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Gram-positive and Gram-negative pathogens exist as planktonic cells only at limited

times during their life cycle. In response to environmental signals such as temperature,

pH, osmolality, and nutrient availability, pathogenic bacteria can adopt varied cellular

fates, which involves the activation of virulence gene programs and/or the induction of a

sessile lifestyle to form multicellular surface-attached communities. In Salmonella, SsrB

is the response regulator which governs the lifestyle switch from an intracellular virulent

state to form dormant biofilms in chronically infected hosts. Using the Salmonella lifestyle

switch as a paradigm, we herein compare how other pathogens alter their lifestyles

to enable survival, colonization and persistence in response to different environmental

cues. It is evident that lifestyle switching often involves transcriptional regulators and

their modification as highlighted here. Phenotypic heterogeneity resulting from stochastic

cellular processes can also drive lifestyle variation among members of a population,

although this subject is not considered in the present review.
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INTRODUCTION

Pathogenic bacteria constantly face a multitude of chemical and physical stresses associated with
external environments and host-specific niches. In order to survive and grow as parasites, they have
evolved molecular mechanisms for altering their lifestyles in response to changes in environmental
conditions. For example, free-living bacteria can switch their lifestyle to a virulent form inside hosts
or undergo development to form matrix-encased aggregates called biofilms on different abiotic
and biotic surfaces (Figure 1A). The virulent form rapidly colonizes and disseminates in host
tissues to cause acute infections for a limited period of time. However, a prolonged association
of pathogens with hosts enables carriage or persistence leading to chronic infections, which may
be associated with clinical symptoms (for example, when Pseudomonas aeruginosa persists in the
lungs of cystic fibrosis patients) or not (for example, when Salmonella Typhi forms biofilms on
gallstones of asymptomatic carriers). We define the ability to shift from a planktonic lifestyle to
a multicellular community as a “lifestyle switch,” as observed in a majority of chronic bacterial
infections (Bjarnsholt, 2013). The regulation of lifestyle switches in bacterial pathogens is important
to enable successful pathogenesis.
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FIGURE 1 | Environmental regulation of bacterial lifestyles. (A) A general scheme depicting lifestyle switches in pathogenic bacteria to favor virulence or biofilm

formation. (B) In Salmonella, SsrB∼P regulates the intracellular lifestyle and SsrB favors the formation of the carrier state and (C) Salmonella forms SsrB-dependent

multicellular aggregates during persistent infections in C. elegans.
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Phenotypic variations that occur in a subset of a population in
the absence of any genetic or environmental drivers are classified
as phenotypic heterogeneity. When this occurs, subpopulations
in a clonal group adopt distinct life forms, such as planktonic
or sessile, or express different functional markers, for example
toxins or cell surface proteins. In this review, we address lifestyle
transitions in response to changes in environmental conditions
as a population trait, and do not focus on sub-populations that
arise due to phenotypic or genetic heterogeneity. The exception
is in the case of Acinetobacter baumanii, where we describe
how a molecular switch gives rise to phenotypic sub-types.
The adaptive significance of phenotypic heterogeneity has been
superbly described in a recent review (Ackermann, 2015). In the
present review, we use Salmonella as an example to compare
with other bacterial pathogens that are known to undergo
lifestyle switches.

AN OVERVIEW OF SALMONELLA

PATHOGENESIS

The enteric pathogen Salmonella enterica is typically ingested
from contaminated food or water. Most bacteria are killed in
the extreme acid pH of the stomach, but those bacteria that
survive have to traverse the intestinal mucosal layer before
transiting the intestinal epithelium to eventually survive inside
macrophages. Salmonella exploits host-associated environmental
cues such as acidic pH and high osmolality to form a Salmonella-
containing vacuole (SCV), enabling intracellular replication (Lee
et al., 2000; Feng et al., 2003, 2004, see Kenney, 2018, for
a review). The virulence genes of Salmonella are encoded
on horizontally acquired AT-rich segments of the genome
called Salmonella Pathogenicity Islands (SPIs), which are tightly
regulated by two-component regulatory systems (TCRSs). For
example, the SsrA/B TCRS is essential for activation of the
SPI-2 regulon genes encoding a type-three secretory needle
and effectors that are involved in the maintenance of the
SCV (Shea et al., 1996; Cirillo et al., 1998; Lee et al.,
2000). Intracellular replication of Salmonella ultimately causes
gastroenteritis (serovar Typhimurium) or systemic typhoid fever
(human-restricted serovar Typhi).

Transcriptional activation of the SsrA/B system is tightly
regulated by the action of upstream TCRSs, EnvZ/OmpR,
and PhoP/Q, which respond to environmental changes in pH,
osmolality, phosphate, and Mg2+ (Groisman et al., 1989; Feng
et al., 2003, 2004; Liew et al., 2019). When planktonic or
invasive Salmonellae encounter acidic pH or high osmolality,
their cytoplasm acidifies, activating the membrane-bound sensor
kinase EnvZ, by increasing intra-helical hydrogen bonding
in its cytoplasmic domain (Wang et al., 2012; Chakraborty
et al., 2015). Downstream activation of the response regulator
OmpR orchestrates transcriptional activation of the SPI-2 genes,
and other stress-protective mechanisms involving RpoS, the
stationary-phase sigma factor, oxidoreductases, outer membrane
porins, etc. (reviewed in Chakraborty et al., 2017; Kenney,
2018). SPI-2 genes are expressed when SsrB∼P mediates
direct transcriptional activation at SPI-2 promoters, and SsrB

also functions to relieve H-NS repression (Walthers et al.,
2007). Thus, coordinated activation of the sensor kinase
SsrA, by mechanism(s) not precisely understood, leads to the
phosphorylation of the response regulator SsrB, and enables the
intra-vacuolar lifestyle of Salmonella in infected epithelial cells or
macrophages (Figure 1B).

THE LIFESTYLE SWITCH IN SALMONELLA

INVOLVES NON-CANONICAL SIGNALING

Salmonella also alters its genetic program to switch to
a multicellular lifestyle, or biofilms, in the presence of
several abiotic (for example, temperature, nutrient availability,
osmolality, etc.) and biotic (for example, bile and gallbladder
inflammation) stresses (reviewed in Steenackers et al., 2012).
On host tissues such as gallstones and intestinal epithelial
cells, individual Salmonella cells become encased in an intricate
network of three-dimensional extracellular matrix to form
mature biofilms (Boddicker et al., 2002; Crawford et al., 2010).
This ability to switch to a sessile lifestyle is essential for
maintaining the carrier state, allowing Salmonella to persist
in asymptomatic patients, as well as in non-host reservoirs
(Crawford et al., 2010). Studies of Typhoid carriage using the
mouse model in which mice were fed a lithogenic diet to induce
the formation of gallstones, have failed to provide clear insights
regarding the signal transduction pathways that regulate the
formation of biofilms in vivo or drive the switch in lifestyle
from free-living cells to surface-attached communities (see Gunn
et al., 2014, for a review). The transcriptional regulator CsgD in
the unphosphorylated state activates the expression of biofilm
matrix genes to allow the formation of Salmonella biofilms in
vitro (Römling et al., 1998; Zakikhany et al., 2010; MacKenzie
et al., 2015). SsrB acts non-canonically in biofilm formation
(Figure 1B), in a manner that is distinct from its classical
function of regulating pathogenicity island genes (reviewed in
Desai et al., 2016; Desai and Kenney, 2017).

During neutral pH conditions, unphosphorylated SsrB binds
to the csgD regulatory region and DNA binding and bending
is sufficient to relieve H-NS-mediated repression, favoring
formation of S. Typhimurium biofilms (Desai et al., 2016). Thus
SsrB, a response regulator that was acquired during the evolution
of Salmonella as a pathogen, sits at a pivotal position in governing
Salmonella lifestyle fate: to either exist inside the host (in the
SCV) as a promoter of virulence, or to drive surface-attached
multicellular biofilms, which serves to maintain the carrier state
(Figure 1B).

THE ADAPTIVE SIGNIFICANCE OF
LIFESTYLE SWITCHING IN SALMONELLA

The SsrB-driven molecular switch also functions during
persistent infections in vivo. During Salmonella infection of the
heterologous host Caenorhabditis elegans, sessile communities
of Salmonella were clearly visible in the intestinal lumen (Desai
et al., 2019 and see Figure 1C). Although the size of Salmonella
aggregates was smaller in vivo (10–20 µm2) than a typical in
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vitro flow cell biofilm (at least 2 mm2), SsrB was still required,
but phosphorylation of SsrB was not. The quintessential biofilm
components were present, including: the master regulator CsgD,
and the extracellular matrix components, curli, cellulose, and O-
antigen that enabled the formation of Salmonella biofilms during
long-term infections. Interestingly, biofilm formation enhanced
the lifespan of worms, indicating a reciprocal relationship
between virulence activation and the existence of biofilms. The
lifestyle switch to form biofilms in vivo inhibited pathogenesis
genes encoded on the SPI-1 pathogenicity island, and activated
a mitogen-activated protein kinase (MAPK)-driven innate
immunity pathway (Desai et al., 2019 and see Figure 1C). In the
future, it will be important to understand the host-associated
environmental cues and signal transduction pathways that
activate the formation of Salmonella biofilms. Although we have
a detailed understanding of how the SsrA/B TCRS responds to
acidic pH (Liew et al., 2019), it will be germane to understand
the regulation of SsrA/B expression and activity in biofilm
favoring conditions.

LIFESTYLE SWITCHING IN
SPORE-FORMING BACTERIA- B. subtilis

The non-pathogenic Gram-positive bacterium Bacillus subtilis is
an important model to understand environment driven lifestyle
changes in pathogenic Gram-positive bacteria. B. subtlis also
forms biofilms in the intestines of worms and biofilm formation
increases lifespan by ∼25% (Donato et al., 2017). Lifespan
extension occurs when nitric oxide (NO) and Competence
Sporulation stimulating Factor (CSF) produced by B. subtilis
biofilms programs Insulin-like signaling (ILS) and MAPK innate
immunity pathways of C. elegans. In response to starvation, the
master response regulator Spo0A orchestrates elaborate genetic
changes in development and differentiation pathways in B.
subtilis (Hamon and Lazazzera, 2001, reviewed in Vlamakis
et al., 2013). In this scenario, the intracellular level of Spo0A∼P
controls the lifestyle decision in Bacillus. Intermediate levels of
Spo0A∼P favor biofilm formation, while a higher accumulation
of Spo0A∼P leads to sporulation (Fujita et al., 2005). The
mature B. subtilis biofilm is a fine example of how heterogeneity
in Spo0A∼P levels leads to a division of labor, as only
the matrix-producing cells differentiate to form spores (see
Vlamakis et al., 2013, for a review). Such a Spo0A∼P driven
lifestyle switch could also be governing cell fates in the closely
related anaerobe, Clostridia, which causes notorious nosocomial
infections (Figure 2A) (see below). This is in contrast to what we
observed with Salmonella, where unphosphorylated SsrB drove
the biofilm pathway and SsrB∼P was responsible for activation
of virulence (Desai et al., 2016).

Spo0A REGULATES BIOFILMS AND
SPORULATION IN CLOSTRIDIA

Chronic infections by the Gram-positive pathogens C.
difficile and C. perfringens are highly antibiotic-tolerant
and transmissible due to their remarkable ability to form hardy

spores. Germination to vegetative cells leads to the production
of toxins, TcdA and TcdB, adhesin, fibronectin-binding protein
A, and different cell wall proteins (CWPs), which drives host
colonization and disease (Waligora et al., 2001; Calabi et al.,
2002; Kuehne et al., 2010; Barketi-Klai et al., 2011). In response
to possible changes in temperature and nutrient levels, these
free-living vegetative cells also come together and form matrix-
encased biofilms (Dapa and Unnikrishnan, 2013; Obana et al.,
2014). Apart from contributing to environmental persistence,
biofilms of C. difficile have been observed on intestinal mucosal
membranes of patients suffering from irritable bowel syndrome
and as components of mixed species biofilms in the intestines
of infected mice (Swidsinski et al., 2005; Semenyuk et al., 2015).
This observation raises the question then, as to what regulates
the transitions from the vegetative stage to multicellular
communities and ultimately to sporulation?

Interestingly, Spo0A, the master regulator of B. subtilis
lifestyles, is conserved in C. difficile with a 56% sequence identity
(Deakin et al., 2012). Inactivation of Spo0A reduces biofilm
formation and sporulation in C. difficile in vitro (Dawson et al.,
2012; Dapa et al., 2013). However, complementation by Spo0A
in trans leads to a complete recovery of the ability to form
biofilms, but only to a partial rescue of sporulation (Dawson
et al., 2012). Drawing parallels with what is known in B. subtilis,
it is possible that in C. difficile, the activation of sporulation
genes requires much higher levels of Spo0A∼P than that required
for biofilm formation (Figure 2A). In order to gain a clear
understanding of the lifestyle switch in C. difficile, it would
be worthwhile to examine the effect of a point mutation in
the Asp66 residue (Spo0A phosphorylation site), as well as to
identify the upstream kinases of Spo0A (possible homologs of
B. subtilis KinA/B/C/D). These studies would provide insights
regarding the differential regulation of Spo0A in response to
environmental stresses associated with biofilms and sporulation
in C. difficile.

DUAL STATES OF PrfA REGULATES
LIFESTYLES OF Listeria monocytogenes

Listeria monocytogenes is another Gram-positive gastrointestinal
pathogen that invades and survives intracellularly in epithelial
cells and macrophages to cause dangerous listeriosis in humans.
The virulence program is well-characterized and requires the
master transcriptional regulator PrfA. PrfA belongs to the
cyclic adenosine monophosphate (cAMP) receptor protein
(CRP)/fumarate nitrate reductase (FNR) family. The CRP/FNR
superfamily of transcriptional regulators have evolved in
several lineages of Firmicutes, Actinobacteria, Proteobacteria, and
Cyanobacteria, and perform essential physiological functions
such as catabolite repression, oxygen sensing, nitrogen fixation,
and survival in stationary phase (refer to Körner et al.,
2003, for a review). PrfA activates expression of the invasion
factors, InlA and InlB (Gaillard et al., 1991; Dramsi et al.,
1995), and the pore-forming toxin listeriolysin (LLO), enabling
vacuolar escape and cytosolic replication of L. monocytogenes
in host cells (Goebel et al., 1988; Cossart et al., 1989). The
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FIGURE 2 | Transcriptional regulators drive lifestyle changes in Gram-positive pathogens. (A) In C. difficile, the intracellular levels of Spo0A∼P regulate the lifestyle

switch to form spores or biofilms and (B) two different forms of the transcriptional regulator PrfA in L. monocytogenes, are required to activate the intracellular lifestyle

or to form in vivo aggregates.

intracellular levels of PrfA are tightly controlled by feedback
loops, involving post-transcriptional regulation and stress-
responsive alternative sigma factors in order to ensure optimum
expression during the switch from the free-living/saprophytic
phase to the intracellular virulent lifestyle (see de las Heras
et al., 2011, for a review). Active PrfA forms a homodimer
with the C-terminus harboring a DNA-binding helix-turn-
helix motif (HTH) and its N-terminus forms a β-barrel
structure that was predicted to bind cyclic nucleotide(s),
based on its high level of homology to the N-termini of
other members of the CRP/FNR family of transcriptional
regulators. However, PrfA lacks the critical cAMP-binding

residues, emphasizing that sequence homology does not always
predict conservation of key residues (Eiting et al., 2005).
In vivo, transcriptional activation by PrfA is enabled by
glutathione (GSH) binding (Reniere et al., 2015). Although
GSH is not essential for PrfA binding to DNA in vitro, in
vivo, the binding of GSH to each PrfA monomer stabilizes
its HTH motif, and increases the probability of binding to
promoters (Hall et al., 2016). Allosteric regulation of PrfA
activity is also indicated by PrfA∗ mutants that are “locked”
in an active state, leading to hyper-virulence in vivo and a
constitutive over-expression of the PrfA regulon outside the host
(Ripio et al., 1996; Wong and Freitag, 2004).
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Surprisingly, PrfA expression was also crucial for L.
monocytogenes to switch to a sessile lifestyle as aggregates or
biofilms (Lemon et al., 2010). The PrfA-driven pathway for
formation of biofilms in vitro has not been worked out in
detail, but studies showed that PrfA regulated biofilmmaturation
and growth. Interestingly, biofilms formed by the hyper-virulent
PrfA∗ mutants were similar to the wild type, however, an
avirulent PrfA mutant (Y154C) formed greater biofilms in vitro
than the wild type (Lemon et al., 2010), indicating that PrfA
can exist in multiple forms with differing activities. A simple
model of PrfA-mediated lifestyle switching in L. monocytogenes
is described in Figure 2B, involving a GSH-bound form of PrfA
(PrfA-X) that activates the virulence program and a free form of
PrfA that drives biofilms. However, it is also possible that biofilm
genes are regulated by an intermediate conformation of PrfA or
an activated state bound to a different allosteric effector.

In addition, a key PrfA-regulated virulence factor ActA,
also enabled in vivo aggregation of L. monocytogenes by cell-
cell mediated contact in the murine infection model (Travier
et al., 2013). ActA has three distinct domains, the N-terminus
and P-domains are required for actin polymerization, while
ActA homodimer interactions that mediate aggregate formation
require N-, P-, and C-terminal domains. Thus, different active
conformations of ActA might exist in vivo and play a role in
deciding the fate of L. monocytogenes. An ActA-mediated lifestyle
switch may also be driven by its binding to the peptidoglycan
layer during the intracellular phase, although the signal(s) that
enable such an association with the cell wall remain unknown
(García-del Portillo et al., 2011). Interestingly, a decrease in ActA
levels was also found to be correlated with the persistence of L.
monocytogenes in vacuoles of non-phagocytic host cells (Kortebi
et al., 2017). In the future, a combination of biochemical, genetic
and cell biological approaches will be required to clearly delineate
the structure-function relationship and regulation of expression
of PrfA and ActA for favoring intracellular survival (acute phase)
or persistence in hosts.

A NOVEL TetR FAMILY REGULATOR
SWITCHES LIFESTYLES IN
Acinetobacter baumannii

Phenotypic heterogeneity is the basis for several bacterial
functions in specific sub-populations, including: the expression
of virulence factors, quorum sensing, antibiotic resistance, and
persister formation. Recent studies revealed that clinical strains of
A. baumannii are characterized by sub-populations that differ in
their cell surface properties and virulence gene expression (Chin
et al., 2018). This is unlike Listeria (see above), in which the entire
population adopts a similar morphology to become virulent or
avirulent in response to niche-specific signals. A. baumannii cells
from avirulent transparent colonies (AV-T) failed to colonize
and cause disease in mice, while infections with the virulent
opaque cells (VIR-O) resulted in 100% death within 2 days
post infection. Transcriptomic analysis revealed that a gene
encoding a TetR-type transcriptional regulator (ABUW_1645)
was highly expressed in AV-T cells compared to VIR-O cells.

Over-expression of ABUW_1645 in VIR-O cells reversed the
phenotypic switch, leading to a loss of virulence in vivo (Chin
et al., 2018). Since AV-T cells retained the ability to form biofilms
at 25◦C (a non-host temperature), biofilms and virulence might
be mutually exclusive in A. baumannnii. How ABUW_1645
expression is regulated or whether its behavior is modified by
small molecule effectors is presently not known.

HYBRID SENSOR KINASES CONTROL THE
FATE OF Pseudomonas aeruginosa

In the opportunistic Gram-negative pathogen Pseudomonas
aeruginosa, signaling pathways that regulate virulence and
biofilm lifestyles have been extensively studied. RetS is a
hybrid sensor kinase/response regulator that regulates the
switch between virulence and biofilms (Goodman et al., 2004).
Activation of retS during acute infections (in response to as yet
uncharacterized environmental signals), leads to the inhibition
of downstream biofilm-favoring GacS/GacA/rsmZ signaling
pathways. Since a typical DNA-binding domain has not been
identified in RetS, it is not clear how RetS mediates the activation
of virulence genes. Recent studies suggest that calcium may play
a discriminating role. Calcium activates the periplasmic domain
of LadS, a hybrid sensor kinase harboring both histidine kinase
and response regulator domains, and LadS∼P relays through
GacS/GacA to activate the biofilm pathway (Broder et al., 2016).
A similar periplasmic domain is also present in RetS, raising the
possibility that calcium might inhibit the kinase activity of RetS
while selectively stimulating LadS∼P formation.

An interesting aspect of biofilm formation in P. aeruginosa
is the involvement of chemosensory-type signaling by the Wsp
system. Wsp signaling involves a membrane-bound methyl-
accepting protein (WspA), a methyltransferase (WspC), and a
methyl-esterase (WspF) which regulate phosphorylation of the
response regulator, WspR, to catalyze the synthesis of cyclic-di-
guanosine monophosphate (c-di-GMP) (Hickman et al., 2005).
However, it is not known whether there is any cross-regulation
of the Wsp system with the homologous Che proteins. It is
possible that chemical stimuli might activate the sessile lifestyle in
bacteria through the Che signaling system, as has been observed
in the regulation of Comamonas testosteroni biofilms by the
FlmD-CheA axis (Huang et al., 2019).

WHAT REGULATES THE SWITCH IN
LIFESTYLES IN Vibrio cholera?

The ability of V. cholerae to enter into a non-culturable
state is a major factor for environmental persistence and
forms the basis of periodic cholera epidemics in endemic
regions. Interestingly, aggregates of these non-culturable coccoid
cells have been isolated from aquatic environments and
stool samples of infected patients as matrix-encased biofilms
(Alam et al., 2007). Using the rabbit ileal loop model, Vibrio
aggregates were discovered to be hyper-virulent (Faruque
et al., 2006). Although the components of V. cholerae
biofilms are well-characterized, the signaling mechanisms
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that trigger biofilm formation remain unknown (reviewed in
Teschler et al., 2015; Silva and Benitez, 2016). Moreover,
what regulates the switch to a non-culturable state and
how does temperature and salinity activate the formation of
dormant cells? Detailed investigations of the TCRSs and cyclic-
di-guanosine monophosphate (c-di-GMP) signaling pathways
regulating Vibrio lifestyles in the host and outside environments
will be informative.

CONCLUDING REMARKS

A critical step for the effective targeting of bacterial pathogens
is to unravel the regulatory mechanisms that govern their
transitions from a free-living non-pathogenic state to a virulent
state to cause disease. This is especially relevant in the
present day due to rising antibiotic resistance in bacteria,
frequent nosocomial infections, and a lack of novel antibiotics.
In the future, the signaling mechanisms that drive the
development of biofilms or multicellular communities need to
be determined in actual hosts, in order to devise strategies for

controlling the spread of pathogenic bacteria and eradicating
chronic persistence.
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