (high intensity of the 100 kDa band comparing to
the bands of cytochrome c1 and the FeS subunit) reflect an
increased probability of dissociation of subunits not-containing
Strep-tag during the purification using the affinity chromatogra-
phy. In these profiles a band corresponding in size to cytochrome
b is also detectable, which possibly comes as a result of partial deg-
radation of a fusion protein upon expression and/or isolation of
proteins [15]. We note that this cannot be a result of genetic
recombination, as established in [15]. We also note that the back-
ground of cytochrome b would not affect the meaning of the
results of photoheterotrophic growth tests of the cross-inactivated
forms as any complex containing identical halves of the fusion pro-
tein would be inactive, thus not able to support the photohetero-
trophic growth of the cells.

We report a success in obtaining WBS–BW as complex containing
the fused cytochrome bSb. In view of the results from our earlier
experiments, introducing mutations symmetrically to the fusion
protein (i.e., the same mutation present in both halves of the pro-
tein) does not always guarantee the proper expression of the fusion
protein [15,19]. Indeed, WBS–BW appears as the first example of the
fusion protein with successful inactivation of the two upper
branches (so far the symmetric inactivation was only possible with
the two lower branches in WBS–BW [15]).

Fig. 3B shows aerobic growth of other R. capsulatus strains that
were used as additional controls in further photoheterotrophic
growth tests. MT-RBC1 is devoid of genes coding for cytochrome
bc1. All other strains expressed the homodimeric cytochrome bc1

(containing two cytochrome b subunits). BB refers to native
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Fig. 3. Testing in vivo functionality of inter-monomer connection between the catalytic sites of cytochrome bc1. Aerobic growth of R. capsulatus expressing (A) hybrid fusion
BS–B and its derivatives or (B) homodimeric cytochrome bc1: BB or BSB and their derivatives. (C and D) Photoheterotrophic growth of the strains depicted in (A and B),
respectively. MT-RBC1 is a strain devoid of cytochrome bc1 [20].
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cytochrome bc1 of R. capsulatus, WBBW is its derivative – a mutant
with G158W in cytochrome b. The remaining three mutants are
derivatives of R. capsulatus cytochrome bc1 having a native
cytochrome b replaced with cytochrome b of R. sphaeroides (BSBS).
NBSBS

N and WBSBS
W are mutants with H212N and H217W in

cytochrome b, respectively, while N/WBSBS
N/W is a double mutant

H212N/H217W.
Panels C and D in Fig. 3 show the results of photoheterotrophic

growth tests performed with the same mutants as in Fig. 3A and B,
respectively. As expected, the strains expressing BB or BS-B grow
photoheterotrophically, while all the strains expressing the sym-
metrically-inactivated forms of the complexes – do not. This
includes two complexes with the fusion protein, i.e., derivatives
of BS–B (WBS–BW and WBS–BW), the mutant of cytochrome bc1

(WBBW), as well as derivatives of BSBS (NBSBS
N, WBSBS

W, and N/WBSBS
N/W).

Photosynthetic incompetence of these strains is correlated with a
lack of functional cytochrome bc1; the symmetric inactivation
effectively disrupts the electronic connections between all the Qo

and the Qi sites (Fig. 2B and C).
Remarkably, all three strains expressing the cross-inactivated

forms of BS–B (NBS–BW, WBS–BW,
N/WBS–BW) can grow photohetero-

trophically similarly to the cells expressing native cytochrome bc1

(Fig. 3C). To confirm that expression of the BS–B complexes con-
taining the appropriately mutated fusion protein did take place
under photoheterotrophic conditions in these strains, we per-
formed analyzes of both the DNA and the protein complexes iso-
lated from the cells grown photoheterotrophically. At the DNA
level, restriction analysis of isolated expression plasmids amplified
in E. coli confirmed the presence of the fused gene of the expected
length (Fig. 4B), Moreover, the DNA sequencing confirmed that the
mutations originally introduced to the gene (N, W, N/W and W) were
retained at original positions during the photoheterotrophic
growth.

At the protein level, the SDS–PAGE profiles of the complexes
isolated from the membranes showed a prominent band of
�100 kDa corresponding to the fusion protein (Fig. 4C). This band
was accompanied by the bands corresponding to the two other
subunits: cytochrome c1 and FeS. It is of note, that the results of
Fig. 4B and C provide first verification of expression of asymmetri-
cally mutated complexes isolated from cultures grown under pho-
toheterotrophic conditions.

4. Discussion

To efficiently translocate protons across the bioenergetic mem-
brane, cytochrome bc1 must have functional Qo and Qi sites and
those two sites must be electronically connected together. In the
H-shaped electron transfer system of the native cytochrome bc1

dimer, the Qo and the Qi sites are connected not only by the cofac-
tor chains of the same monomer (upper and lower branches mak-
ing connections with the Qo and Qi sites), but also by the chain
built of the lower branch of one monomer and the upper branch
of the other [12]. The latter connection requires electron transfer
between the two monomers which occurs through the bridge
formed by two hemes bL. This additional link increases a number
of available electron paths and allows the quinone catalytic sites
to communicate across the dimer. This engineering principle pro-
vides one testable prediction: the disruption of the catalytic Q-
cycle and consequent loss of bioenergetic function of the enzyme
will not occur unless all possible connections linking the Qo with
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the Qi sites are blocked. Our work confirmed this principle at
in vivo level with a series of mutants that exposed various electron
paths for functional testing.

The loss of the cytochrome bc1-dependent photoheterotrophic
growth of the cells was observed in all symmetrically-mutated
derivatives of cytochrome bc1 in which either both upper or both
lower branches were inactivated (Fig. 3C and D). Such inactivations
cut all possible connections linking the Qo with the Qi sites and
thus the enzyme was not functional in vivo under the conditions
used.

All three cross-inactivated forms of BS–B (NBS–BW, WBS–BW and
N/WBS–BW) effectively supported photoheterotrophic growth of the
cells, in spite of the fact that the connection between the Qo and Qi

sites at the level of the same monomer was blocked. In those forms,
the intact bridge allowed the inter-monomer electron transfer to
connect the lower branch and the Qo site of one monomer with
the upper branch and the Qi site of the other. In fact, the cross-inac-
tivations forced the enzyme to use the path involving the inter-
monomer electron transfer if all reactions of the catalytic Q-cycle
were to be completed. Our results clearly demonstrate that
enzymes relying just on this path perform their bioenergetic func-
tion in vivo.

These results are fully consistent with the results of our previ-
ous kinetic experiments performed in vitro with asymmetrically-
mutated variants of the fusion complexes. The measurements of
flash-induced electron transfer in membranes demonstrated that
inter-monomer electron transfer occurs in milliseconds or less
and thus is a catalytically-relevant event [12,15]. Furthermore,
the measured activities of isolated complexes confirmed the com-
petence of inter-monomer electron transfer in supporting the mul-
tiple enzymatic turnovers [14].

Our results are also fully consistent with the in vitro and in vivo
results obtained independently with the two-plasmid system
developed for the R. capsulatus to probe the inter-monomer elec-
tron transfer through the asymmetrically-mutated heterodimers
of cytochrome bc1 [13,16]. In this case the cross-inactivation was
achieved by compiling F144R or Y147A mutation (inactivating
the Qo site) present in one copy of specifically-tagged cytochrome
b gene with H217L or H212N mutation (inactivating the Qi site)
present in another copy of differently-tagged cytochrome b gene.
The expression of the mutated heterodimers in the cells grown
under semiaerobic conditions was confirmed biochemically and
the occurrence of inter-monomer electron transfer was supported
by kinetic measurements. Furthermore, the mutated strains grew
photoheterotrophically indicating that the inter-monomer electron
transfer can support the function of cytochrome bc1 in vivo.

It is clear that both systems (i.e., the system based on fusion
protein used in this work and the two-plasmid system) consis-
tently indicate that cytochrome bc1 complexes modified specifi-
cally so that the only route connecting the Qo site with the Qi

site involves electron transfer between the two hemes bL, are enzy-
matically active and efficient to sustain the cytochrome bc1-depen-
dent photoheterotrophic growth of the cells. This further rules out
the arguments against the existence of inter-monomer electron
transfer [17] (detailed discussion dealing with these arguments
can be found in [15,26]).
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The in vivo demonstration of the enzymatic competence of elec-
tron path involving the cross-communication of Qo and Qi sites can
be considered as a step forward towards understanding the phys-
iological significance of the inter-monomer electron transfer in
cytochrome bc1. This still remains an open issue. Clearly, the tests
conducted so far concerned specific conditions where the
inter-monomer electron transfer was imposed to the system by
eliminating other possible connections present in the native dimer.
Considering living cells, this could correspond to the situation
when parts of the enzyme are damaged by mutations (a case spe-
cifically relevant to mitochondria, where mutations, involving
those in cytochrome b subunit of complex III, appear to accumulate
with age [27]). In such cases, the advantage of the apparent redun-
dancy of the components of the H-shaped electron transfer system
is to allow the function of the partly damaged enzyme. In cases
when all parts of the enzyme are operational, the inter-monomer
electron transfer, constituting an integral part of the entire electron
transfer system, is expected to compete kinetically with the intra-
monomer electron transfer. How this translates into the physiolog-
ical operation of the enzyme, in particular in the context of its
possible regulatory function and the role in reactive oxygen species
generation, is currently unknown and requires further study.

All known cytochrome bc1 complexes are homodimers charac-
terized by high structural symmetry between the monomers
[3,28]. While the symmetry concerns both the architecture of
cofactor chains and the amino-acid composition/structure of pro-
teins, its mechanistic and structural roles are not clear. Our results
show that functional in vivo complex assembles not only when the
symmetry in the cofactor chains is broken, but also when the pro-
tein core is heterogeneous. This implies a key principle and mini-
mal requirement to secure bioenergetic efficiency: the chains of
cofactors must support catalytically-competent electron transfer
between the quinone binding sites located on the opposite sides
of the membrane. Once this is achieved, the enzyme appears to
be able to use in vivo any of the paths that are available (intra-
or inter-monomer electron transfer) in a manner robustly tolerant
to structural alterations.
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