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Abstract. Statistical image analysis is an extensive field that includes
problems such as noise-reduction, de-blurring, feature enhancement, and
object detection/identification, to name a few. Bayesian image analysis
can improve image quality, by balancing a priori expectations of image
characteristics, with a model for the noise process via Bayes Theorem. We
have previously given a reformulation of the conventional Bayesian image
analysis paradigm in Fourier space, i.e. the prior distribution (the prior)
and likelihood are given in terms of spatial frequency signals. By spec-
ifying the Bayesian model in Fourier space, spatially correlated priors,
that are relatively difficult to model and compute in conventional image
space, can be efficiently modeled as a set of independent processes across
Fourier space. The originally inter-correlated and high-dimensional prob-
lem in image space is thereby broken down into a series of (trivially
parallelizable) independent one-dimensional problems. In this paper we
adapt this Fourier space process into a data-driven framework in which
the Fourier space priors are built empirically from a database of images
and then used to enhance future images. We will describe the data-driven
Bayesian image analysis in Fourier space (DD-BIFS) modeling approach,
illustrate it’s computational efficiency and speed. Finally, we give specific
applications of DD-BIFS to improve the quality of arterial-spin-labeling
(ASL) perfusion images via a database of human brain positron emission
tomography (PET) images.

Keywords: Bayesian image analysis - Data-driven priors + Fourier
space

1 Introduction

Bayesian image analysis models provide a solution for improving image qual-
ity in image reconstruction/enhancement problems by incorporating a priori
expectations of image characteristics along with a model for image noise. We
have previously presented an approach to reformulating the Bayesian Image
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analysis in Fourier Space (BIFS) [15]. Spatially correlated prior distributions
(priors) that are difficult to model and compute in conventional image space
can be modeled as independent across locations in Fourier space. The original
high-dimensional problem in image space is thereby broken down into a series of
one-dimensional problems, leading to easier specification and implementation,
and faster computation.

2 BIFS Modeling Framework

Consider x to be a true (or idealized) image that we wish to recover from a sub-
optimal image dataset y. (We use the common shorthand notation of not explic-
itly distinguishing the random variables and the corresponding image realizations
[5], i.e., we use lower case z and y throughout.) The Bayesian image analysis
paradigm incorporates a priori desired spatial characteristics (e.g., smoothness)
via a prior distribution for the true image z and defines the noise degradation
process via the likelihood.

Instead of the conventional Bayesian image analysis approach of generating
prior and likelihood models for the true image = based on image data y directly,
we formulate them via their discrete Fourier transforms representations: Fz and
Fy. After applying Bayes’ Theorem, the posterior becomes

w(Fx|Fy) < m(Fx)r(Fy|Fz). (1)

The key component of the BIFS formulation that leads to its useful prop-
erties of easy definition and computational speed, is that we define both the
prior and likelihood (and therefore the posterior) to consist of a set of indepen-
dent distributions across Fourier space locations. Desired spatial correlation in
image space is induced by allowing the parameters of the distributions to change
over Fourier space [18,20]. This independence definition can be contrasted with
conventional Bayesian image analysis using Markov random field (MRF) priors,
where Markovian neighborhood structures are used to induce correlation struc-
tures across pixels via joint or conditional distributional specifications [4,5,9].

When defining a spatially correlated prior in image space via a set of inde-
pendent processes across Fourier space, the full conditional posterior at a Fourier
space location k = (k;, k), or for volumetric data (kz, ky, k-), now only depends
on the prior at that location k, i.e.,

m(Fag|Fy) o< m(Fa)m(Fye|For), (2)

where we use Fxy, as shorthand for (Fz)i. The joint posterior density for the
image is then
m(Fz|Fy) < [ m(Far)m(Fynl Far), (3)
kEK

where K is the set of all Fourier space point locations.
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2.1 The Data-Driven BIFS Prior (DD-BIFS)

The standard process of generating the BIFS prior distribution given in Kornak
[15] is based on choosing a pair of distributions to be applied as priors at each
location in Fourier space (one for the modulus and the other for the argument
of the complex value signal) and a set of parameter functions to define how the
parameters of the distributions vary over Fourier space. In contrast, for the data-
driven approach, although we again choose the probability distribution forms
across Fourier space, the parameters are estimated empirically from a database
of transformed images. That is, all of the images in the database are Fourier
transformed, the data at each location in Fourier space are extracted, and the
distribution parameters for that Fourier space location are estimated from that
data. In this way empirical maps of parameter estimates is generated over space.
These parameter estimates are then used as the parameters for the prior at each
Fourier space location.

Separate priors and associated parameter functions are defined for each of
the modulus and argument of the complex value at each Fourier space location.
Working with the modulus and argument provides a more natural framework for
defining prior information at specific Fourier space locations (i.e., specific spatial
frequencies) than working with the real and imaginary components, because
prior information (e.g., smoothness, edges, or features of interest) most strongly
relates to the magnitude of the process involved.

2.2 BIFS Likelihood

As for the prior, the BIF likelihood is again modeled separately for the Modulus
and Argument of the signal at each Fourier space location. Because we model
based on independence across Fourier space points, a range of different noise
structures (defined in Fourier space) can readily be incorporated into the likeli-
hood 7(Fyg|Fzy). For example, the combination of independent and identically
distributed (i.i.d. ) zero mean Rayleigh noise/Rician likelihood [19] for the mod-
ulus with uniform argument on the circle in Fourier space corresponds to the
likelihood model of i.i.d. Gaussian noise in image space.

2.3 Posterior Estimation

It is at the posterior estimation stage that the computational gains of the
independent BIFS formulation are ultimately realized. Posterior estimation in
conventional Bayesian image analysis tends to focus on mazimum a posteri-
ori (MAP) estimation (minimizing a 0-1 loss function), because it is the most
computationally tractable. In the BIFS formulation the MAP estimate can be
estimated with added efficiency by maximizing the posterior distribution sepa-
rately at each Fourier space location and then taking the inverse Fourier trans-
form of the Fourier space MAP estimates, i.e, zyap = F 1 (Faymap) where
f.CEMAP = {ka,MAP, k = 1, N .,K} and ka,MAP = MaXFy, {7T(.7:£Ek|.7:yk)}
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This computational efficiency contrasts with conventional Bayesian image anal-
ysis, where even the most computationally convenient MAP estimate requires
iterative computation methods such as conjugate gradients or expectation-
maximization to obtain it.

2.4 Implementation of DD-BIFS
Implementation of DD-BIFS modeling requires the following steps:

1. Fast Fourier transform (FFT) all images in the database that are to be used
to build the DD-BIFS prior, i.e., from image space into Fourier space.

2. Choose the distributional form of the prior at each location in Fourier space

3. Estimate the parameters of the prior at each location in Fourier space using
the data from the corresponding Fourier space locations across the subjects
in the database.

4. Define the likelihood in Fourier space.

5. FFT the dataset to be reconstructed from image space into Fourier space.

6. Combine the DD-BIFS prior and likelihood for the image at each Fourier
space location via Bayes’ Theorem to generate the DD-BIFS posterior

7. Generate Fourier space MAP estimate by maximizing the posterior at each
Fourier space location.

8. Inverse FFT the Fourier space MAP estimate back to image space and display

3 Simulated Dataset Example — Lesion Enhancement

In this example we use simulations to drive the formulation of a DD-BIF'S prior
which is subsequently applied to independent data. We simulated 1000 256 x 256
images representing lesions/tumor patterns. The number of lesions was modeled
as a Poisson process and the lesions were simulated as randomly positioned trun-
cated Gaussian probability density functions (resembling bumps) with random
intensity, and standard deviation on each axis, and with correlation distributed
uniformly between —1 and 0, so that the process was anisotropic (i.e. so the
spatial autocorrelation was not uniform in all directions).
We use the following model applied at each Fourier space location:

— Gaussian (normal) prior for the modulus: Mod(Fzy) ~ N (uy, 77)

— Uniform prior on the circle for the argument: Arg(Fzy) ~ U(0,27) (uninfor-
mative prior)

— Gaussian noise model for the modulus Mod(ex) ~ N(0,0?)

— Uniform noise model for the argument Arg(e) ~ U(0, 27)

where €, is the complex noise at Fourier space location k. (Note this model is not
Gaussian noise in image space, for which we use a Rayleigh noise model/Rician
likelihood, for the modulus.)

The prior for the modulus at each Fourier space location was then generated
from the empirical estimates of the mean (u) and standard deviation (7) at



384 J. Kornak et al.

the corresponding location across the simulated datasets. The global posterior
mode was then be obtained by generating the posterior mode at each Fourier
space location based on conjugate Bayes for the Gaussian distribution [8] with
MOd((Ek’MAP) = (%ﬁ + %)/(%2 + %) and Arg(xkﬁMAp) = Arg(xk,MAp) (when
the prior for the argument is uhinformative).

Figure1 shows a single new realization (i.e. that was not included in the
simulation set) of the process at the top-left, the same image with added noise
at the top-right, a parameter function-based BIFS MAP reconstruction on the
bottom-left (approximating a pairwise absolute difference MRF prior Bayesian
reconstruction); and the DD-BIFS prior on the bottom-right. The parameter
function-based BIF'S prior does a reasonable job of enhancing lesions, in particu-
lar the blurred lesion furthest to the right. However, the DD-BIF'S reconstruction
clearly improves the enhancement of the simulated lesions beyond that of the
parameter function-based BIFS. The DD-BIFS reconstruction is able to better
retain the detail of the lesions, in particular, their non-isotropic elongated form.

Truth Truth + noise

problem specific

Fig. 1. Simulation study and reconstruction of lesion/tumor patterns. Top-left: new pro-
cess realization; top-right: with added noise; bottom left: pairwise difference prior approx-
imation BIF'S reconstruction; bottom right: simulation-driven BIFS reconstruction.
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It should be noted here that primary objective of the study lies with visual-
ization and not direct quantification of image intensities. If the clinical goal is
to detect tumors then the objective of reconstruction is to have visually clear
tumors that the radiologist can readily identify. Alternatively, if the goal is dif-
ferentiation of benign vs cancer tumors, the decision may be based on shape
characteristics so that accentuating them may help the clinician to visually dif-
ferentiate between the lesion types.

4 Perfusion/PET Imaging of the Brain Example

The overall objective of this study is to process arterial spin labeling (ASL)
perfusion MRI to enhance blood flow patterns in the brain associated with
frontotemporal lobar dementia (FTLD). ASL perfusion has been shown to be
sensitive to FTLD pathology, showing hypoperfusion in frontal regions, poten-
tially providing a cheaper and radiation free alternative to the conventional
(FDG)-PET (fluorodeoxyglucose positron emission tomography) [7,12]. Prelim-
inary data indicates that ASL based perfusion patterns associated with FTLD
are coherent with PET, albeit with reduced image quality due to increased noise
(Fig. 2). The objective of our BIFS modeling procedure is to improve ASL perfu-
sion maps toward the quality of PET by using a DD-BIFS prior generated from
a database of PET images.

Structural MRI Perfusion MRI FDG-PET

Fig. 2. Comparison ASL perfusion MRI and FDG-PET cerebro-blood-flow (CBF)
maps for the same subject.

4.1 Data

PET and ASL perfusion pairs for individuals acquired around the same time
are taken from the Frontotemporal Lobar Degeneration Neuroimaging Initia-
tive (FTLDNI), a multi-center biomarker trial aimed at identifying promising
markers as surrogate endpoints for FTLD disease progression in clinical trials.
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Structural MRI T1 and ASL Perfusion MRI Data: Volumetric MPRAGE
sequences at UCSF were used to acquire T1-weighted structural images of the
entire brain (Sagital slice orientation; slice thickness = 1.0 mm; slices per slab
= 160; in-plane resolution = 1.0 x 1.0 mm; matrix = 240 x 256; TR = 2,300
ms; TE = 2.98 ms; TI = 900 ms; flip angle = 9°). Pulsed ASL (PASL) imaging
was acquired using QUIPSSII with Thin-slice TI1 Periodic Saturation (Q2TIPS)
sequence incorporated in a PICORE (Proximal Inversion with Control of Off-
Resonance Effects) labeling scheme [16]. The periodic saturation pulses started
at the postlabeling delay inversion time TI1 = 700 ms after the in-plan presat-
uration radio infrequency pulse; the readout started at the postlabeling delay
inversion time TI2 = 1800 ms. The repetition and echo time were TR/TE =
2500/11 ms. Sixteen slices were acquired, each 6 mm thick with a 7.2mm center
to center distance and a matrix 64 x 56 of 4 x 4 mm? in-plane voxel resolution.

PET Data: PET data were acquired at the Lawrence Berkeley National Labo-
ratory on a Siemens ECAT EXACT HR scanner or a Siemens Biograph PET/CT
scanner. FDG was supplied by a radiopharmacy (IBA Molecular). Six emission
frames lasting 5 min each were acquired starting 30 min post-injection. Attenu-
ation correction was performed using a 10 min transmission scan on the ECAT
scanner or a low-dose CT scan on the Biograph, both being acquired prior to
PET acquisition. For both scanners, PET data were reconstructed using an
ordered subset expectation maximization algorithm with weighted attenuation
and images were smoothed with a 4 mm Gaussian kernel with scatter correc-
tion. Final resolution was calculated using Hoffman phantom: 7 x 7 x 7.5 mm
for ECAT and 6.5 x 6.5 x 7.25 mm for Biograph.

Pre-processing: Before any prepossessing of the images, all T1-weighted
images were visually inspected for quality control. Images with excessive motion
or image artifact were excluded. T1-weighted images underwent bias field correc-
tion using N3 algorithm, the segmentation was performed using SPM12 (Well-
come Trust Center for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.
uk/spm) unified segmentation [10]. A customized group template was gener-
ated from the segmented gray and white matter tissues and cerebrospinal fluid
by non-linear registration template generation using Large Deformation Diffeo-
morphic Metric Mapping framework [2]. Native subjects space gray and white
matter were geometrically normalized to the group template, modulated and
then smoothed in the group template. The applied smoothing used a Gaussian
kernel with 8 mm full width half maximum. All steps of the transformation were
carefully inspected from the native space to the group template. Linear and
non-linear transformations between the group template space and International
Consortium of Brain Mapping (ICBM) [17] was applied.

Frames of the ASL acquisition were corrected for motion, co-registered with
the first frame (MO) using FSL [13]. An automatic quality control process
removed tagged /untagged pairs of frames when the relative root mean square
(RMS) distance value between two consecutive frames was higher than 0.5 mm.
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The subject was dropped if this RMS value was higher than 1 mm. Differential
perfusion images were created by subtracting unlabeled from adjacent labeled
frames and averaging these subtraction images [1]. Susceptibility artifacts along
the phase-encoding direction were corrected for the MO frame and perfusion
map using ANTs [3] restricted to the coronal axis of the patient. Cerebral Blood
Flow (CBF) was calculated by applying the Buxton kinetic model to the perfu-
sion map [6]. CBF data was processed to obtain partial volume corrected maps
of gray matter perfusion, based on the tissue segmentation using transformation
matrix from T1 to MO as previously described [7,11,14]. Normalized CBF val-
ues were obtained by dividing the voxel CBF value by the mean Calacarin CBF
value region of interest. Calcarine was selected based on the observation that
FTD variants do not impact this area neither the acquisition field of view.

Analyses on partial volume corrected, non-partial volume corrected and nor-
malized perfusion images was performed in MNI space using the structural set
of geometric transformations and smoothed with an isotropic 12 mm Gaussian
kernel full width half maximum. All CBF images were visually inspected in the
native and MNI spaces. Poor quality images out of the field of view, with large
susceptibility or motion artifacts were removed from the study.

Finally, voxels in the ASL image were rescaled to match the dynamic range
of the PET images. To do this the voxels in the ASL were first ordered by
intensity, ignoring their spatial coordinates. Then a 10% random sample was
drawn from all the voxels in all the PET images of the database, and they were
ordered by intensity. The n’th brightest voxel in the ASL to be processed was
reassigned the intensity of the m’th brightest voxel in the PET sample, where

m = round (n * %), and where n, and n, are the sizes of the PET subsample

and the ASL image respectively, and n ranges from 0 to n, — 1.

4.2 Reconstruction Results

The same DD-BIFS model set as that used for the lesion simulation study.
101 subjects were used to build the PET prior and 1 individual with corre-
sponding ASL-perfusion scan was reserved for evaluation.

Figure 3 shows the results of the reconstruction of an individual’s ASL image.
In the top-left panel is the PET image that we would like to emulate and in the
top-right the corresponding original ASL perfusion MRI for the same individual.
In the bottom left the DD-BIFS prior reconstruction is displayed (with mask
applied) and at the bottom right is DD-BIF'S prior reconstruction with additional
shrinkage on the prior variance (specifically the standard deviation is multiplied
by a factor of 0.01). The reconstructed image does adjust the ASL-perfusion
MRI so that it emulates the characteristics of the PET, and shrinking the prior
variance (essentially putting more weight on the prior) serves to further move
the original ASL to an image that emulates what the clinician might see with
PET.

Ongoing work on this project will focus on performing full clinical validation
of DD-BIFS to assess clinical applicability as a surrogate for PET.
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Original PET Original ASL

Data-driven BIFS Scaled BIFS

Fig. 3. Individual reconstruction of ASL data to resemble PET. Top-left: Original PET
image; top-right: ASL for the same individual; bottom left: DD-BIFS prior reconstruc-
tion; bottom right: DD-BIFS reconstruction with additional shrinkage on the prior
variance.

5 Conclusion

The DD-BIFS modeling framework provides a powerful new approach to using
information available in large databases to improve reconstruction in individual
images. In particular, the independence across Fourier space specification allows
for fast and efficient computation which can be further improved with paral-
lelization. Additionally, the ability to efficiently use empirical prior information
from a database of images without the need for explicit modeling provides a
powerful approach to improving image quality. Our preliminary application to
the reconstruction of ASL perfusion MRI shows great promise and large-scale
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validation work is currently under way to determine its applicability in clinical
practice.

Acknowledgements. Thanks To: Renaud La Joie and Amelia Strom for providing
information on the PET dataset acquisitions.

References

10.

11.

12.

13.

14.

15.

16.

Aguirre, G., Detre, J., Zarahn, E., Alsop, D.: Experimental design and the relative
sensitivity of BOLD and perfusion fMRI. Neuroimage 15(3), 488-500 (2002)
Ashburner, J., Friston, K.J.: Diffeomorphic registration using geodesic shooting
and Gauss-Newton optimisation. NeuroImage 55(3), 954-967 (2011)

Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS).
Insight J. 2(365), 1-35 (2009)

Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with
discussion). J. Roy. Stat. Soc. Ser. B (Methodol.) 36(2), 192-236 (1974)

Besag, J.: Digital image processing: towards Bayesian image analysis. J. Appl. Stat.
16(3), 395-407 (1989)

Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation
changes during brain activation: the balloon model. Magn. Reson. Med. 39(6),
855-864 (1998)

Du, A.T., et al.: Hypoperfusion in frontotemporal dementia and Alzheimer disease
by arterial spin labeling MRI. Neurology 67(7), 1215-1220 (2006)

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.:
Bayesian Data Analysis, vol. 2. CRC Press, Boca Raton (2014)

Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6),
721-741 (1984)

Hallam, G.P., et al.: The neural correlates of emotion regulation by implementation
intentions. PLoS ONE 10(3), e0119500 (2015)

Hayasaka, S., et al.: A non-parametric approach for co-analysis of multi-modal
brain imaging data: application to Alzheimer’s disease. Neuroimage 30(3), 768—
779 (2006)

Hu, W.T., Wang, Z., Lee, V.M.Y., Trojanowski, J.Q., Detre, J.A., Grossman, M.:
Distinct cerebral perfusion patterns in FTLD and AD. Neurology 75(10), 881-888
(2010)

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL.
Neuroimage 62(2), 782-790 (2012)

Johnson, N., et al.: Pattern of cerebral hypoperfusion in Alzheimer disease and
mild cognitive impairment measured with arterial spin-labeling mr imaging: initial
experience. Radiology 234(3), 851-859 (2005)

Kornak, J.: Bayesian image analysis in fourier space (BIFS). In: JSM Proceedings,
Statistical in Imaging Section, Alexandria, VA, pp. 1487-1492. American Statistical
Association (2014)

Luh, W., Wong, E., Bandettini, P., Hyde, J., et al.: QUIPSS II with thin-slice TI
1 periodic saturation: a method for improving accuracy of quantitative perfusion
imaging using pulsed arterial spin labeling. Magn. Reson. Med. 41(6), 1246-1254
(1999)



390 J. Kornak et al.

17. Magzziotta, J.C., Toga, A., Evans, A., Fox, P., Lancaster, J., Woods, R.: A prob-
abilistic approach for mapping the human brain: the international consortium for
brain mapping (ICBM). In: Toga, A.W., Mazziotta, J.C. (eds.) Brain Mapping:
The Systems, pp. 141-156. Elsevier, Amsterdam (2000)

18. Peligrad, M., Utev, S.: Central limit theorem for stationary linear processes. Ann.
Probab. 34(4), 1608-1622 (2006)

19. Rice, S.0.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24(1), 46—
156 (1945)

20. Zeger, S.L.: Exploring an ozone spatial time series in the frequency domain. J. Am.
Stat. Assoc. 80(390), 323-331 (1985)



	Bayesian Image Analysis in Fourier Space Using Data-Driven Priors (DD-BIFS)
	1 Introduction
	2 BIFS Modeling Framework
	2.1 The Data-Driven BIFS Prior (DD-BIFS)
	2.2 BIFS Likelihood
	2.3 Posterior Estimation
	2.4 Implementation of DD-BIFS

	3 Simulated Dataset Example – Lesion Enhancement
	4 Perfusion/PET Imaging of the Brain Example
	4.1 Data
	4.2 Reconstruction Results

	5 Conclusion
	References




