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Abstract

Burkholderia pseudomallei is a mostly saprophytic bacterium, but can infect humans where it causes the difficult-to-manage
disease melioidosis. Even with proper diagnosis and prompt therapeutic interventions mortality rates still range from .20%
in Northern Australia to over 40% in Thailand. Surprisingly little is yet known about how B. pseudomallei infects, invades and
survives within its hosts, and virtually nothing is known about the contribution of critical nutrients such as iron to the
bacterium’s pathogenesis. It was previously assumed that B. pseudomallei used iron-acquisition systems commonly found in
other bacteria, for example siderophores. However, our previous discovery of a clinical isolate carrying a large chromosomal
deletion missing the entire malleobactin gene cluster encoding the bacterium’s major high-affinity siderophore while still
being fully virulent in a murine melioidosis model suggested that other iron-acquisition systems might make contributions
to virulence. Here, we deleted the major siderophore malleobactin (mba) and pyochelin (pch) gene clusters in strain 1710b
and revealed a residual siderophore activity which was unrelated to other known Burkholderia siderophores such as
cepabactin and cepaciachelin, and not due to increased secretion of chelators such as citrate. Deletion of the two hemin
uptake loci, hmu and hem, showed that Hmu is required for utilization of hemin and hemoglobin and that Hem cannot
complement a Hmu deficiency. Prolonged incubation of a hmu hem mutant in hemoglobin-containing minimal medium
yielded variants able to utilize hemoglobin and hemin suggesting alternate pathways for utilization of these two host iron
sources. Lactoferrin utilization was dependent on malleobactin, but not pyochelin synthesis and/or uptake. A mba pch hmu
hem quadruple mutant could use ferritin as an iron source and upon intranasal infection was lethal in an acute murine
melioidosis model. These data suggest that B. pseudomallei may employ a novel ferritin-iron acquisition pathway as a means
to sustain in vivo growth.
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Introduction

Burkholderia pseudomallei is a Gram-negative bacterial pathogen

that normally survives as a saprophyte in soil and water, but is also

capable of infecting most mammals and causing serious infections

resulting in the multifaceted disease melioidosis [1–7]. Even with

rapid diagnosis and prompt and aggressive treatment the fatality

rate for melioidosis patients still ranges from 10–20% in Australia

to over 40% in Thailand. B. pseudomallei is considered an emerging

pathogen and infections have been increasingly reported in many

countries in tropical and subtropical regions of the world [8–12].

Iron is essential for bacteria, yet in almost any abiotic or biotic

environment bacteria are confronted with levels of soluble iron too

low to sustain growth [13]. The two main strategies used by Gram-

negative bacteria to acquire biotic iron are uptake of iron-

siderophore complexes and uptake of heme [14]. Because of the

necessity for iron uptake, siderophore dependent uptake mecha-

nisms are considered virulence factors and corresponding mutants

are severely attenuated in animal models of infection [15–20].

In Burkholderia species, iron acquisition mechanisms have been

best characterized in members of the Burkholderia cepacia complex

(Bcc) [21]. These bacteria produce as many as four different

siderophores (ornibactin, pyochelin, cepabactin and cepaciache-

lin). In addition, Bcc bacteria possess mechanisms for acquiring

iron from heme and ferritin [21,22].

Very little is known about iron acquisition mechanisms in B.

pseudomallei. The bacterium produces a hydroxamate-type side-

rophore, malleobactin, that can remove iron from lactoferrin and

transferrin, allowing this bacterium to grow under iron-limiting

conditions [23–25]. Genome-wide microarray expression and

whole genome sequence analyses identified genes encoding a

number of other iron acquisition systems such as a pyochelin (pch)

gene cluster, a heme uptake locus (hmu) and plasma membrane

iron transporters [26–29]. Despite the recognized importance of

iron acquisition systems, no data have been published about the

contribution of any of these to B. pseudomallei virulence. There is

evidence that iron availability influences colony morphology

[30,31](our unpublished results), a not well understood character-
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istic of B. pseudomallei that affects virulence and antimicrobial

susceptibility [30,31].

We previously discovered that when compared to other se-

quenced strains the clinical isolate 708a contains a large (.130 kb)

genomic deletion [32]. This deleted region includes the amrAB-

oprA efflux pump operon which explains the gentamicin sensitivity

of 708a. The .90 gene region also contains numerous other genes

that may be pertinent for B. pseudomallei’s physiology and path-

ogenesis. Of note is absence of the complete malleobactin

biosynthetic gene cluster. Despite lack of this gene cluster and,

presumably, malleobactin, 708a caused human melioidosis and

was fully lethal in the acute murine melioidosis model [32]. This

finding was somewhat surprising because in Pseudomonas aeruginosa

the analogous siderophore pyoverdine is essential for infection and

full virulence [15]. Similarly, B. cenocepacia mutants lacking

ornibactin showed significantly reduced virulence [17].

As we could not rule out the presence of mutations in 708a that

compensated in vivo for the loss of malleobactin synthesis, we

sought to elucidate the contribution of this siderophore and other

annotated iron acquisition systems, including pyochelin synthesis

and uptake and hemin utilization to virulence in isogenic B.

pseudomallei mutants. Our studies revealed that none of these

systems is required for lethality in an acute murine melioidosis

model and provided evidence for a ferritin-iron utilization system.

Materials and Methods

Bacterial strains and growth conditions
B. pseudomallei strains used in this study are listed in Table 1. All

procedures involving B. pseudomallei were performed in a Select

Agent approved Biosafety Level 3 (BSL3) facility using Select

Agent compliant procedures and protocols. Unless noted other-

wise, bacteria were routinely grown at 37uC in Lennox LB broth

[33] or Lennox LB agar plates (MO BIO Laboratories, Carlsbad,

CA). For Escherichia coli, antibiotics and other media additives were

used at the following final concentrations: ampicillin (Amp),

100 mg/ml; kanamycin (Km), 40 mg/ml; zeocin (Zeo), 25 mg/ml;

gentamicin (Gm), 10 mg/ml; 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside (X-gal), 40 mg/ml; 5-bromo-4-chloro-3-indolyl

glucuronide (X-gluc), 40 mg/ml; and diaminopimelic acid (DAP),

200–400 mg/ml. For AmrAB-OprA pump expressing B. pseudo-

mallei strains antibiotic concentrations used were 500–1000 mg/ml

Km and 1000–2000 mg/ml Zeo. For B. pseudomallei D(amrRAB-

oprA) strains, these were adjusted to 35–50 mg/ml Km; 25–50 mg/

ml Zeo; and 10–30 mg/ml Gm. Antibiotics were purchased from

EMD Biosciences, San Diego, CA (Gm); Sigma, St. Louis, MO

(Amp and Km); and Invitrogen, Carlsbad, CA (Zeo). DAP (LL2,

DD2, and meso-isomers) was obtained from Sigma. X-gal and X-

gluc were purchased from Gold Biotechnology, St. Louis, MO.

Arabinose or rhamnose were used to induce B. pseudomallei

expression plasmids at final concentrations of 0.2–0.5%.

Recombinant DNA techniques
E. coli DH5a was used for plasmid maintenance and construc-

tion. Plasmid DNA was prepared using the GeneJET plasmid

miniprep kit from Fermentas Life Sciences (Glen Burnie, MD).

Genomic DNA was prepared using the Puregene genomic DNA

purification kit from Gentra Systems (Qiagen, Valencia, CA).

DNA purification of enzyme reactions and DNA gel extractions

were conducted using the GenElute gel extraction kit from Sigma

Life Science. PCR DNA polymerases, restriction enzymes and

DNA modification enzymes were purchased from New England

Biolabs (Ipswich, MA) and used essentially according to the

manufacturer’s recommendations. PCR was typically conducted

with either Taq polymerase or platinum HiFi Taq polymerase.

DNA blunting reactions were conducted with T4 polymerase,

DNA dephosphorylation reactions were performed with calf

intestinal alkaline phosphatase and DNA ligations were conducted

with T4 DNA ligase. Southern analysis was performed using the

NEBlot Phototope and Phototope-Star chemiluminescent labeling

and detection kits from New England Biolabs following the

manufacturer recommendations and using standard capillary

transfer and blotting procedures [34]. The QuikChange site-

directed mutagenesis kit from Stratagene (Santa Clara, CA) was

used according to the manufacturer’s recommendations.

Competent E. coli cells were prepared and transformed by the

rubidium chloride method essentially as described by [34]. T4

DNA ligation reactions were typically drop-dialysed on 25 mm

diameter filters (MF type, VS filter, mean pore size 0.025 mm from

Millipore (Billerica, MA) for 20 min prior to use in transforma-

tions.

Plasmids were introduced into B. pseudomallei by electroporation

which was conducted essentially as previously described [35].

Briefly,overnight cultures were washed several times in 300 mM

sucrose and concentrated 10-fold. Aliquots (100 ml) were electro-

porated using a 2 mm gap disposable electroporation cuvette at

2.5 kV with a GenePulser Xcell from Bio-Rad (Hercules, CA).

Cells were recovered after electroporation and outgrown for 1 h in

LB prior to plating on appropriate selective media.

E. coli RHO3 was used for conjugation of plasmids into B.

pseudomallei [36]. Conjugations were performed essentially as

previously described [36]. Briefly, overnight cultures were washed

and concentrated 5-fold. Equal parts of each parent strain were

mixed and applied to sterile cellulose acetate filters along with

parental controls on LB plates augmented with 200–400 mg/ml

DAP. After overnight incubation, cells were recovered from the

membrane by centrifugation, washed, and plated on appropriate

selective media lacking DAP.

Oligonucleotides
Oligonucleotides were purchased from Integrated DNA Tech-

nologies, Coralville, IA, and are listed in Table S1.

Author Summary

Burkholderia pseudomallei is the etiologic agent of melioi-
dosis, a multifaceted deadly and difficult to treat disease of
equatorial regions of the world. Disease manifestations
range from acute infections to long term chronic infec-
tions. The factors by which this bacterium causes disease
are not yet well understood. Studies thus far focused on
elucidation of the roles of traditional virulence factors such
as secreted proteins and exopolysaccharides, but virtually
nothing is known about the roles of nutrient acquisition
systems in B. pseudomallei’s survival in its mammalian
hosts. One nutrient that is essential for bacterial metab-
olism and pathogenicity is iron. As free iron is not readily
available in nature, bacteria developed numerous mech-
anisms for iron acquisition from abiotic and biotic sources.
These mechanisms include siderophores and hemin/
hemoglobin utilization systems, and it is therefore not
too surprising that mutants defective in these systems are
often impaired in virulence. In this study we show that
defined B. pseudomallei mutants defective in siderophore
and hemin/hemoglobin utilization systems remain fully
lethal in a murine melioidosis model and present evidence
for in vitro ferritin-iron acquisition which may be one or
perhaps the main means by which this pathogen sustains
in vivo growth.

Known Fe Scavengers Are Dispensable in Melioidosis

www.plosntds.org 2 June 2012 | Volume 6 | Issue 6 | e1715



Plasmids
A comprehensive list of plasmids used in this study is provided

in Table S2. Individual plasmids were constructed as follows. To

create pEXGm5B, the 0.9-kb fragment of pPS856 [37] was

released by XbaI digest of unmethylated DNA prepared from E.

coli JM110 [38] and ligated with the SpeI+XbaI digested backbone

of pEXKm5 [36]. pFKm4 was constructed by removing undesired

XbaI and SpeI sites from pFKM2 and adding a PacI site by using

QuikChange site-directed mutagenesis (Stratagene, La Jolla, CA).

Strain construction
B. pseudomallei deletions strains were constructed using previously

described methods [36]. Briefly, 500–1500 bp of genomic DNA

flanking the desired deletion region were PCR amplified and

cloned separately into a TA cloning vector, usually pCR2.1

(Invitrogen) or pGEM-T Easy (Promega, Madison, WI). The

cloned DNA fragments were released by digestion with appropri-

ate restriction enzymes and joined by T4 ligation prior to EcoRI

digestion and cloning into pEXGm5B, a GmR derivative of the

dual counter-selection allelic exchange vector pEXKm5 [36]. A

FRT-nptII-FRT KmR cassette was then ligated between the two

flanking DNA segments. Plasmid pEXGm5B deletion constructs

were introduced into B. pseudomallei by conjugation using the E. coli

RHO3 mobilizer strain and metabolic counter-selection [36].

KmR merodiploids were selected and subsequently resolved using

sucrose counter-selection, I-SceI counter-selection, or both strate-

gies to recover the desired deletion mutants [36]. For difficult to

isolate mutations YT-sucrose plates were incubated for three to ten

days at room temperature and then re-struck to isolation from

white bordered colonies onto fresh YT-sucrose plates. The KmR

marker was removed using Flp recombinase [35]. Mutations were

confirmed by genomic Southern analysis or PCR followed by

sequencing. The construction of individual strains is detailed in

Text S1.

Low-iron medium and siderophore testing
Low-iron media were obtained by deferration with Chelex 100

resin and was prepared and stored in plastic-ware to prevent

reintroduction of iron. Trypticase soy broth filtrate, chelex-treated

(TSBFC) media is a modification of TSBDC [28,39]. TSBFC

consisted (per L) of 30 g of trypticase soy broth, 7.35 g glutamic

acid, 12.5 ml of 80% (w/v) glycerol, with the pH adjusted to 6.0

with NaOH. We found that siderophore halo formation on CAS

plates was more reproducible by growth on pH 6.0 media. The

medium was autoclaved and allowed to cool to room temperature

before addition of 30 g autoclaved Chelex 100 resin and agitation

for 24 h at room temperature. Chelex treatment raised the pH

slightly. Chelex was filtered from the media with a plastic funnel

and Whatman 541 filter paper. The filtrate was then sterilized with

a 0.2 micron vacuum filtration unit.

CAS assays
Liquid Chrome Azurol S (CAS) siderophore assay solution was

prepared as previously described [40]. 5-sufosalicyclic acid iron

shuttle solution was prepared separately and added prior to use.

For quantitative measurement of siderophores in culture super-

natant, low iron cultures were incubated typically overnight at

37uC with aeration, pelleted and 100 ml supernatant was added to

900 ml CAS assay solution. Mixtures were allowed to incubate for

30 min at room temperature prior to measuring change in A630 nm

compared to an uninoculated media control. Measurements were

adjusted for cell density by measuring the OD600 nm of a 1:10

Table 1. B. pseudomallei strains used in this study.

Strain Relevant featuresa Mutation acronym Reference/source

708a Clinical isolate; carries a deletion of the malleobactin synthesis gene cluster
and the amrRAB-oprA efflux operon

[32]

1710b Clinical isolate Sharon Peacock

Bp74 1710b D(amrRAB-oprA)::FRT-ble-FRT; ZeoR [35]

Bp327 1710b D(mbaS-mbaF)::FRTb DMBA This study

Bp338 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRTc D141-kb This study

Bp416 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT DfptA D141-kb DfptA This study

Bp447 1710b DpchA::FRT DpchA This study

Bp448 1710b D(mbaS-mbaF)::FRT DpchA::FRT DMBA DpchA This study

Bp449 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT DpchA D141-kb DpchA This study

Bp486 1710b D(pchBA::FRT-nptII-FRT); KmR DpchA-B This study

Bp487 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT D(pchBA::FRT-nptII-
FRT); KmR

D141-kb DpchA-B This study

Bp515 1710b D(pchA-fptA)::FRT DPCH This study

Bp516 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT D(pchA-fptA)::FRT D141-kb DPCH This study

Bp549 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT D(pchA-fptA)::FRT
D(hmuV-BURPS1710b_A1781)::FRT

D141-kb DPCH DHMU This study

Bp568 1710b D(BURPS1710b_2054-BURPS1710b_2155)::FRT D(pchA-fptA)::FRT
D(hmuV-BURPS1710b_A1781)::FRT, D(btuC-BURPS1710b_3209)::FRT

D141-kb DPCH DHMU DHEM This study

Bp576 Hemoglobin-adapted Bp568 D141-kb DPCH DHMU DHEM This study

aAbbreviations: FRT, Flp recombinase target; Km, kanamycin; R, resistance; S, sensitive/susceptible; of Zeo, zeocin.
bmbaS is annotated as psbS in the 1710b genome annotation (GenBank accession number NC_007434.1).
cAll strains containing D(BURPS1710b_2054–BURPS1710b_2155)::FRT are aminoglycoside susceptible because the deletion of the genes encoding the AmrRAB-OprA
efflux pump.
doi:10.1371/journal.pntd.0001715.t001
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diluted TSBFC culture. CAS plates were prepared as described

[41]. For 600 ml of CAS agar the following solutions were

prepared. Solution 1 consisted of Parts A and B. For preparation

of Part A, 35 mg CAS were dissolved in 30 ml of deionized water

which was then mixed with 6.2 ml of 1 mM FeCl3?H2O in

10 mM HCl. Part B consisted of 47 mg hexadecyltrimethy-

ammonium bromide (HDTMA) in 24 ml of deionized water. Parts

A and B were then combined to make solution 1 which was then

autoclaved. For Solution 2, 1.62 g sodium succinate, 1.68 g

casamino acids, 0.43 g Na2SO4 and 5.44 g PIPES were dissolved

in 540 ml of deionized water and the pH adjusted to 6.0 with

NaOH. After addition of 9 g of agar Solution 2 was autoclaved.

After cooling Solution 2 to 50uC, Solution 1 was added slowly and

with mixing. For preparation of CAS plates 30 ml of this mixture

was dispensed into a 100 mm Petri dish. These plates were much

less likely to oxidize during preparation than those prepared using

the original recipe described by Schwyn and Neilands, [42].

Pyochelin extraction and mass spectrometry
TSBFC overnight cultures (1–3 ml) were harvested in a micro-

centrifuge by centrifugation at full speed for 1 min at room

temperature and supernatants were sterilized with 0.2 micron

syringe filter units. The supernatants were acidified to pH 1–2

with concentrated HCl and then extracted three times with five

supernatant volumes of ethyl acetate. Ethyl acetate extractions

were combined and dried under N2 prior to re-suspension in 1:10

supernatant volumes of methanol. Mass spectrometry was

conducted at the Colorado State University Biomolecular Analysis

Core with an Agilent 1200 series liquid chromatograph interfaced

with the Agilent 6520 quadrupole/time-of-flight for these analyses.

The mass spectrometer interface was the Chip-cube nanoflow

interface using a G4240-65001 chip chromatography column

(40 nL enrichment column with 80 Å, 75 mm643 mm C18

packing) operated at 0.6 ml/min flow rate. The chromatography

gradient used water with 0.1% formic acid and 90% acetonitrile.

The nanoelectrospray source was operated in positive ion mode at

2000 V with 5 liters/min drying gas N2 at 325uC.

Determination of citrate levels in cell culture
supernatants

To determine citrate concentrations in cell-free culture super-

natants, TSBFC cultures were pelleted by centrifugation as

described above and supernatants were sterilized with a 0.2 mi-

cron syringe filter unit. The supernatant was deproteinated by

processing with a Millipore Ultrafree 215 centrifugal filter device,

biomax-5K with a 5 kDa molecular weight cutoff. Uninoculated

media and culture supernatant was tested with the Citrate Assay

Kit from BioVision Incorporated (Mountain View, CA) according

to the manufacturer’s recommendations.

Iron source utilization experiments
For testing iron source utilization, 500 ml of M9 medium [34]

was Chelex treated by agitation for 5 h with 5 g/L of Chelex 100.

The mixture was filtered and then sterilized with a 0.2 micron

vacuum filter unit. M9-Chelex treated media were inoculated with

bacteria and incubated overnight at 37uC with aeration. They

were then sub-cultured 1:10 into M9 media containing 10 mM

porcine hemin (prepared as filter-sterilized 10 mM stock in 1 M

NaOH), 2.5 mM porcine hemoglobin (prepared as filter-sterilized

1 mM stock in dH2O), 1 mM human recombinant holo-lactoferrin

(prepared as filter-sterilized 10 mM stock in phosphate buffered

saline, pH 7.4) or 10 mg/ml equine ferritin (prepared as 10 mg/ml

stock in sterile saline immediately prior to use) and 200 mM 2,29-

dipyridyl (100 mM for noted experiments)(prepared as 50 mM

stock solution in ethanol) to chelate residual inorganic iron. For

monitoring bacterial growth using a Synergy HT Multi-Mode

Microplate Reader (BioTek, Winooski, VT), 200 ml samples of the

subcultures were dispensed into wells of a 96-well flat-bottom plate

(Corning Inc. 3603 plates, Corning, NY). Plates were incubated at

37uC with constant shaking at 200 rpm and the optical density at

600 nm was read every hour for up to 96 h.

Animal infection experiments
Ethics Statement: Animal experiments were performed in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Colorado State

University Institutional Animal Care and Use Committee (Permit

Number: 10-1736A). Specific-pathogen-free BALB/c mice were

purchased from Jackson Laboratories (Bar Harbor, ME). All mice

used in experiments were female and 4–6 weeks of age at the time

of infection. Animals were housed in microisolator cages under

pathogen free conditions. All experiments involving animals were

approved by the Institutional Animal Care and Use Committee at

Colorado State University. Animal infections were performed as

described previously [43]. Briefly, prior to each challenge study,

glycerol stocks stored at 280uC were thawed and bacteria diluted

in PBS. For intranasal (i.n.) inoculation, mice were anesthetized by

intraperitoneal (i.p.) injection with ketamine (100 mg/kg) (Vedco,

Saint Joseph, MO) and xylazine (10 mg/kg) (Ben Venue Labs,

Bedford, OH). Mice were infected i.n. with a total volume of 20 m
of bacterial inoculum (10 ml per nostril). The LD50 for B.

pseudomallei strain 1710b was found to be similar to the LD50

previously reported for B. pseudomallei strain 1026b (approximately

900 CFU) [43]. All mice were challenged with an experimentally

determined LD100 dose of approximately 36103 CFU (,4 LD50).

Inoculum titers for each experiment were confirmed by plating the

inoculum on LB or Trypticase soy agar medium (TSA; BD

Bioscience, Sparks, MD). Euthanasia endpoints used in this study

included hunched posture with decreased movement or response

to stimuli, development of respiratory distress, or loss of .15%

body weight.

Determination of bacterial organ burden
Bacterial burden was determined in lung liver and spleen tissues

as described previously [43]. Briefly, upon reaching an euthanasia

endpoint mice were euthanized and lung, liver and spleen tissues

were collected separately. Tissues were placed in 4 ml sterile PBS,

and organs were homogenized using a Stomacher 80 Biomaster

(Seward, Bohemia, NY). Homogenates were serially diluted in

PBS and plated on TSA plates. Plates were incubated at 37uC for

48 hours, colonies were counted and titers expressed as CFU/

organ. The limit of detection in organ homogenates was 40 CFU/

organ.

Statistical analysis
Statistical analyses were performed using Prism 5.0 software

(Graph Pad, La Jolla, CA). Survival times were analyzed by

Kaplan-Meier analysis, followed by the log-rank test. Differences

in organ bacterial burdens were compared using a two-tailed

Student’s T-test. Differences for survival experiments were

considered statistically significant for p-values#0.013 after per-

forming the Bonferroni correction for multiple comparisons. For

comparison of bacterial burden, differences were considered

statistically significant for p,0.05.
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Results

Malleobactin synthesis mutants exhibit residual
siderophore activity

To exclude the presence of compensatory mutations that could

perhaps allow strain 708a to overcome iron-acquisition constraints

posed by deletion of the malleobactin synthesis gene cluster, we

recreated the 141-kb genomic deletion in the defined strain 1710b

genetic background. This strain was mainly chosen because we used

it as the comparator for defining the extent of the 141-kb deletion in

strain 708a as its genome sequence is known and annotated, and

strong siderophore production and ease of genetic manipulation. In

addition, we isolated a specific deletion of the malleobactin synthesis

region to allow us to distinguish the contribution of malleobactin from

that of other genes in the 141-kb region to siderophore production

and/or virulence. Gene replacement was used to introduce the 141-

kb D(BURPS1710b_2054–BURPS1710b_2155) (Figure 1A) into

strain Bp74, a D(amrRAB-oprA)::FRT-ble-FRT (zeocin resistant)

derivative of 1710b [35] to allow for more effective antibiotic

selection. The D(amrRAB-oprA)::FRT-ble-FRT region is deleted from

the resulting D(BURPS1710b_2054–BURPS1710b_2155)(hereafter

D141-kb) strain (Bp338). The 31-kb D(mbaS-mbaF) (Figure 1A) was

introduced into 1710b to yieldDMBA (Bp327). To assess siderophore

production, strains 708a, 1710b, D141-kb and DMBA were grown in

chelex-treated tryptic soy broth (TSBFC), a low iron growth medium.

Siderophore levels in cell free culture supernatants were assessed

using a quantitative chrome azurol S (CAS) total siderophore assay

and CAS agar plates (Figure 1B and D). While total siderophore

production was considerably reduced when compared to 1710b,

strains 708a, DMBA and D141-kb behaved similarly in terms of

timing of secondary (non-malleobactin) halo formation and appear-

ance. After 1 day, 1710b showed a well-defined halo, but strains 708a,

DMBA and D141-kb produced a barely noticeable halo. After 4 days,

all strains produced halos, but the halos of malleobactin plus and

minus strains exhibited distinct appearances (Figure 1D). The halo

formed by 1710b is yellow in color with a distinct border while the

halos of strains defective in malleobactin synthesis appear more red

with diffuse borders Variations in halo appearance have been noted

previously in response to production of different siderophores [25].

We also found that siderophore halo formation on CAS plates varied

over a narrow pH range from pH 6.8 to 6.0. The largest

malleobactin-dependent halos were formed at pH 6.8 but the largest

malleobactin-independent halos were formed at pH 6.0.

Pyochelin production is dependent on an intact pch-ftpA
locus

The consistency of non-malleobactin halo production by 708a

and 1710b malleobactin defective mutants DMBA and D141-kb

caused us to speculate that expression of the known secondary

siderophore pyochelin might be altered in 708a and other mal-

leobactin defective mutants. To assess possible pyochelin contribu-

tions, several mutants defective in either pyochelin transport or

synthesis (Figure 2A) were created in the D141-kb (Bp338)

background by allelic exchange. These manipulations resulted in

the following strains: D141-kb DfptA (Bp416), D141-kb DpchAB

(Bp487), and D141-kb DPCH (D[pchA-fptA])(Bp516). These mutants

are either defective in malleobactin (D141-kb) and/or pyochelin

synthesis (DpchAB) or transport (DfptA) or both pyochelin synthesis

and transport (DPCH).

Pyochelin production in parent and mutant strains was assessed

by mass spectrophotometric analysis of products found in ethyl

acetate-extracted cell free supernatants of TSBFC-grown cells.

When compared to D141-kb, its DpchA and DpchAB mutant

derivatives surprisingly still contained detectable, albeit reduced,

traces corresponding to the 325.078 M+H ion of apo-pyochelin

[44](Figure 2B), indicating that B. pseudomallei can produce

salicylate independent of the presence of PchA and PchB. Apo-

pyochelin was no longer detectable in supernatants obtained from

DPCH mutant. Strain D141-kb DPCH lacking the malleobactin

and pyochelin synthesis genes still produced halos on CAS plates

indicating the probable presence of other siderophores

(Figure 2C).

Production of other siderophores
Because DPCH mutants still produce halos on CAS plates we

analyzed supernatants for the presence of other possible side-

rophores. The analyses indicated that the ions corresponding to

additional siderophores known to be produced by other Burk-

holderia species, e.g. cepabactin and cepaciachelin [21,45–48], were

undetectable by mass spectrometry. Mass spectrophotometric

analysis of supernatants from the D141-kb and D141-kb DPCH

mutants did, however, reveal a weak trace matching the 139.039

M+H ion expected for salicylate [49]. B. pseudomallei 1710b can

therefore produce salicylate in the absence of PchA and PchB, the

first two enzymes in the pyochelin biosynthetic pathway which

produce salicylate from chorismate [50]. Use of salicylate as a

siderophore has been reported for instance for B. cenocepacia [51].

In sufficient concentrations citrate can function as a siderophore

[52]. To determine if the siderophore signal in the D141-kb DPCH

strain was caused by citrate production we determined the citrate

concentrations in uninoculated TSBFC and cell-free supernatants

from TSBFC inoculated with D141-kb DPCH. Citrate concen-

trations in uninoculated TSBFC, which produces no CAS

siderophore signal, were higher when compared to supernatants

from TSBFC inoculated with D141-kb DPCH which does produce

a CAS siderophore signal. This finding supports the notion that

the halos produced by malleobactin and pyochelin deficient strains

are not due to citrate and that B. pseudomallei may produce an

unknown and uncharacterized molecule with iron chelating

activity detected by the CAS ssay.

Hemin and hemoglobin utilization requires the HMU
locus but cannot be complemented by the HEM system

Microarray studies with cells grown in low-iron media indicated

upregulation of B. pseudomallei hemin uptake genes in addition to

malleobactin and pyochelin synthesis genes [28]. B. pseudomallei

encodes two gene loci annotated for ABC transporter-dependent

uptake of hemin (Figure 3A) [29]. The first hemin uptake locus

(HMU) is located on chromosome II and is similar to the hemin

uptake locus of Yersinia spp. The HMU system is a TonB-

dependent ABC transporter which allows the use hemin or

hemoproteins for growth under iron depleted conditions. The

second hemin uptake locus, which we have called the HEM locus,

is located on chromosome I. It contains B. pseudomallei K96243

homologs that have been re-annotated as likely components

involved in hemin uptake [29]. Although it initially appeared that

the 1710b HEM locus lacked a homolog of BPSL2723, which is

predicted serve as the ATPase component of the transport system,

closer examination revealed that this was due to a misannotated

start site for BURPS1710b_3208, the predicted periplasmic

binding protein. Based on homology with K96243 genes the

correct annotation for BURPS1710b_3208 is from 3,515,337 bp

to 3,516,380 bp which shortens its predicted open reading frame

by almost half. An uncalled open reading frame with 99%

sequence identity to BPSL2723 is located from 3,516,374 bp

to 3,517,171 bp, immediately adjacent to the re-annotated

BURPS1710b_3208 (Fig. 3A). Based on these observations the
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HEM locus appears to encode a functional ABC transporter in

1710b.

Strain 1710b and iron uptake mutants were tested for their

ability to use hemin or hemoglobin for growth in iron-depleted

M9-glucose medium (Figure 3B–G). 1710b and D141-kb DPCH

grew readily in iron-depleted media when hemin or hemoglobin

were provided at a heme iron concentration of 10 mM (Figure 3B
and C). However, neither the D141-kb DPCH DHMU nor the

D141-kb DPCH DHMU DHEM strain could readily utilize hemin

or hemoglobin as an iron source (Figure 3D and E). The

inability of the HEM locus present in D141-kb DPCH DHMU to

compensate for the loss of the HMU locus implies that the HEM

locus may not be involved in the utilization of hemin in 1710b.

Interestingly, while growth with hemin supplementation was not

observed in DHMU strains in freshly inoculated cultures, both the

D141-kb DPCH DHMU and D141-kb DPCH DHMU DHEM

strains adapted to utilize hemoglobin when cultures were in-

cubated for several days (Figure 3D and E). For D141-kb DPCH

DHMU DHEM this hemoglobin adaptation effect occurred

reliably after about 60 h of incubation in nearly every experiment

(Figure 3E). D141-kb DPCH DHMU also appeared to have the

capacity to adapt to hemoglobin utilization, although it occurred

much later in the incubation periods, typically near the end of day

four (Figure 3D). When D141-kb DPCH DHMU DHEM cells

were recovered from hemoglobin adapted cultures and single

colony purified, the hemoglobin adapted strain grew with hemo-

globin as an iron source without an appreciable lag phase, albeit at

a slower rate than HMU+ strains (Figure 3F). Additionally,

hemoglobin adapted D141-kb DPCH DHMU DHEM derivatives

were subsequently able to sporadically adapt to hemin utilization

after a two to three day lag (Figure 3G). This hemin adaptation

did not occur in every trial or even in every subculture inoculated

in triplicate with cells from the same D141-kb DPCH DHMU

DHEM starter culture.

Lactoferrin but not ferritin-iron utilization is dependent
on malleobactin synthesis

We also tested strain 1710b and and its siderophore synthesis

and hemin uptake mutants (DPCH, DMBA, D141-kb, D141-kb

DPCH and D141-kb DPCH DHMU DHEM) for their ability to

Figure 1. B. pseudomallei 1710b malleobactin mutant strains mimic the siderophore phenotypes of the B. pseudomallei 708a clinical
isolate. A. Burkholderia GBrowse map of the B. pseudomallei 1710b genomic region corresponding to the extent of the deletion found in the B.
pseudomallei 708a clinical isolate [32,62]. The extents of the amrRAB-oprA genes ecoding the AmrAB-OprA efflux pump and AmrR repressor and the
malleobactin synthesis gene cluster (mbaS-mbaF) are noted with horizontal green lines. Vertical black lines and gene locus numbers indicate the
borders of 1710b genomic region deletions constructed in this study. The shorthand nomenclatures for strains indicating the genomic region
deletions contained in them are bolded. B. Quantitative CAS siderophore assays indicate similar amounts of secondary siderophore production by
1710b malleobactin minus strains and B. pseudomallei 708a. Supernatants from overnight cultures grown in low-iron TSBFC medium were tested by
quantitative CAS assays for siderophore production adjusted for cell density by OD600 of a 1:10 dilution. Means and standard deviations of two
measurements each from three independent experiments are shown. C. Bacterial colony and CAS halo diameters were measured daily for 4 days on
CAS agar plates spotted and incubated as described above. Red bars indicate colony diameter and blue bars halo diameter. Means and standard
deviations of two measurements each from three independent experiments are shown. D. CAS plate assays indicate similar secondary siderophore
production by 1710b malleobactin deficient strains and B. pseudomallei 708a. Five ml samples of overnight cultures grown in low-iron TSBFC medium
were spotted onto CAS agar plates and incubated at 37uC for 4 days prior to photographing.
doi:10.1371/journal.pntd.0001715.g001
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utilize lactoferrin as iron sources (Figure 4). Although studies with

lactoferrin are complicated by its low solubility, deferrated M9-

glucose medium containing 1 mM lactoferrin supported growth of

1710b (Figure 4A) and DPCH (Figure 4B). In contrast, growth

of DMBA, D141-kb, D141-kb DPCH and D141-kb DPCH DHMU

DHEM was not supported at the lactoferrin concentration tested

(Figure 4C–F). Thus, under the experimental conditions em-

ployed here lactoferrin utilization is only dependent on mal-

leobactin production.

Strains 1710b and D141-kb DPCH DHMU DHEM were both

able to readily utilize ferritin as an iron source at a concentration

of 10 mg/ml (Figure 5A and B). Ferritin-iron dependent growth

kinetics were affected by chelator concentrations. At 200 mM 2,29-

dipyridyl which was required for complete growth suppression of

1710b in M9-glucose medium without added iron source, D141-kb

DPCH DHMU DHEM growth was delayed compared to 1710b.

However, when this strain was grown in the presence of 100 mM

2,29-dipyridyl which was sufficient for complete growth suppres-

sion of D141-kb DPCH DHMU DHEM without added iron

source, 1710b and D141-kb DPCH DHMU DHEM growth

kinetics were similar. Of all the host iron sources studied, ferritin

was the only one that allowed similar growth of 1710b and D141-

kb DPCH DHMU DHEM. The utilization of ferritin-bound iron

has been described previously only in one other pathogen, namely

B. cenocepacia [22].

Lethality in the acute murine melioidosis model does not
require siderophore production and hemin uptake
systems

The lethality of 1710b and four of the 1710b-derived side-

rophore and hemin utilization mutants was tested in an acute

intranasal (i.n.) challenge murine melioidosis model. BALB/c mice

received a lethal i.n. challenge dose of LB-grown,36103 CFU of

Figure 2. A B. pseudomallei 1710b malleobactin and pyochelin deficient double mutant exhibits siderophore activity. A. Burkholderia
GBrowse map of the B. pseudomallei 1710b pyochelin synthesis and uptake gene cluster [62]. Gene names are labeled. Dashed lines bordered by
vertical solid black lines indicate the extents of deletions. B. Detection of apo-pyochelin in the culture supernatant of pyochelin synthesis gene
cluster mutants by mass spectrometry. TSBFC overnight cultures were filtered through 0.2 mM membranes, acidified and extracted with ethyl acetate.
Extracts were dried under N2 and suspended in methanol. 5 ml samples were injected to detect the 325.068 M+H apo-pyochelin ion. The apo-
pyochelin ion is indicated with arrows and isotope distribution ions are labeled. Note the different intensity scales in the top and bottom panels. C.
To illustrate the presence of residual siderophore activity in D141-kb DPCH mutants, 5 ml samples from iron-limited TSBFC overnight cultures were
spotted onto CAS agar plates and incubated at 37uC for 4 days prior to photographing.
doi:10.1371/journal.pntd.0001715.g002
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Figure 3. B. pseudomallei 1710b hemin utilization mutants exhibit hemin and hemoglobin growth defects that can be overcome by
strain adaptation. A. Burkholderia GBrowse map of the B. pseudomallei 1710b annotated ABC transporter hemin uptake gene clusters [62]. In our
revised annotation newly predicted open reading frames in the HEM locus appear as white open arrows. Gene names or locus numbers are listed.
Predicted gene product functions are listed below gene names [29]. ABC; ATP-binding cassette subunit; IM, inner membrane protein; BP, periplasmic
binding protein; OMR, TonB-dependent outer membrane receptor. Dashed lines bordered by vertical solid black lines and labeled by shorthand
mutant nomenclature indicate the extents of deletions present in hmu and hem mutants. B.–G. B. pseudomallei 1710b (B.) and its hmu and hem
mutant derivatives hemoglobin and hemin growth phenotypes (C. D141-kb DPCH, D. D141-kb DPCH DHMU, E. D141-kb DPCH DHMU DHEM, F. and
G. D141-kb DPCH DHMU DHEM HMG-adapted). Microtiter plates containing 200 ml of M9-glucose minimal medium with 200 mM 2,29-dipyridyl (open
white symbols), or 200 mM 2,29-dipyridyl and either 10 mM hemin (blue symbols) or 2.5 mM hemoglobin (red symbols) were inoculated with the
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either strain 1710b or the mutants generated in this study which

included DMBA, D141-kb, D141-kb DftpA, and D141-kb DPCH

DHMU DHEM. Deletion of none of these genes or gene clusters

significantly attenuated the lethality in the murine melioidosis

model, with the quadruple D141-kb DPCH DHMU DHEMmu-

tant showing a virtually indistinguishable survival curve when

compared to the parental strain 1710b (Figure 6A). The types

and timing of clinical symptoms development was similar following

infection with individual strains and mice reached euthanasia

endpoints at similar times (2.5 to 3.5 days). Although time-to-death

was not significantly attenuated in the examined strains, dissem-

ination was affected. Organ burdens with the quadruple iron

acquisition mutant were significantly lower in the lung and spleen,

but unchanged in the liver (Figure 6B). While we do not yet

indicated strains (in panel F only hemoglobin supplementation growth is shown and in panel G only hemin supplementation growth is shown).
Cultures were incubated at 37uC with continuous aeration. The optical density at 600 nm (OD600) was measured hourly. OD600 means and standard
deviation of three cultures from a single experiment are shown for all strains except for panel G. Six individual growth curves for D141-kb DPCH
DHMU DHEM HMG-adapted in M9-glucose minimal medium with 200 mM 2,29-dipyridyl and 10 mM hemin.
doi:10.1371/journal.pntd.0001715.g003

Figure 4. B. pseudomallei 1710b malleobactin mutants cannot use lactoferrin as an iron source A.–F. Microtiter plates containing 200 ml
of M9-glucose minimal medium with 200 mM 2,29-dipyridyl (open white symbols), or 200 mM 2,29-dipyridyl and 1 mM lactoferrin (purple symbols)
were inoculated with strain 1710b (A.) and its siderophore synthesis and hemin uptake mutants (B. DPCH, C. DMBA, D. D141-kb, E. D141-kb DPCH
and F. D141-kb DPCH DHMU DHEM). The optical density at 600 nm (OD600) was measured hourly. OD600 means and standard deviation of three
cultures from a single experiment are shown for all strains.
doi:10.1371/journal.pntd.0001715.g004
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understand the differences in organ burdens with the various

strains, it is interesting to note that D141-kb DPCH DHMU

DHEM trends to multiply better in the liver, the primary organ for

iron storage.

Discussion

For several pathogens the loss of their primary high-affinity

siderophore systems results in a significant attenuation in virulence

[15–20]. Malleobactin had been previously shown to be capable of

acquiring iron from transferrin or lactoferrin and it had been

assumed to act as an important virulence factor in melioidosis

[24]. Therefore the absence of the malleobactin synthesis genes in

the clinical isolate 708a came as a surprise as the strain remained

fully virulent in the acute murine melioidosis model [32]. This is in

contrast to Galleria mellonella wax moth caterpillar model in which

708a was attenuated [53,54]. Loss of malleobactin production

could possibly represent a beneficial pathogenic adaptation by

708a in response to some environmental cue. During infection B.

pseudomallei rapidly deletes large portions of its chromosomal DNA

in response to adverse conditions. For example, ceftazidime

treatment of acute B. pseudomallei infections leads to emergence of

resistant isolates with large chromosomal deletions removing the

penicillin binding protein target within a few weeks after

therapeutic intervention [54]. Deletion of siderophore biosynthesis

genes has been observed in P. aeruginosa which frequently loses the

ability to synthesize pyoverdin during chronic cystic fibrosis

infections [55].

The absence of the malleobactin synthesis genes from B.

pseudomallei 708a argues against malleobactin being required for

this bacterium’s virulence in the murine melioidosis acute infection

model. However, given B. pseudomallei’s ability to rapidly adapt to

adverse conditions within the host which may have endowed strain

708a to acquire iron in the absence of malleobactin, for instance

by upregulating the production of other siderophores or iron-

acquisition mechanisms. We therefore decided to investigate the

role of annotated, but not yet characterized, iron acquisition

systems in B. pseudomallei’s biology and virulence in a defined

genetic background. To this end, we systematically deleted the

malleobactin, pyochelin and hemin utilization systems and

determined their requirements for in vitro growth on various iron

sources, as well as lethality in the murine meliodosis model.

Recreation of the 708a 141-kb deletion or engineering of a

D(mbaS-mbaF) deletion removing the malleobactin synthesis genes

resulted in mutants with reduced siderophore levels within a 24 h

period as assessed by qualitative and quantitative CAS assays,

presumably due to lack of malleobactin production (Figure 1B
and C). However, after prolonged (4 d) incubation the 1710b

derived mutant strains lacking the mba gene cluster produced

siderophore phenotypes which quantitatively and qualitatively

were almost identical to those observed with 708a (Figure 1C
and D). Malleobactin mutant derivatives of 1710b retained full

lethality in the acute murine intranasal challenge melioidosis

model supporting the notion that this siderophore is not a major B.

pseudomallei virulence determinant. However, in the current study

all strains were grown in iron-replete LB medium which may affect

the degree of lethality/virulence observed in our challenge model.

Additionally, the current study does not address how iron-

acquisition mutants would possibly behave in a chronic B.

pseudomallei infection model. Collectively, we interpret these results

to mean that 708a does not carry mutations that constitutively up-

regulate secondary siderophore production, but rather that

absence of malleobactin may lead to induction of and/or shift to

utilization of alternate iron-acquisition pathways that compensate

for the loss of malleobactin.

B. pseudomallei had been previously confirmed to produce the

secondary siderophore pyochelin [25]. PchA (isochorismate

synthase) and PchB (isochorismate pyruvate-lyase) catalyze the

initial two steps in the pyochelin synthetic pathway by converting

chorismate to salicylate [50]. Surprisingly, pchA and pchB mutants

still produced apo-pyochelin whose synthesis was completely

abrogated in a mutant where the entire pch operon was deleted.

However, salicylate could still be detected in this background

indicating that B. pseudomallei possesses an additional pathway for

salicylate synthesis which was able to feed into the pyochelin

biosynthetic pathway in the absence of PchA and PchB. While

Pseudomonas and Burkholderia sp. produce pyochelin, its contribution

to virulence is typically minor [56]. Pyochelin overproducing

strains of B. cenocepacia could not compensate for virulence defects

caused by the loss of ornibactin [57]. Consistent with data

obtained with other pyochelin-producing pathogens this side-

rophore also seems to play a minor role in B. pseudomallei

pathogenesis as the pyochelin synthesis mutant DPCH exhibited

no discernible effects on lethality in the acute murine melioidosis

model when compared to strains (1710b, DMBA and D141-kb)

that still produced pyochelin (Figure 6A). Interestingly, when

Figure 5. B. pseudomallei 1710b siderophore synthesis and
hemin uptake mutant can utililize ferritin as an iron source. A.
Microtiter plates containing 200 ml of M9-glucose minimal medium with
200 mM 2,29-dipyridyl (open white symbols), or 200 mM 2,29-dipyridyl
and 10 mg/ml ferritin (green symbols) were inoculated with strain
1710b. The optical density at 600 nm (OD600) was measured hourly.
OD600 means and standard deviation of three cultures from a single
experiment are shown for all strains B. D141-kb DPCH DHMU DHEM
was grown in the same media and using the same conditions as
described above in A for 1710b, except that two different 2,29-dipyridyl
concentrations were used: 100 mM (open green symbols and open
white symbols) and 200 mM (closed green symbols).
doi:10.1371/journal.pntd.0001715.g005
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compared to 1710b containing an intact TonB-dependent FptA

pyochelin receptor, the D141-kb DfptA mutant exhibited a

statistically significant (p = 0.0001) increase in lethality in this

infection model. While this difference was statistically significant,

the biological relevance of this observation is difficult to assess

since mean survival of D141-kb DfptA was reduced by less than one

day (2.0 days for D141-kb DfptA versus 2.7 days for 1710b).

The 1710b malleobactin and pyochelin deficient strains still

produced significant halos on CAS plates (Figure 3C). We

determined that this iron-chelating activity was not due the

presence of citrate which can act as a siderophore at sufficiently

high concentrations [52]. Additionally, other known Burkholderia

siderophores, cepabactin and cepaciachelin [21,45–48], were

undetectable by mass spectrometry. B. pseudomallei may therefore

produce a yet uncharacterized siderophore. DPCH mutants pro-

duced salicylate which has been shown to function as a siderophore

in B. cenocepacia [51]. However, the role of salicylate as a siderophore

remains controversial [21]. Without additional experimentation, we

cannot eliminate the possibility that B. pseudomallei may induce the

salicylate pathway in absence of other siderophores.

Siderophores are commonly synthesized by non-ribosomal

peptide synthetase/polyketide synthase (NRPS/PKS) gene clusters.

B. pseudomallei K96243 encodes 12 NRPS/PKS gene clusters besides

the two clusters used to synthesize malleobactin and pyochelin [26].

None of these NRPS/PKS gene clusters were observed to be directly

upregulated in microarray analysis of RNA from cells grown under

conditions of limiting iron [28]. It is possible that siderophore

synthesis gene expression is hierarchical and the genes for synthesis

of the unknown siderophore activity may not be upregulated if

malleobactin and pyochelin are present. However BPSS0312, a

LuxR-type regulator immediately downstream of the BPSS0299–

BPSS0311 NPRS/PKS cluster was seen to be upregulated under

low iron conditions [28]. This NPRS/PKS cluster is linked to

transport genes and is conserved in B. mallei [26]. It is also possible

that the siderophore activity observed in DMBA and DPCH mutants

is synthesized by a NRPS-independent mechanism. We presently

Figure 6. Lethality of strain 1710b and its various iron acquisition mutants. A. Kaplan-Maier survival curves of BALB/c mice infected
intranasally with 1710b (36103 CFU), DMBA (3.56103 CFU), D141-kb (2.16103 CFU), D141-kb DfptA (1.96103 CFU), or D141-kb DPCH DHMU DHEM
(3.86103 CFU). Survival was monitored and mice were euthanized upon reaching a pre-determined endpoint. Data were pooled from two
independent experiments (total n = 10 per bacterial strain). For comparison of each mutant to 1710b the Bonferroni correction for multiple
comparisons was applied. p values were as follows: DMBA, p = 0.12; D141-kb, p = 0.93; D141-kb DfptA, p = 0.0001; D141-kb DPCH DHMU DHEM,
p = 0.19. B. Organ bacterial burden from endpoint mice (days 2.5 and 3) following intranasal challenge with 1710b or D141-kb DPCH DHMU DHEM.
BALB/c mice (n = 10 per bacterial strain) were infected intranasally with 1710b (36103 CFU) or D141-kb DPCH DHMU DHEM (3.86103 CFU). Bacterial
burdens from mice were determined in lung, liver and spleen using data pooled from mice euthanized at endpoint (days 2.5 and 3) as described in
Materials and Methods. Significant differences between 1710b and D141-kb DPCH DHMU DHEM were determined by a two-tailed Student’s t-test
(*** = p,0.0001). Data are graphed as individual values, with bars representing the mean log10 CFU/organ titer for each group. Data were pooled
from two independent experiments.
doi:10.1371/journal.pntd.0001715.g006
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cannot rule out a role of this uncharacterized siderophore in

pathogenicity.

To our knowledge hemin uptake in B. pseudomallei has not been

previously been characterized. Loss of heme utilization is not

associated with virulence defects in many of the organisms in

which it has been studied, but typically these studies looked at

heme utilization alone rather than in combination with side-

rophores [58,59]. Here we confirm that the B. pseudomallei HMU

locus is involved in hemin utilization under low iron conditions

(Fig. 3D). However, the HEM locus appears to be unrelated to

hemin utilization in 1710b based on its failure to compensate for

the loss of the HMU locus. Although the HEM locus might be

involved in hemin utilization in other strains of B. pseudomallei such

as K96243, the hem genes were not up-regulated in K96243 under

low iron conditions [28]. In addition, B. pseudomallei has an

uncharacterized secondary capacity to utilize heme sources in the

absence of the HMU and HEM loci as demonstrated by the

hemoglobin adaptation phenotype (Figure 3E and F). We

believe that the reliability and consistency in the emergence timing

of the hemoglobin adaptation phenotype supports the notion that

this adaptation could be a controlled genetic event. In contrast, the

unreliability of the subsequent hemin adaptation phenotype may

indicate that it is due to a commonly occurring mutation.

Analysis of the ability of the mutants to utilize host iron sources

other than hemin and hemoglobin revealed that 1710b could

readily utilize lactoferrin-derived iron and this required malleo-

bactin but not pyochelin or other siderophore production. In

contrast, 1710b and D141-kb DPCH DHMU DHEM could use

ferritin as iron source equally well. Ferritin-iron acquisition has

previously been demonstrated in B. cenocepacia and this mechanism

seems to require proteolytic ferritin degradation by a serine

protease [22]. However, to our knowledge the ferritin-iron

acquisition pathway has not yet been characterized in more detail

and its role in virulence not yet been assessed.

The quadruple D141-kb DPCH DHMU DHEM mutant strain

is unable to produce malleobactin, pyochelin and hemin ac-

quisition systems, yet displayed no significant reduction in lethality

based on survival in an acute murine melioidosis model

(Figure 6B). This indicates that each of these systems is

dispensable for lethality both individually and in combination.

When compared to 1710b, bacterial loads were slightly, but

significantly decreased in the lung and spleen, but not the liver.

Ready dissemination from the site of infection and lack of a load

difference in the liver argues against any general defect in in vivo

replication. The lung and spleen load reductions may be

associated with a slight in vivo iron uptake defect of the quadruple

mutant strain that is alleviated by iron stores in the liver.

The lack of B. pseudomallei lethality phenotypes associated with

siderophores may be associated with its intracellular lifestyle as

many of the bacterial pathogens with strong siderophore-based

virulence defects are extracellular pathogens. For instance, a

Brucella abortus brucebactin deficient strain grew similarly to a wild-

type strain in a mouse macrophage model [60]. Intracellular

bacteria have access to iron sources such as ferritin or may live in

microaerophilic or anaerobic environments where iron is available

as Fe2+ and can thus be acquired by siderophore-independent

mechanisms [61]. Ferritin utilization may explain the unchanged

lethality of the mutant strains, but the specific strategy used by B.

pseudomallei to acquire host iron remains unclear.

Based on our results obtained thus far we favor a model by

which B. pseudomallei liberates iron from ferritin, possibly using a

secreted protease as previously demonstrated in B. cenocepacia [22].

Other players involved in ferritin-iron acquisition possibly include

ferric or ferrous iron-transport systems, iron reductases, or heme

oxygenases. Only a detailed genetic analysis of the ferritin-iron

acquisition pathway will reveal the players involved in this process

and shed light on the importance of this pathway in B.

pseudomallei’s pathogenicity. The work presented here provides

the framework for dissection of iron-acquisition pathways required

for in vivo survival of this highly versatile and adaptable pathogen.
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