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Abstract 

Background The potential of the application of artificial intelligence and biochemical markers of oxidative stress 
to predict the prognosis of older patients with gastric cancer (GC) remains unclear.

Methods This retrospective multicenter study included consecutive patients with GC aged ≥ 65 years treated 
between January 2012 and April 2018. The patients were allocated into three cohorts (training, internal, and exter-
nal validation). The GC-Integrated Oxidative Stress Score (GIOSS) was developed using Cox regression to correlate 
biochemical markers with patient prognosis. Predictive models for five-year overall survival (OS) were constructed 
using random forest (RF), decision tree (DT), and support vector machine (SVM) methods, and validated using area 
under the curve (AUC) and calibration plots. The SHapley Additive exPlanations (SHAP) method was used for model 
interpretation.

Results This study included a total of 1,859 older patients. The results demonstrated that a low GIOSS was a predic-
tor of poor prognosis. RF was the most efficient method, with AUCs of 0.999, 0.869, and 0.796 in the training, internal 
validation, and external validation sets, respectively. The DT and SVM models showed low AUC values. Calibration 
and decision curve analyses demonstrated the considerable clinical usefulness of the RF model. The SHAP results 
identified pN, pT, perineural invasion, tumor size, and GIOSS as key predictive features. An online web calculator 
was constructed based on the best model.
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Conclusions Incorporating the GIOSS, the RF model effectively predicts postoperative OS in older patients with GC 
and is a robust prognostic tool. Our findings emphasize the importance of oxidative stress in cancer prognosis 
and provide a pathway for improved management of GC.

Trial registration Retrospectively registered at ClinicalTrials.gov (trial registration number: NCT06208046, date of reg-
istration: 2024–05-01).
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Background
Gastric cancer (GC), which is prevalent and lethal 
among older individuals, is a global health concern 
[1]. Various complex factors influence the prognosis 
of older patients with GC; thus, traditional clinical and 
pathological metrics such as the tumor-node-metas-
tasis (TNM) staging system are less effective [2, 3]. 
Conventional methods have failed to address the intri-
cacies of this disease, particularly the variations in indi-
vidual biological characteristics. Systemic changes in 
the levels of biochemical markers including albumin 
(ALB), bilirubin, and uric acid (UA) are increasingly 
recognized for their significant roles in GC develop-
ment, progression, and prognosis, as well as their cor-
relation with degenerative aging processes [4–7]. These 
biochemical markers that indicate systemic oxidative 
stress, are hypothesized to have substantial value for 
predicting the prognosis of older patients with GC [8, 
9].

Oxidative stress is caused by the negative effects of free 
radicals in the body and is an important cause of aging 
and disease [10, 11]. Impaired antioxidant systems fre-
quently contribute to cancer development and elevated 
oxidative stress exacerbates cancer risk [9]. Conversely, 
mitigation of oxidative stress can help combat malignan-
cies, highlighting the importance of oxidative regulation 
in cancer prevention and treatment. Decreased cellular 
antioxidant enzyme activity renders older patients with 
GC more susceptible to oxidative stress [12], leading to 
DNA, protein, and lipid damage. This decrease exacer-
bates cellular aging and disease progression, including 
cancer [4, 13]. Moreover, oncological treatments such as 
radiotherapy and chemotherapy can amplify oxidative 
stress, posing additional risks to older patients by intensi-
fying oxidative damage [14].

Traditional modeling approaches often inadequately 
process and interpret extensive bioinformatic data, 
underscoring the need for innovative methods to 
enhance the prediction of GC prognosis by considering 
a wider array of biomarkers and patient health profiles. 
Supervised machine learning, a subset of artificial intelli-
gence, is increasingly favored because of its ability to dis-
cern complex, nonlinear patterns in large, varied datasets 
[15–17].

Given the significance of oxidative stress markers in 
GC, in the present study, we identified key biochemical 
markers and developed the novel GC-Integrated Oxida-
tive Stress Score (GIOSS). We examined the prognostic 
utility of the GIOSS and established three machine learn-
ing prognostic models based on the GIOSS to predict the 
five-year survival rate. Finally, we validated the model 
using an independent cohort study. The objective of this 
study was to develop a machine learning model to pre-
dict five-year postoperative survival and contribute to 
improved clinical decision-making. A model with strong 
predictive ability can provide individualized survival pre-
dictions for older patients with GC based on their clin-
icopathological data, enabling the implementation of 
targeted follow-up strategies.

Methods
Patient selection and research methodology
This multicenter, retrospective cohort study included 
four tertiary hospitals in China and 1,859 older patients 
with GC. These patients underwent radical gastrectomy 
and were registered in the gastric surgery databases 
across the participating centers between January 2012 
and April 2018 (Fig.  1). The inclusion criteria were: (1) 
biopsy-proven gastric adenocarcinoma, (2) age at diagno-
sis ≥ 65 years, (3) radical surgical resection, and (4) avail-
ability of complete clinical and pathological data. The 
exclusion criteria were: (1) postoperative pathology con-
firming non-gastric primary tumors, (2) distant metas-
tasis, (3) incomplete clinical data, and (4) the detection 
of other concurrent malignancies within five years. We 
employed a random sampling strategy to allocate patients 
from one of the clinical centers into training and internal 
validation sets at an 8:2 ratio (n = 1,367) [18, 19]. In par-
ticular, the ‘sample’ function was used to randomly select 
80% of the samples as the training set for the develop-
ment and enhancement of three machine learning mod-
els. The remaining 20% formed the internal validation 
cohort, which was used to evaluate the models and fine-
tune the hyperparameters. To compare the performances 
of the machine learning models, we conducted an exter-
nal validation using a validation dataset from three other 
clinical centers (n = 492). Event occurrence and censoring 



Page 3 of 12Zhang et al. BMC Cancer          (2025) 25:188  

timelines were established from the date of surgery to the 
last visit (death or final follow-up).

Candidate predictive variables
Comprehensive data on preoperative assessments, intra-
operative conditions, postoperative recovery, and patho-
logical examinations were collected. Routine blood and 
biochemical analyses were performed on admission. 
The clinical TNM stage was determined according to 
the eighth edition of the American Joint Committee on 
Cancer and the Union for International Cancer Control 
(AJCC/UICC) TNM staging system [20]. Biochemical 
indices were categorized based on optimal cutoff val-
ues determined by the X-tile software as low (below the 
cutoff) or high (above the cutoff) for analytical preci-
sion. Oxidative stress markers included ALB, total biliru-
bin (TBIL), direct bilirubin (DBIL), blood urea nitrogen 
(BUN), and UA [8, 21–23]. Using the training set, we 
developed a GIOSS derived from β coefficients via mul-
tivariate Cox analysis. Patients were stratified into risk 
groups according to GIOSS tertiles [24, 25], followed 

by validation in the training set and the entire study 
population.

The selection of additional clinically pertinent features 
for training machine learning models was determined 
through a consensus among researchers grounded in 
clinical reasoning, an extensive literature review, and 
their routine availability, ensuring the wide applicabil-
ity of the models across diverse clinical contexts. The 
detailed operational definitions of each variable are pro-
vided in Additional File 1.

Construction and establishment of the machine learning 
models
To predict five-year postoperative survival, we used ran-
dom forest (RF), decision tree (DT), and support vector 
machine (SVM) models, which were chosen for their 
proven effectiveness in analogous medical analyses [26]. 
For model building, we used the R package Tidymod-
els. To tune the hyperparameters of our classifiers, we 
used a grid search with cross-validation, which selected 
hyperparameters based on the model accuracy score. 
Cross-validation was integral to this process to optimize 
the complexity parameters and minimize errors. Model 

Fig. 1 Diagram representing the selection of the study population. a Derivation cohort; b External validation cohort
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performance was assessed using the area under the preci-
sion-recall curve (AUC). Calibration and decision curves 
were generated to test calibration performance and 
clinical utility. Finally, we employed the SHapley Addi-
tive exPlanations (SHAP) model to perform a post-hoc 
explainability analysis of the best-performing ML model.

Follow‑up
The patients underwent structured follow-ups every 
three months during the first two years and subsequently 
every six months for up to five years postoperatively. The 
final assessment was conducted in April 2024. The rou-
tine follow-ups typically include physical examinations, 
laboratory assessments, chest radiography, abdominal 
ultrasound or computed tomography (CT) scans, and 
annual endoscopy. The endpoint was five-year postop-
erative survival status, distinguishing patients who were 
alive or deceased at this time point.

Ethics approval and consent to participate
This retrospective study was conducted in accord-
ance with the principles of the Declaration of Helsinki 
and was approved by the Institutional Review Board 
of Fujian Medical University Union Hospital (approval 
number: 2023KY237), which waived the requirement 
for informed consent owing to the retrospective design. 
The study protocol was registered at ClinicalTrials.gov 
(NCT06208046). All results were reported in accordance 
with the Strengthening The Reporting Of Cohort Studies 
in Surgery (STROCSS) Guidelines [27].

Statistical analysis
Data analysis and graphing were performed using R ver-
sion 4.3.1. Continuous variables were compared using the 
independent samples t-test or Wilcoxon test depending 
on their normal distribution. Categorical variable distri-
butions were analyzed using Pearson’s χ2 test and Fisher’s 
exact test. Overall survival (OS) curves were generated 
using the Kaplan‒Meier method, and differences were 
assessed using the log-rank test. X-tile software v3.6.1 
(Yale University) was used to identify the optimal cutoff 
values for the selected indices [28]. The training data-
sets were used to refine the model parameters, whereas 
the independent validation sets were used to evaluate the 
performance of the trained model using the AUC and 
calibration curves. The DeLong test facilitated pairwise 
AUC comparisons among predictive models [29], with 
Holm‒Bonferroni correction for multiple comparisons.

Results
Study cohorts
The derivation and external validation cohorts included 
1367 and 492 older patients with GC, respectively 

(Table  1). The derivation cohort included 1082 men 
(79.2%) and 285 women (20.8%), with an average age of 
71.2 ± 5.0  years. Following an 8:2 ratio, the derivation 
cohort was randomly divided into a training set (n = 1093) 
and an internal validation set (n = 274). The train-
ing cohort included 861 (78.8%) men and 232 (21.2%) 
women, with an average age of 71.3 ± 5.1 years. The inter-
nal validation cohort comprised 221 men (80.7%) and 53 
women (19.3%), with an average age of 70.9 ± 4.9 years.

Among the training and internal validation sets, only 
pathological T stage differed significantly (p = 0.007), 
with no significant differences among the other vari-
ables (p > 0.05). Compared with the training cohort, the 
external validation cohort exhibited differences in most 
variables, including age, American Society of Anesthesi-
ologists (ASA) physical status, pathological T stage, and 
differentiation grade (all p < 0.05); however, sex, body 
mass index (BMI), pathological N stage, perineural inva-
sion, residual GC, and UA levels did not differ signifi-
cantly between the groups (Table 1, p > 0.05).

Regarding survival outcomes, approximately 40% of the 
patients in the derivation cohort died within five years 
postoperatively. The five-year OS rates in the training, 
internal validation, and external validation cohorts were 
60.2%, 59.1%, and 57.5%, respectively (Fig. 2A). Table S1 
(Additional File 2) presents the comparison of data 
between patients in the derivation and external valida-
tion cohorts who died and those who survived within five 
years postoperatively.

Creation of a novel oxidative stress score
In the training set, the optimal cutoff values for oxidative 
stress indicators determined using X-tile were as follows: 
ALB, 42.1  g/dL; TBIL, 8.3  μmol/L; DBIL, 2.8  μmol/L; 
BUN, 4 mg/dL; and UA, 395 μmol/L. These factors were 
then included in the Cox proportional hazards multi-
variate analysis, which revealed ALB, DBIL, and BUN 
as independent risk factors for five-year OS (Table  2). 
Based on the β coefficients, a prognostic model for the 
GIOSS was subsequently developed (GIOSS = 0–68 
ALB-20 TBIL-23 BUN) (Table  2). The patients were 
stratified into low (n = 427), medium (n = 396), and 
high- (n = 270) GIOSS groups based on tertiles of GIOSS 
(−88 and −43). Detailed stratification across the train-
ing, internal validation, and external validation cohorts 
elucidated the distribution of critical prognostic factors 
such as age, tumor size, and pathological stage among 
patients with varying GIOSS levels (Table S2, Additional 
File 3). Kaplan–Meier survival analysis revealed sig-
nificantly poorer survival rates in the low GIOSS group 
than in the medium and high GIOSS groups (p < 0.001; 
Fig.  2B). Multivariate regression analysis demonstrated 
that a low GIOSS was an independent risk factor for 
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Table 1 Characteristics of the derivation cohort and external validation set of older patients undergoing GC surgery

Derivation set External validation set
(n = 492)

P‑valueb

Training set
(n = 1093)

Internal validation set
(n = 274)

P‑valuea

Age, mean (SD), years 71.29 ± 5.07 70.93 ± 4.89 0.295 70.44 ± 4.39 0.001

Sex, male 861 (78.8) 221 (80.7) 0.547 382 (77.6) 0.659

BMI, mean (SD) 22.42 (3.16) 22.57 (3.29) 0.502 22.57 (3.44) 0.397

Previous abdominal surgery 200 (18.3) 51 (18.6) 0.974 39 (7.9)  < 0.001

Age-adjusted comorbidity index ≤ 2 384 (35.1) 90 (32.8) 0.522 215 (43.7) 0.001

ASA physical status 0.978  < 0.001

 1 53 (4.8) 13 (4.7) 14 (2.8)

 2 985 (90.1) 248 (90.5) 418 (85.0)

 3 55 (5.0) 13 (4.7) 60 (12.2)

Differentiation 0.502  < 0.001

 G1 62 (5.7) 21 (7.7) 38 (7.7)

 G2 471 (43.1) 120 (43.8) 165 (33.5)

 G3 501 (45.8) 122 (44.5) 285 (57.9)

 G4 59 (5.4) 11 (4.0) 4 (0.8)

Tumor size ≤ 5 cm 619 (56.6) 162 (59.1) 0.499 343 (69.7)  < 0.001

Location 0.511  < 0.001

 Low 421 (38.5) 110 (40.1) 200 (40.7)

 Middle 184 (16.8) 50 (18.2) 116 (23.6)

 Mixed 116 (10.6) 21 (7.7) 172 (35.0)

 Upper 372 (34.0) 93 (33.9) 4 (0.8)

pT 0.007  < 0.001

 1 200 (18.3) 75 (27.4) 97 (19.7)

 2 121 (11.1) 25 (9.1) 63 (12.8)

 3 460 (42.1) 97 (35.4) 90 (18.3)

 4 312 (28.5) 77 (28.1) 242 (49.2)

pN 0.144 0.193

 0 346 (31.7) 97 (35.4) 182 (37.0)

 1 194 (17.7) 40 (14.6) 84 (17.1)

 2 216 (19.8) 65 (23.7) 84 (17.1)

 3 337 (30.8) 72 (26.3) 142 (28.9)

pTNM 0.116  < 0.001

 I 235 (21.5) 75 (27.4) 175 (35.6)

 II 299 (27.4) 69 (25.2) 136 (27.6)

 III 559 (51.1) 130 (47.4) 181 (36.8)

Microvascular invasion 411 (37.6) 95 (34.7) 0.407 102 (20.7)  < 0.001

Perineural invasion 331 (30.3) 89 (32.5) 0.527 145 (29.5) 0.789

Lymphatic invasion 118 (10.8) 27 (9.9) 0.732 145 (29.5)  < 0.001

Open approach 101 (9.2) 27 (9.9) 0.845 196 (39.8)  < 0.001

Reconstruction 0.469  < 0.001

 Billroth-I 204 (18.7) 54 (19.7) 4 (0.8)

 Billroth-II 232 (21.2) 66 (24.1) 68 (13.8)

 Roux-en-Y 657 (60.1) 154 (56.2) 420 (85.4)

Neoadjuvant therapy 41 (3.8) 11 (4.0) 0.978 7 (1.4) 0.019

Adjuvant therapy 286 (26.2) 64 (23.4) 0.381 253 (51.4)  < 0.001

Emergency 26 (2.4) 4 (1.5) 0.485 3 (0.6) 0.026

Surgery duration ≤ 200 min 813 (74.4) 209 (76.3) 0.570 220 (44.7)  < 0.001

Blood ≥ 100 mL 329 (30.1) 76 (27.7) 0.489 467 (94.9)  < 0.001



Page 6 of 12Zhang et al. BMC Cancer          (2025) 25:188 

five-year OS (Table  S3, Additional File 4). Additionally, 
correlation analysis in both the derivation and external 
validation cohorts indicated that the GIOSS score was 
not strongly associated with other clinical or pathologi-
cal factors (Figure S1, Additional File 5). The age distri-
butions across the high, middle, and low GIOSS groups 
were comparable across the different groups, indicating 

consistent categorization across the different cohorts 
(Figure S2, Additional File 6).

Model performance: calibration performance and clinical 
utility
We incorporated the GIOSS into machine learning and 
constructed three models. Table  3 displays the AUC 

Table 1 (continued)

Derivation set External validation set
(n = 492)

P‑valueb

Training set
(n = 1093)

Internal validation set
(n = 274)

P‑valuea

Comprehensive Complication Index ≤ 26.2 222 (20.3) 55 (20.1) 0.997 459 (93.3)  < 0.001

Remnant stomach 12 (1.1) 4 (1.5) 0.854 6 (1.2) 1

ALB, mean (SD) 38.48 (5.11) 38.96 (4.73) 0.157 39.09 (4.56) 0.021

TBIL, mean (SD) 11.38 (6.44) 11.17 (5.82) 0.631 7.65 (4.55)  < 0.001

DBIL, mean (SD) 3.10 (1.41) 3.11 (1.42) 0.913 5.43 (4.56)  < 0.001

BUN, mean (SD) 5.26 (1.84) 5.38 (1.64) 0.335 5.12 (1.94) 0.175

UA, mean (SD) 330.95 (90.0) 341.79 (90.6) 0.075 300.15 (88.7)  < 0.001

GC gastric cancer, SD standard deviation, BMI Body mass index, ASA American Society of Anesthesiologists physical status, ALB albumin, TBIL total bilirubin, DBIL direct 
bilirubin, BUN blood urea nitrogen, UA uric acid
a training cohort vs. internal validation group
b derivation set vs. external validation group. Data are expressed as numbers (percentages) of participants unless otherwise indicated

Fig. 2 Kaplan–Meier survival curves stratified by cohort and GIOSS. a Survival curves for training, internal validation, and external validation cohorts; 
b Survival curves stratified by GIOSS. Abbreviations: RF, random forest; DT, decision tree; SVM, support vector machine
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values of these models for predicting five-year OS in the 
training, internal validation, and external validation sets. 
The AUC values for RF were 0.999 (95% confidence inter-
val [CI]: 0.999–1.000), 0.868 (95% CI: 0.826–0.911), and 
0.796 (95% CI: 0.755–0.837) for the training, internal val-
idation, and external validation sets, respectively. For DT, 
the AUC values were 0.784 (95% CI: 0.756–0.811), 0.796 
(95% CI: 0.741–0.850), and 0.741 (95% CI: 0.699–0.783), 
whereas SVM presented values of 0.832 (95% CI: 0.807–
0.856), 0.839 (95% CI: 0.789–0.890), and 0.789 (95% CI: 
0.748–0.830), respectively. Compared with the DT and 
SVM models, the RF model consistently exhibited supe-
rior AUC values across all datasets. Analysis of the ROC 
curves revealed the performance of the RF, DT, and SVM 
models across the training, internal validation, and exter-
nal validation sets (Fig.  3). Across all datasets, the RF 
model consistently demonstrated the highest AUC val-
ues, followed by the SVM model, whereas the DT model 
exhibited relatively lower performance.

Model performance: calibration and decision curves
The calibration curves revealed that the RF model per-
formed robustly across all datasets, with its predicted 
probabilities closely aligned with the observed event 
frequencies, notably in the higher probability ranges 
(Figure S3a,d,g, Additional File 7). In contrast, the DT 
model typically aligned predictions with the actual out-
comes; however, it exhibited slight deviations in external 
validation (Figure S3b/e/h, Additional File 7), possibly 
indicating overfitting to the training data and limited 

generalizability. Calibration of the SVM model closely 
approximated the 45-degree line in both the training and 
validation sets, with minimal deviations at certain prob-
ability intervals (Figure S3c,f,i, Additional File 7), reveal-
ing a consistent calibration in probability prediction. 
Furthermore, the results of the decision curve analysis 
indicated that the RF model yielded the highest net bene-
fit across most threshold probabilities in the training set, 
outperforming the similar but lower net benefits of the 
DT model and SVM (Figure S4a, Additional File 8). In the 
internal validation set, the RF model maintained greater 
net benefits across most thresholds, whereas the DT 
model and SVM showed similar but lower performances 
(Figure S4b, Additional File 8). Although all models 
exhibited reduced performance in the external validation 
set, the RF model outperformed the other models at most 
thresholds (Figure S4c, Additional File 8).

Model interpretation
To further examine the relationship between clinico-
pathological characteristics and prognosis, we analyzed 
the dependence plots of all features in mortality predic-
tion, as assessed by the SHAP values. In the RF model, 
the SHAP results revealed that the five most significant 
variables were pN stage, pT stage, perineural invasion, 
tumor size, and GIOSS (Figure S5, Additional File 9).

To explore the contribution of various features to the 
predictive model, we employed partial dependence plots 
to visualize how the model’s predictions were influenced 
by individual features while keeping all other variables 

Table 2 Cox regression models of biochemical markers in the training set

Gastric Cancer Integrated Oxidative Stress Score = 0–68*ALB-20*TBIL-23*BUN

Abbreviations: HR Hazard Ratio, ALB Albumin, TBIL Total Bilirubin, DBIL Direct Bilirubin, BUN, Blood Urea Nitrogen, UA Uric Acid

Univariate Cox regression Multivariate Cox regression

β HR P value β HR P value

ALB −0.754 0.470(0.363–0.610)  < 0.001 −0.680 0.506(0.388–0.662)  < 0.001

TBIL −0.353 0.703(0.580–0.852)  < 0.001 −0.199 0.820(0.673–0.998) 0.048

DBIL −0.165 0.848(0.703–1.023) 0.086

BUN −0.304 0.738(0.594–0.916) 0.006 −0.236 0.790(0.635–0.983) 0.034

UA −0.213 0.808(0.637–1.025) 0.079

Table 3 Areas under the receiver operating characteristic curves for five-year overall survival

Values are presented as observed area under the receiver operating characteristic curve (95% confidence interval)

Abbreviations: RF Random Forest, DT Decision Tree, SVM Support Vector Machine

RF DT SVM

Training set 0.999 (0.999—0.999) 0.784 (0.756—0.811) 0.832 (0.807—0.856)

Internal validation set 0.869 (0.826—0.911) 0.796 (0.741—0.851) 0.839 (0.789—0.890)

External validation set 0.796 (0.755—0.837) 0.741 (0.699—0.783) 0.789 (0.748—0.830)
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constant (Figure S6, Additional File 10). Lower GIOSS 
were associated with an increased average prediction of 
mortality risk.

We generated waterfall plots for all features to pre-
dict the mortality rates and examined the link between 
individual characteristics and patient prognosis. This 
machine-learning model allowed us to evaluate the five-
year overall mortality of randomly selected patients while 
simultaneously revealing the key characteristics (Fig. 4).

SHAP analysis revealed that higher feature values were 
associated with an increased risk of mortality, and fea-
tures with substantial weight were associated with life 
expectancy.

To support further validation and application, we 
developed a simplified interactive web tool for risk calcu-
lation using the top seven variables. This tool is available 
at https:// fmuuh. shiny apps. io/ GIOSS- based_ Survi val_ 
Calcu lator_ in_ Aged_ GC/. A snapshot of the online cal-
culator is shown in Figure S7 (Additional File 11).

Discussion
The five-year survival rate after GC surgery is an essen-
tial parameter for assessing the efficacy of long-term 
oncological surgical care [30]. Adults > 65  years of age 
face a unique set of biopsychosocial challenges [31, 
32]. The escalation of comorbidities, increased frailty, 

Fig. 3 Receiver operating characteristic curves for the three models. a Training set; b Internal validation set; c External validation set. Abbreviations: 
ROC, receiver operating characteristic; RF, random forest; DT, decision tree; SVM, support vector machine; AUC, area under the curve; CI, confidence 
interval

https://fmuuh.shinyapps.io/GIOSS-based_Survival_Calculator_in_Aged_GC/
https://fmuuh.shinyapps.io/GIOSS-based_Survival_Calculator_in_Aged_GC/
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diminished stress tolerance, and deterioration of physi-
cal and cognitive abilities significantly influence postop-
erative survival [33, 34]. This observation underscores 
the need for a sophisticated and individualized approach 
to post-surgical care and prognostic evaluation. To our 
knowledge, specific predictive models for five-year OS 
in older post-surgical patients with GC are currently 
lacking. Therefore, we investigated the five-year OS 
rate in this demographic population using machine-
learning approaches (DT, RF, and SVM). Our results 

demonstrated the superior efficacy of the RF model. 
Using this approach, clinicians can more accurately for-
mulate personalized treatment plans and conduct tar-
geted monitoring and follow-up, thereby enhancing the 
precision and effectiveness of patient management.

Animal model experiments have demonstrated that 
when mice are subjected to external stimuli, an oxida-
tive stress response is triggered, which is characterized by 
increased levels of oxidative stress factors and significant 
increases in the levels of biochemical markers, including 

Fig. 4 Waterfall plots for all features to predict mortality and links between characteristics and patient prognosis (a) True-positive, (b) True-negative, 
(c) False-positive, and (d) False-negative Samples from the training dataset on a probability scale
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TBIL, lactate dehydrogenase, creatinine, and BUN. Pro-
spective studies have indicated that oxidative stress leads 
to alterations in TBIL, ALB, and UA levels [23]. Moreo-
ver, patients who receive antioxidant therapy show lower 
mortality rates than those who do not [35]. Although 
oxidative stress is associated with cancer onset and pro-
gression, the use of biochemical markers to predict GC 
prognosis remains underexplored. Particularly, their 
effectiveness as potential indicators for improving the 
accuracy of prognostic prediction in older patients with 
GC warrants further investigation. Therefore, we propose 
the GIOSS as an indicator of oxidative stress. Our find-
ings revealed that patients with lower GIOSS scores had 
poorer prognoses than those with higher GIOSS. Cor-
relation analysis revealed that the GIOSS weakly over-
lapped with the age-adjusted comorbidity index score, 
which represents different aspects of a patient’s health 
status. The GIOSS was developed using a training cohort 
from one of our institutions, which facilitated the use 
of detailed clinical data and enabled long-term follow-
up. Therefore, we hypothesized that a predictive model 
incorporating GIOSS would more effectively predict the 
prognosis of older patients with GC.

Previous models, such as the Yonsei Gastric Cancer 
Prognosis Prediction Model [36], TNM staging system 
[37], and gene signature prediction models [38], have 
been used to predict the OS and prognosis of patients 
with GC. Woo et  al. developed a non-machine-learn-
ing predictive model for post-gastrectomy prognosis 
in patients with GC. This model demonstrated robust 
C-indices ranging from 0.798 to 0.868 across four exter-
nal validation cohorts in three different countries [36]. 
However, it exhibited only moderate discriminative accu-
racy when applied to the Surveillance, Epidemiology, 
and End Results (SEER) database [39]. Li et al. developed 
an SVM model that integrates nine clinicopathological 
factors [2]. This model achieved an AUC of 0.773 (95% 
CI: 0.708–0.838) for predicting the five-year OS and an 
AUC of 0.852 (95% CI: 0.810–0.894) in the validation 
group, effectively forecasting the efficacy of postoperative 
chemotherapy in stage II/III patients [2]. Similarly, the 
machine learning model by Rahman et al., which incor-
porated 29 clinical and pathological variables, exhibited 
outstanding performance in the internal validation set, 
achieving a 5-year time-dependent AUC of 0.80 (95% CI: 
0.78–0.82) [3].

The rigorous cross-validation performed in the pre-
sent study confirmed the higher AUC of the newly 
developed RF model compared with previous models. 
This enhancement is attributable to the comprehen-
sive incorporation of the physiological characteristics 
of older patients, including oxidative stress biochemi-
cal markers, age-adjusted comorbidity index [40], and a 

comprehensive complication index [41]. The integration 
of biochemical markers indicative of oxidative stress into 
the model highlights patients who may benefit from con-
tinuous therapies aimed at mitigating oxidative damage, 
thereby leading to novel therapeutic strategies. These 
factors were combined with pathological characteris-
tics such as pT, pN, and tumor location, offering a more 
detailed reflection of the traits specific to older patients 
with GC. Decision curve analysis is an invaluable tool for 
evaluating and comparing the efficacy of different models 
across various thresholds, thereby facilitating informed 
model selection and application. The RF model demon-
strated superior performance across the training, test-
ing, and validation datasets, indicating its potential to 
enhance generalizability. This model represents a signifi-
cant advance in predicting the five-year postoperative OS 
of older patients with GC, potentially assisting clinicians 
in enhancing the precision and effectiveness of patient 
management.

This model represents a significant advancement 
in predicting the five-year postoperative OS in older 
patients with GC. Potential therapeutic strategies based 
on the results of this study include personalized adjust-
ment of postoperative treatment plans, such as more 
tailored chemotherapy regimens for high-risk patients 
identified by the model, as well as closer monitoring and 
follow-up schedules to promptly address complications 
and recurrence. Additionally, integrating the RF model 
into clinical practice could aid in identifying patients who 
may benefit from adjunctive therapies targeting oxidative 
stress, thus improving overall patient management and 
outcomes. Similarly, earlier small-sample, single-center, 
retrospective studies introduced the concept of oxidative 
stress scores for patients with GC and used nomograms 
for their predictions [42, 43]. In contrast, our study col-
lected multidimensional data from a large sample of older 
patients across multiple centers. By leveraging advanced 
machine learning techniques, our study provides a more 
precise prognostic tool specifically tailored to this patient 
group.

This study has some limitations, primarily its retro-
spective nature and consequent inherent risk of selection 
bias. Prospective studies should be conducted to corrob-
orate our findings. Additionally, while the use of external 
data from three distinct hospitals as independent valida-
tion sets strengthened the generalizability of our models, 
these datasets may not fully capture the diversity of the 
older patient population with GC owing to geographic 
and institutional constraints. Moreover, our database 
lacked information on key factors known to influence 
GC outcomes, such as high-risk gene mutations, use of 
immunotherapy drugs, and socioeconomic status. The 
incorporation of these variables may enhance the model’s 
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performance. We aim to expand the scope of this study 
by incorporating more representative centers, thereby 
enhancing the representativeness and significance of 
our research findings. Future prospective studies should 
also implement stricter standardization of surgical pro-
cedures to eliminate biases resulting from differences in 
surgeon skills. Furthermore, these studies should explore 
the association between tissue oxidative stress markers 
and serum biochemical markers and validate the clinical 
application of dynamic changes in GIOSS.

Conclusion
The machine learning clinical prediction model devel-
oped using the GIOSS effectively predicted the postop-
erative prognosis of older patients with GC following 
curative surgery.
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