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Tumors are a class of diseases characterized by altered genetic information and

uncontrolled growth. Sequencing technology provide researchers with a better

way to explore specific tumor pathogenesis. In recent years, single-cell

sequencing technology has shone in tumor research, especially in the study

of liver cancer, revealing phenomena that were unexplored by previous studies.

Single-cell sequencing (SCS) is a technique for sequencing the cellular genome,

transcriptome, epigenome, proteomics, or metabolomics after dissociation of

tissues into single cells. Compared with traditional bulk sequencing, single-cell

sequencing can dissect human tumors at single-cell resolution, finely delineate

different cell types, and reveal the heterogeneity of tumor cells. In view of the

diverse pathological types and complex pathogenesis of hepatocellular

carcinoma (HCC), the study of the heterogeneity among tumor cells can

help improve its clinical diagnosis, treatment and prognostic judgment. On

this basis, SCS has revolutionized our understanding of tumor heterogeneity,

tumor immune microenvironment, and clonal evolution of tumor cells. This

review summarizes the basic process and development of single-cell

sequencing technology and its increasing role in the field of hepatocellular

carcinoma.
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1 Introduction

Primary liver cancer (PLC) is one of the common gastrointestinal tract malignant

tumors, and its morbidity and mortality have been high (Sung et al., 2021). LPC is

histologically divided into three types: hepatocellular carcinoma (HCC), intrahepatic

cholangiocarcinoma (ICC) and mixed hepatocellular carcinoma (cHCC-CCA). HCC

accounts for more than 75% of PLC (McGlynn et al., 2015). China is a large country with

high morbidity of liver cancer, which accounts for more than 50% of the total number of

cases in the world (Zheng et al., 2018a). The current exploration of hepatocellular

carcinoma has progressed from morphological studies in the early years to studies at the

genetic level. As a disease closely associated with genetic material, tumors often show
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abnormal changes in cytogenetics and epigenetics, which are

considered the major determinants of cancer at the both

symptomatic and genetic levels (Lipinski et al., 2016). One of

the long-standing challenges in biology and medicine is

comprehensively characterize genotype-to-phenotype changes

(Li and Clevers, 2010). However, the transcriptome

information in any single cell reflects the activation of only a

subset of genes, even though all cells in our body share nearly the

same genotype (Huang, 2009). Furthermore, many different cell

types in our bodies express unique transcriptomes, traditional

bulk-sequencing are limited to measuring the average expression

signal of cells contained in the tissue being tested (Shalek et al.,

2014). A growing body of evidence further suggests that

intracellular gene expression or transcriptome information is

inconsistent even within similar cell types. However, at present,

most transcriptome analysis are still based on the hypothesis that

the genetic information of cells within the sampled tissue is

consistent (Eldar and Elowitz, 2010). Thus, these researches may

miss significant intercellular variability. For a better

understanding of the biological processes of tumor

progression, a more precise comprehension of the

heterogeneity of genetic information in single cells is critical

for elucidating their role in tissues and understanding how

abnormal gene expression contributes to tumor progression.

Recent research has shown that there are a large number of

gene mutations in the cellular genome of HCC, and the mutation

pattern is related to its epidemiological background (Kan et al.,

2013). Current studies suggest that the pathogenesis of HCC is

related to a certain degree of aberrant activation of telomerase

transcription, somatic mutation, and integration of hepatitis B

virus (HBV) DNA. Critical pathways and key oncogenes are also

involved in tumorigenesis. The intricate pathogenesis leads to

differences in HCC pathological types and therapeutic

susceptibility, resulting in significantly different prognoses

between patients (Shibata and Aburatani, 2014). This inter-

individual complexity of genome and pathology makes HCC

highly heterogeneous and poses great challenges for personalized

gene-based therapy of HCC patients.

2 Single-cell sequencing technology

Previous oncology studies have largely relied on sequencing

results from large tissue samples consisting of millions of cells,

therefore only focused on the average expression of specific

transcripts within the tissue. This type of study is influenced

by the expression level of each gene as well as the origin of

different sample tissues. In recent years, single-cell sequencing

based on next generation sequencing (NGS) has developed

rapidly. The first single-cell mRNA sequencing analysis was

performed in 2009 (Tang et al., 2009), the first single-cell

DNA sequencing analysis in human cancerous cells was

performed in 2011 (Navin et al., 2011), and the first single-

cell exome sequencing analysis was performed in 2012 (Hou

et al., 2012). Past research has suggested that single cells with the

same phenotype were regarded as the basic functional unit of a

tissue or organ, but complex heterogeneity between cells was

observed by deep sequencing of single cells. Single-cell

sequencing is currently most widely used for single-cell

transcriptomic sequencing technology (single-cell RNA-seq,

scRNA-seq), and has been widely used in research and some

clinical settings (Hwang et al., 2018). Sample preparation, single-

cell isolation, sequencing library construction, and data analysis

are key steps in the entire single-cell sequencing workflow.

2.1 Sample preparation

Compared to conventional sequencing, a unique feature of

single-cell sequencing is the requirement to obtain single cells in

a great condition. To avoid the effects of hypoxia and ischemia on

tissue and cellular status after separation from the organism,

common single-cell sequencing techniques initially require the

use of freshly isolated tissue for cell dissociation. However, in

practice, due to the restrictions of the required condition or

professional equipment, it may be arduous to process samples in

real-time. In addition, processing multiple samples after

collecting them at different times can lead to batch effects,

which can interfere with sequencing results (Lafzi et al., 2018).

The above-mentioned requirements for samples present certain

challenges for single-cell studies.

Traditional tissue preservation methods, such as ultra-low

temperature freezing (-80°C or liquid nitrogen storage), can lead

to intracellular crystallization and rupture of cell membranes,

which can affect subsequent single-cell sequencing. However, the

integrity of RNA molecules from cell lines or primary tissues can

be maintained for several months when stored at -80°C or in

liquid nitrogen with cryoprotectants (dimethyl sulfoxide or

serum-free cell cryopreservation medium) (Guillaumet-Adkins

et al., 2017). Furthermore, combining methanol fixation with

droplet-based single-cell approach, isolated cells can be stabilized

for several weeks while guaranteeing the accurateness of later

single-cell sequencing data (Alles et al., 2017). The sample

preservation methods described above allow the location and

timing of sampling to be independent of following processing

procedures, enabling the successful implementation of complex

experimental designs and expanding the range of samples that

can be sequenced.

Additionally, in the clinic, many of the tissue samples are

stored in Formalin-Fixed and Paraffin-Embedded (FFPE) blocks.

For several reasons, including variations in fixation and tissue

processing, FFPE samples may harbor greater variation in quality

than frozen samples, and researchers usually do not have much

control of those histologically collected samples (Gaffney et al.,

2018). The above factors complicate the study of FFPE blocks at

the molecular level, hindering their application in single-cell
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sequencing. However, due to its easy long-term storage

characteristics, many precious clinical samples are stored in

FFPE blocks. It is expected that researchers will find a suitable

solution to increase the utilization of FFPE blocks in the field of

single-cell sequencing.

2.2 Single-cell isolation

After more than a decade of development, the SCS

sequencing process has been continuously updated and

revised. The single-cell isolation technique is the first step in

obtaining genetic information from a single cell, and its progress

has greatly expanded the research in the field of single-cell

sequencing. Among them, limiting dilution analysis (LDA) is

the most simple but cumbersome method (Kalisky and Quake,

2011). Usually, only about one-third of the prepared well

information can be obtained in the well plate when diluted to

a concentration of 0.5 cells per well, which is inefficient. Capillary

extraction of cells under microscopic manipulation is only used

for embryology experiments or specific disease research, which is

time-consuming and low-throughput (Brehm-Stecher and

Johnson, 2004); Magnetic-positive cell sorting (MACS) or

flow-activated cell sorting (FACS) has become the most

common strategy for isolation of highly purified single cells

(Julius et al., 1972). This method begins by labeling cells with

monoclonal antibodies that recognize specific surface markers

and classify different cell subpopulations. Alternatively, for

unstained populations, negative selection can also be used to

obtain specific cell populations. Laser capture microdissection

(LCM) techniques use a laser system to separate cells from a solid

sample assisted by a computer system and can preserve the

original spatial information (Nichterwitz et al., 2016). However,

the disadvantage is that there is no guarantee that the obtained

sequencing information is from a single cell.

Microfluidics technology enables high-throughput

sequencing research and has become the most widely used

method for SCS research at this stage. It is popular for its low

sample consumption, low analytical costs, and ability to achieve

precise fluidic control (Whitesides, 2006). There are two main

types of microfluidics technology, one is the microfluidic-based

microplate (chip) technology. The commercial platform

Fluidigm C1 is widely used to provide automated single-cell

lysis, RNA extraction, and cDNA synthesis for up to 800 parallel

cells on a single chip. Compared to microtube-based techniques,

this platform provides lower errors and less deviations. However,

its main disadvantages include the low number of cells captured

(<1000) and the limitation of the size of the cells analyzed.

Another widely used single-cell isolation technique is droplet-

based microfluidics, which allows oil droplets to be

monodispersed in a continuous aqueous phase (Thorsen et al.,

2001; Utada et al., 2005). Compared to standard microfluidic-

based chip technology, this system requires a smaller volume,

enabling the manipulation and screening of thousands or even

millions of cells at a much lower cost. The commercial

Chromium system from 10× Genomics provides high-

throughput analysis of the 3′ ends of single-cell RNA with

high capture efficiency, making it the most widely used

method for single-cell sequencing today. A summary of each

single-cell isolation method is presented in Table 1.

2.3 Library construction

The steps required to construct a scRNA-seq library mainly

include cell lysis, first-strand reverse transcription, second-strand

synthesis, and cDNA amplification.

Cell lysis is usually performed in hypotonic buffer, followed

by poly(A)+ selection using poly (dT) primers to capture

messenger RNA (mRNA) in the cells. However, due to the

principle of Poisson distribution, only 10%–20% of transcripts

can be captured for reverse transcription at this step (Islam et al.,

2014). Low mRNA capture-efficiency is a great challenge in the

current scRNA-seq technology, requiring researchers to find and

develop efficient cell lysis strategies.

cDNA preparation includes two parts: first-strand reverse

transcription and second-strand synthesis. Currently, reverse

transcriptases with low RNase H activity and high

thermostability are often used for first-strand synthesis

(Gerard et al., 2002; Arezi and Hogrefe, 2009). The second-

strand is subsequently generated using poly(A) tailing

(Sasagawa et al., 2013) or through a template switching

mechanism (Islam et al., 2011; Ramsköld et al., 2012).

Finally, a small amount of synthetic cDNA is further

amplified using conventional PCR or in vitro transcription.

The in vitro transcription method (CEL-Seq) can be used to

amplify linear templates (Hashimshony et al., 2012), but the

whole process is time-consuming and prone to 3′ coverage bias
due to the need for additional reverse transcription (Jaitin

et al., 2014). Smart-seq2 (an improved version of Smart-seq)

generates full length transcripts and is therefore suitable for

discovering variable splicing events and allele-specific

expression using single nucleotide polymorphisms (Picelli

et al., 2013). Currently, Illumina platforms (e.g.,

HiSeq4000 a n d NextSeq500) are widely used for

sequencing steps. With the continuous improvement and

maturity of library construction technology, the efficiency is

greatly improved. In particular, the benchtop MiSeq sequencer

has a fast library construction speed, which greatly reduces the

turnaround time and can generate approximately 30 million

paired-end reads in a single day.

Deep sequencing analysis often requires the detection of

large numbers of cells. To reduce the sequencing cost, previous

methods only focus on the 5′ or 3′ end of the transcripts (Islam
et al., 2011; Hashimshony et al., 2012). More recently,

researchers have incorporated unique molecular identifiers
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(UMIs) or barcodes (random 4–8 bp sequences) in the reverse

transcription step (Islam et al., 2011; Hashimshony et al., 2012;

Macosko et al., 2015). Considering the presence of 105–106

mRNA molecules and >10,000 expressed genes in a single cell,

at least 4-bp UMI is required for sequencing library

construction. UMI can help remove PCR duplicates and

barcodes (random 4-8 bp sequences) can assign reads to

their original cells. Using this strategy, the accuracy can be

improved. However, current UMI tag-based methods only

sequence the 5′ or 3′ ends of transcripts. Therefore, they

are not suitable for the use of allele-specific expression. A

comparison of representative scRNA-seq library construction

methods is given in Table 2.

2.4 Single-nucleus RNA sequencing

The main challenge faced in scRNA-seq is the complex

experimental design. The tissue should be preserved intact or

dissociated as single-cell suspension, fixed by methanol or

formaldehyde. Cryopreserved or live cells and tissue should be

dissociated using trypsin, cold-active protease, or a traditional

method of digestion at 37°C (Aliya et al., 2022). The viability of

different cell types in the process of tissue dissociation could

introduce artifacts in cellular proportions or even completely lead

to the loss of certain cell types. Artifacts of stress responses, such

as heat-shock response, were observed in scRNAseq datasets that

involved tissue dissociation. These all alter the transcriptional

TABLE 1 Single cell separation method.

Item Pros Disadvantages References

Continuous dilution
method

Simple operation and low cost Low throughput, cellular attrition, difficult to filter target
cells

Kalisky and Quake, (2011)

Manual pipetting
aspiration

Simple operation and low cost low throughput Brehm-Stecher and Johnson,
(2004)

Machine microscopic
operation

Precise separation Inefficiency, equipment dependence and mechanical
damage

Guo et al. (2017)

MACS High throughput with high accuracy Prone to mechanical cell damage Injury, requires a large
number of cells

Guo and Cairns, (2019)

FACS High throughput with high accuracy Prone to mechanical cell damage Injury, requires a large
number of cells

Shapiro et al. (2013)

LCM High accuracy and sustain sample space information Low efficiency, high cost, susceptible to contamination
by adjacent cells

Nichterwitz et al. (2016)

Microfluidic Platform High throughput, high accuracy, mostly used in
commercial platforms

Requires a max limit of cell size Macosko et al. (2015)

MACS, magnetic-activated cell sorting; FACS, flow-activated cell sorting; LCM, laser capture microdissection.

TABLE 2 Comparison of different scRNA SEQ techniques.

Approach Sequencing
range

UMI Amplification
method

Distinction Bibliography

STRT-seq 5′ tag (TTS) Yes PCR High precision, sequence-dependent bias Islam et al. (2012)

Smart-seq/
seq2

Overall length None PCR High sensitivity, low efficiency Ramsköld et al., 2012; Picelli et al.,
2014

CEL- seq/seq2 Overall length Yes IVT High precision, sequence-dependent bias Hashimshony et al., 2012;
Hashimshony et al., 2016

Quarz-seq/
seq2

overall length None PCR High sensitivity, high reproducibility Sasagawa et al., 2013; Sasagawa et al.,
2018

MARS-seq 3′ tag (UTR) Yes IVT High sensitivity, high accuracy Jaitin et al. (2014)

Drop-seq 3′ tag (UTR) Yes PCR High efficiency, low cost, parallel analysis possible Macosko et al. (2015)

inDROP-seq 3′ tag (UTR) Yes IVT High throughput, low efficiency Klein et al. (2015)

Cyto-seq 3′ tag (UTR) Yes PCR Direct analysis of complex samples, which is relatively
expensive and time-consuming

Fan et al. (2015)

Seq-well 3′ tag (UTR) Yes PCR Portable, low cost, high throughput Gierahn et al. (2017)

SCI-RNA-seq 3′ tag (UTR) Yes PCR High-throughput, multi-round barcode combinations Vitak et al. (2017)

SPLit-seq 3′ tag (UTR) Yes PCR high efficiency Rosenberg et al. (2018)

UMI, unique molecular identifiers; PCR, polymerase chain reaction; IVT, in vitro transcription.
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profiles of the cell types. Single-nucleus RNA sequencing

(snRNA-seq) is an approach that bypasses the cell dissociation

step required for scRNA-seq by using detergents to release nuclei

from intact cells (Andrews et al., 2022). Enzyme-free isolation of

the cellular nucleus could avoid the various potential problems

described above. snRNA-seq sometimes enables the

identification of rare subtypes that are indistinguishable by

scRNA-seq (Andrews et al., 2022). However, T, B, and NK

cells are underrepresented in snRNA-seq data and is therefore

not recommended for studies in immune populations

(Denisenko et al., 2020; Andrews et al., 2022). Overall,

scRNAseq and snRNAseq could complement each other and

help provide a more accurate full picture. A comparison of those

two could be helpful in terms of understanding the results from

different studies and provide guidance for selecting the best

approach for one’s own study (Denisenko et al., 2020).

2.5 Single-cell DNA and epigenomics
sequencing

In addition to the single-cell transcriptome, currently, the

most widely used single-cell technologies are single-cell DNA

sequencing (scDNA-seq) and single-cell epigenomics sequencing

(scEpig-seq). A number of methods have been developed for

single-cell DNA and epigenomics studies. Due to different

amplification processes, the coverage, sensitivity, efficiency,

and accuracy of these methods differ from each other. The

characteristics and applications of the different methods are

summarized in Table 3 and Table 4.

Moreover, researchers are not limited to single-omics or

single-aspect studies in tumor research, but integrate multiple

omics into a single cell or link different aspects of the epigenome.

For example, two multitopic approaches, sn-m3C-seq (Lee et al.,

2019) and scMethyl-HiC (Li et al., 2019), have describedmethods

to obtain linked chromatin conformation and methylation data

from the same single cell, using bisulfite conversion of

crosslinked genomic DNA. The combination of DNA and

RNA sequencing of a single cell by DNA-mRNA sequencing

(DR-seq) (Dey et al., 2015) or genome and transcriptome

sequencing (G&T-seq) (Macaulay et al., 2015) can reveal

genomic variation between individual cells, thus explaining

changes in transcript levels. Techniques to analyze the

epigenome and transcriptome of the same cell have been used

to reveal the regulatory role of methylation and chromatin

accessibility in gene expression (Angermueller et al., 2016; Hu

et al., 2016). Furthermore, single-cell triomics sequencing

(scTrio-seq) has been developed to simultaneously obtain

information about the genome, DNA methylome and

transcriptome from a single cell (Hou et al., 2016).

In addition, spatial information is lost due to disruption of

tissue samples during single-cell sequencing, Single-cell spatial

TABLE 3 Comparison of different scDNA-seq technologies.

Method Scope Features Applications References

DOP-
PCR

Low Exponential amplification, simple and fast operation, sequence-dependent bias, high
allele loss rate

CNV Arneson et al., 2008; Huang et al.,
2015

MDA Middle Exponential amplification, High copy fidelity, Column-dependent bias, normalization
invalid

SNV Spits et al. (2006)

MALBAC High Linear amplification, high CNV detection accuracy, low false negative rate for SNV
testing

CNV and SNV Zong et al. (2012)

LIANTI High Exponential amplification, high genome coverage, high resolution of CNV CNV Chen et al. (2017)

DOP-PCR, degenerate oligonucleotide-primed polymerase chain reaction; MDA, multiple displacement amplification; MALBAC, multiple annealing and looping-based amplification

cycles; LIANTI, linear amplification via transposon insertion; CNV, copy number variation; SNV, single nucleotide polymorphisms.

TABLE 4 Comparison of different scEpig-seq technologies.

Approach Application Features Bibliography

scRRBS-seq DNA methylation Low throughput, low coverage Guo et al. (2015)

scBS-seq DNA methylation Low throughput, low coverage Smallwood et al. (2014)

scCGI-seq DNA methylation Low throughput, high coverage Han et al. (2017)

scChIL-seq Histone modification Low throughput, high coverage Harada et al. (2019)

scCUT&tag Histone modification High throughput, low coverage Kaya-Okur et al. (2019)

scChIC-seq Histone modification Low throughput, low coverage Ku et al. (2019)

scATAC-seq Chromatin isomerization High throughput, high coverage Buenrostro et al. (2015)
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transcriptomics, which combines scRNA-seq with spatial

transcriptomics (ST), can help solve this problem (Longo

et al., 2021). It preserves the native structure and interactions

of cells within a tissue, helps to profile RNA expression in their

native site, deepening our understanding of disease pathogenesis

(Ramachandran et al., 2020). Of course, besides the single-cell

sequencing-based approach, multiplexed single-molecule FISH-

based approaches in spatial transcriptomics, such as Multiplex

Error Robust Fluorescent In Situ Hybridization (MERFISH)

(Chen et al., 2015) and Sequential FISH+ (seqFISH+) (Eng

et al., 2019), also provide important information at the single

cell resolution while preserving the spatial information.

In recent years, research utilizing SCS technology have

exploded due to its ability to process a large number of

samples and identify unknown cell types compared to

traditional sequencing techniques (Proserpio and Lönnberg,

2016). Furthermore, pseudo time analysis via SCS

visualization can explore possible cellular origins and delineate

cell lineage trajectories in detail (Pijuan-Sala et al., 2019), and

SCS has been widely used to explore the mechanism of

tumorigenesis and metastasis, thereby improving the diagnosis

and treatment of cancer (Navin et al., 2011).

3 Single-cell sequencing analysis of
normal liver

Single-cell sequencing was primarily used in embryology

and developmental research in the early days. Some scholars

have used scRNA-seq to measure the full-length

transcriptome of thousands of mouse hepatocytes, and used

single-molecule fluorescence in situ hybridization (smFISH)

to label specifically expressed genes to infer the specific

distribution coordinates of cells in the hepatic lobules.

Finally, a high spatial resolution zonal map of liver genes

was obtained and significant regional expression was found in

approximately 50% of liver genes (Halpern et al., 2017). Liver

is the immunologically privileged organ of the human body.

Some scholars selected liver samples from liver transplant

donors and conducted a study on liver-resident immune

cells (LrIC) after screening by CD45+ cells, which revealed

the distribution rules and specific expression genes of T/NK

cells, B cells, monocytes/macrophages (Zhao et al., 2020). In

2018, Toronto Hospital mapped the transcriptional profile of

the human liver microenvironment through the

transcriptional profiles of 8,444 parenchymal and non-

parenchymal cells isolated from fresh tissues from 5 human

livers, and for the first time described distinct macrophage

populations in the human liver and identified their unique

functional pathways (MacParland et al., 2018). In addition,

some scholars explained the specific mechanism of the liver in

adapting the immune cell network to maintain the body’s

immune barrier through SCS (Stamataki and Swadling, 2020).

In 2021, a study summarizes, integrates, and analyzes five

scRNA-seq datasets and provides an interactive Open Access

online cell browser for easy access to gene expression data

from 28 healthy human livers (Brancale and Vilarinho, 2021).

It provides highly valuable information for further insight into

the transcriptomic architecture and stability of human liver in

physiological conditions. A systematic comparison of matched

scRNA-seq and snRNA-seq has provided high-resolution

maps of parenchymal cell populations in healthy human

livers and detected rare subtypes of cholangiocytes and

mesenchymal cells (Andrews et al., 2022). In studies of

human liver development, scRNA-seq analysis of human

fetal and adult livers has described the developmental

trajectories of the different cell types that make up the

human liver (Wesley et al., 2022). Analysis of the structure

and spatial location of the normal liver contributes to the study

of the pathophysiology of liver diseases, especially liver cancer.

4 Heterogeneity of liver cancer tumor
cells

The existence of intratumor heterogeneity (ITH) was first

described in the 1800s by the pathologist Rudolf Virchow, who

observed microscopic inconsistencies in tumor cell morphology

(Brown and Fee, 2006). Tumor heterogeneity, proposed by Fidler

in 1977, is an important feature of malignancy (Fidler and

Kripke, 1977). Tumor heterogeneity may be manifested by

differences in clinicopathological type and degree of

differentiation; Differences in the genome, transcriptome, and

epigenome on a molecular basis, Differences in tumor cell

aggressiveness, growth rate, and immune evasion in each

patient; And differences in morbidity, mortality, and

treatment sensitivity by country, ethnicity, race, gender, etc.

All above factors lead to enormous challenges in the lengthy

treatment process of tumors. HCC is one of the most

heterogeneous tumors, and t traditional histology-based

genome or transcriptome sequencing is difficult to elucidate

the tumor’s genetic material alterations (Lu et al., 2016).

Compared with traditional sequencing technologies, the most

significant advantage of single-cell sequencing technology is the

analysis of intercellular heterogeneity. We summarize the major

single-cell hepatocellular carcinoma studies in recent years, as

shown in Table 5.

4.1 Genetic mutations drive hepatocellular
carcinoma tumor cell heterogeneity

Currently, the most widely accepted genetic theory is that

tumorigenesis arises from the accumulation of somatic

mutations, that is, tumors are formed by abnormal

evolutionary accumulation of somatic mutations
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TABLE 5 Overview of recent studies on the tumor microenvironment of hepatocellular carcinoma at the single-cell level.

Year Study Methods Sample Summary

2016 Hou et al.
(2016)

scTrio-seq (scRNA-seq, CNV, DNA
methylation)

HCC tumor tissue Multi-omics HCC heterogeneity analysis. Two
subpopulations of HCC cells were identified using a tri-
omics approach of single cell transcriptome sequencing,
CNV analysis, and DNA methylation sequencing

2017 Zheng et al.
(2017)

RNA-seq, scRNA-seq (SMART-seq), TCR
profiling

HCC Tumor tissue, paracancerous
tissue, peripheral blood

Single cell analysis against HCC T cells. Different
subpopulations of T cells can be detected in the tumor
microenvironment. Trajectory analysis revealed a
transition from naive T cells to depleted or cytotoxic
T cells.TCR sequencing revealed the distribution of T cells
in the tumor. LAYN as a suppressor marker gene for
depleted CD8+ T cells and Treg expression

2017 Shi et al.
(2017)

TCR-seq, WES, multiregional HCC Tumor tissue, paracancerous
tissue, peripheral blood

Multi-omics and immunologic library studies targeting
tumor-infiltrating lymphocytes (TILs). Spatial
heterogeneity of intratumoral T cell subpopulations exists.
tIL diversity correlates with immune response, but not
with mutational load

2018 Duan et al.
(2018)

Single-cell genome sequencing HBV-related HCC tissue HCC single-cell genome analysis. Clonal evolution and
HBV integration are early events in HCC development.
The genome remains stable during tumor progression.
Early intrahepatic spread of an initiating HCC clonal
subpopulation leads to multifocal tumor formation

2018 Zheng et al.
(2018b)

scRNA-seq (SMART-seq) HCC Tissue tumor and HCC cell lines HCC CSC Study. Cancer stem cells exhibit a high degree of
heterogeneity. When analyzed by applying bulk
sequencing data, the genetic signature produced by cancer
stem cells can be found to correlate with patient survival

2019 Zhang et al.
(2019a)

WES, RNA-seq, MS, Metabolomics, CyTOF,
scRNA-seq (microwell seq) multiregional

HCC Tumor tissue, paracancerous
tissue, peripheral blood

Multi-omics HCC heterogeneity analysis. The multi-
omics study classified hepatocellular carcinoma into
3 subtypes: immune activation, immunodeficiency, and
immunosuppression. Immunome and metabolome
corresponded to subtypes more precisely than
transcriptome and proteome. The study did not identify
metabolomics-related targets, but their status correlated
with immune cell subsets

2019 Ma et al.
(2019)

scRNA-seq HCC, iCCA Tumor tissue Single-cell analysis reveals intra-tumor heterogeneity of
tumor cells. The greater the transcriptome heterogeneity,
the shorter the overall survival of patients. A link between
hypoxia-dependent vascular endothelial growth factor
(VEGF) expression in tumors and TME was identified

2019 Zhang et al.
(2019b)

scRNA-seq (10xGenomics+Smart Seq) HCC Tumor tissue, paracancerous
tissue, liver lymph nodes, peripheral
blood, ascites

Single cell transcriptome analysis for HCC CD45+

immune cells. SMART-seq is able to distinguish closely
related cell subpopulations, while 10x Genomics can be
used to analyze rare cell populations with low cell
numbers. LAMP3+ DCs are mature DCs from the tumor
to the local LN and play a major role in T-cell activation.
Different macrophage subpopulations exist in tumors,
among which tumor-associated macrophages (TAM) are
closely associated with survival prognosis

2019 Ho et al.
(2019)

scRNA-seq Tumour tissue (PDTX model) HCC CSC Study. A study of tumor heterogeneity and
stemness-associated HCC subgroups in hepatocellular
carcinoma. A rare CD24+CD44+ subpopulation of HCC
with specific oncogenic features was identified in EPCAM+

tumor cells

2019 Duan et al.
(2019)

Flow cytometry, RNA-seq HCC Tumor tissue, paracancerous
tissue, peripheral blood

Analysis against HCC MAIT cells. Intratumoral
MAIT cells expressed an effector memory phenotype and
they exhibited significantly elevated heterogeneous
molecules (PD-1, TIM-3, CTLA-4) while secreted IFNγ
and IL-17 were significantly reduced

2020 Losic et al.
(2020)

RNA-seq, DNA-seq, scRNA-seq, TCR-Seq,
SNP Array

HCC Tumor tissue, paracancerous
tissue

Multi-omics HCC heterogeneity analysis. RNA-seq,
DNA-seq, TCR-seq and SNP array data from multiple
regions of liver cancer samples to map spatio-temporal
interactions between cancer and immune cells

(Continued on following page)
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(McGranahan and Swanton, 2017). Copy-number variant

(CNV) at the single-cell level are able to distinguish malignant

from non-malignant cells, enabling single-cell analysis that is not

possible with bulk-seq. There is a high degree of genetic

heterogeneity within and between different tumor cell subsets,

and in some tumors there are significant differences between

primary tumor cell subsets and metastatic tumor cell subsets

(Park et al., 2010). Tumor cell CNVs caused by genomic

instability are a major feature of early tumor heterogeneity.

Some scholars have explored how CNVs help tumor cells

evolve in HCC and revealed a new biphasic copy number

evolution model for HCC(100). Single-cell genome sequencing

revealed distinct patterns of HBV-related HCC clonal evolution,

and found that specific HCC tumor cells could be of monoclonal

or polyclonal origin; and found that polyclonal tumors had a

typical fused multinodular morphology and are the class of

tumors with the highest intratumoral heterogeneity (Duan

et al., 2018).

Intratumoral heterogeneity (ITH) is the main reason for

the failure of targeted therapy and immunotherapy in HCC.

Perturbations and Darwinian evolution among tumor cell sub-

clonal populations drive the continuous evolution of newly

generated tumor cells on a pre-existing genetic background

(Saunders et al., 2012). However, in addition to tumor cell own

mutations (intrinsic drivers), some nongenetic factors (tumor

microenvironment, TME) also significantly increase tumor

cell variability, resulting in a complex and evolving tumor cell

population. Some scholars integrated RNA-seq, DNA

sequencing, TCR-seq, and SNP array data from multiple

regions of liver cancer samples to map the spatiotemporal

interactions between cancer and immune cells. How these

interactions reflect intra-tumor heterogeneity was investigated

by correlating regional neoepitopes and viral antigen load with

regional adaptive immune responses. Researchers have found

that correlating different region-specific expression, viral

antigen load, and regional adaptive immune responses can

TABLE 5 (Continued) Overview of recent studies on the tumor microenvironment of hepatocellular carcinoma at the single-cell level.

Year Study Methods Sample Summary

2020 Zheng et al.
(2020)

CyTOF analysis, scRNA seq (10xGenomics),
TCR profiling

HCC Tumor tissue (T), tumor margin
(L), paracancerous tissue (N)

Single cell analysis for CD4+/CD8+ T cells in HCC. CD4/
CD8 double-positive T cells were enriched at the tumor
margin and co-expressed with PD-1/HLA-DR/ICOS/
CD45RO; 11 CD4+/CD8+ T cell subsets with different
cytotoxicity, depletion and activation scores were further
described

2021 Sun et al.
(2021a)

scRNA-seq, snRNA-seq Primary and early recurrent HCC
Tumor tissue, paracancerous tissue

Single-cell study of early recurrent hepatocellular
carcinoma. Early recurrent hepatocellular carcinoma had
reduced Tregs, increased dendritic cells, and increased
intratumoral infiltration of CD8+ T cells. T cells in
recurrent tumors overexpressed KLRB1 (CD161) and
exhibited an innate immune-like hypo cytotoxic state. The
number of these cells correlated with prognosis

2021 Ho et al.
(2021)

scRNA-seq (10xGenomics) HBV-related HCC tissue Analysis of tumor heterogeneity and immune
microenvironment in single-cell transcriptomic HCC.
Tumor-associated macrophages were found to suppress
T-cell infiltration and regulate the immunosuppressive
environment through TIGIT-NECTIN2 interactions

2021 Dong et al.
(2021)

SMART-seq 2 HCC Tumor tissue, paraneoplastic
tissue

Single-cell studies of tumor cell heterogeneity in HCC. The
authors identified heterogeneous sub clones of tumor cells
in HCC tissues, including 5 HCC and 2 hepatocyte
subpopulations, and found that MLX interacting protein-
like (MLXIPL) was usually upregulated in HCC single cells
and tissues and correlated with prognosis in patients with
hepatocellular carcinoma

2021 Sun et al.
(2021b)

SMART-seq2 Circulating tumor cells (CTC), HCC
cell line

HCC CTC single-cell analysis. CTCs in the blood of HCC
patients are associated with stress response, cell cycle and
immune evasion. In addition, CCL5 expression in CTCs
was found to be regulated by p38-MAX; CTCs recruit
Tregs via CCL5 to facilitate immune escape and distant
metastatic dissemination

2022 Guo et al.
(2022)

scRNA-seq (10xGenomics), scDNA-seq HCC Tumor tissue, paracancerous
tissue

CNV evolutionary studies of single cell genomic and
transcriptomic HCC. The study validated the biphasic
copy number evolution model of HCC; ploidy-resolved
scDNA-seq revealed a common clonal origin of diploid
and polyploid aneuploid cells, suggesting that polyploid
tumor cells arise from genome-wide doubling of diploid
tumor cells
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reflect the causes of ITH(94). The above findings suggest that

the intrinsic genetic variation of tumor cells is the main

driving force of heterogeneity, and the extrinsic

microenvironment acts together to promote the increase of

tumor heterogeneity, which ultimately leads to the failure of

targeted therapy and immunotherapy and tumor progression

of HCC.

4.2 Hepatocellular carcinoma tumor
spatial heterogeneity

The spatial heterogeneity of tumors is often thought to result

from branched clonal evolution driven by random mutations

that accumulate in different regions during solid tumor

development (Davis et al., 2017). The spatial heterogeneity of

tumors is reflected in that tumor cells at the tumormargin exhibit

high invasive andmetastatic characteristics, while cells within the

tumor tissue maximize self-proliferation by promoting

angiogenesis and increasing metabolism. Multi-omics fusion

studies have found that the genome, transcriptome, proteome,

and metabolome of HCC take the partial area in the

microenvironment as the unit, and there is great heterogeneity

in different areas (Guo et al., 2022).

Although single-cell transcriptomics can be finely divided

into different cell types for analysis, the isolation of single cells

destroys information about their spatial localization in natural

tissues and their proximity to each other, which will lose the

original spatial information and fail to reveal local networks of

in situ intercellular communication. Recently, scRNA-seq

combined with Spatial Transcriptomics (ST) has provided a

new solution (Longo et al., 2021). The Fudan Zhongshan

Cohort Study sequenced 97 paired samples using scRNA-

seq and ST and found that the formation of metastatic

microenvironment was mainly due to the

immunosuppressive effect of MRC1+ CCL18+ M2-like

macrophages, resulting in significant spatial reprogramming

in the liver (Wu et al., 2022). Analysis of the spatial

characteristics of the tumor microenvironment (TME) in

primary liver cancer revealed that the envelope of some

tumors affects the continuity of cell clusters at spatial

locations within the tumor, resulting in tumor cell

transcriptome diversity and suppression of immune cell

infiltration in the microenvironment. And the study found

that at the boundary between tumor and peripheral tissue, the

bidirectional interaction of ligand-receptor help to maintain

the intratumoral structure and the spatial distribution of

PROM1+ and CD47+ CSCs; this process is associated with

TME remodeling and tumor metastasis (Wu et al., 2021). The

above studies suggest that HCC spatial heterogeneity

significantly affects tumor progression, leading to regional

imbalance of immune cells and consequently to remodeling

of the tumor microenvironment in HCC.

4.3 Tumor stem cell and circulating tumor
cell research

Local area spread or distant metastasis of tumor is the main

reason for the poor prognosis of cancer patients. The formation

and occurrence mechanism of tumor spread and metastasis have

not been fully revealed, which greatly limits the possibility of

prolonging the survival time of tumor patients. However, the

discovery of circulating tumor cells (CTCs), which lead to distant

dissemination of tumors, and cancer stem cells (CSCs), which are

required to maintain tumor growth, has revealed a possible

mechanism for the metastatic cascade response. For this

reason, CSC and CTC are becoming a hot topic of research in

the field of hepatocellular carcinoma. It has been found that the

intratumoral molecular heterogeneity of HCC is partly

attributable to the presence of CSCs, and that CSCs at the

single-cell level are phenotypically, functionally, and

transcriptomically heterogeneous (Zheng et al., 2018b). In

addition, some scholars have found that CD24+/CD44+-

EPCAM+ cell subsets have specific gene expression profiles,

and these stemness-related cell subclones in HCC enable

tumor cells to acquire great genetic richness, leading to the

failure of HCC targeted therapy (Ho et al., 2019). In addition,

single-cell analysis of CTCs from different sources in HCC

patients found that chemokine CCL5 is an important

mediator of CTC immune escape (Sun et al., 2021b).

Overexpression of CCL5 in CTCs is transcriptionally

regulated by p38-MAX signaling, which recruits Tregs to

facilitate immune escape and metastatic seeding of CTCs (Sun

et al., 2021b).

5 Immunemicroenvironment for liver
cancer tumors

Immune heterogeneity is an important aspect of tumor

heterogeneity and is associated with drug resistance and

immunotherapy. As shown in Figure 1, scRNA-seq confirmed

that tumor tissue contains a complex immune component,

including Innate immune cells such as dendritic cells (DC),

immature dendritic cells (iDC), activated dendritic cells

(aDC), eosinophils and neutrophils, mast cells, macrophages,

natural killer cells (NK; NKCD56- cells, NKCD56+ cells);

Adaptive immune cells such as T helper cells Th1 and Th2,

regulatory T cells (Treg), CD8+ T cells, central memory T cell

(Tcm), memory effector T cell (Tem), T follicular helper cells

(Tfh), γδ T cell, etc. The above-mentioned immune cells play

their unique roles together in the microenvironment and

constitute a complex and variable tumor immune

microenvironment (TIME).

TIME plays a very important role in tumor heterogeneity and

tumor progression (Wei et al., 2021). On the basis of the

accumulation of random mutations in tumor cells during
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tumor development, there are differences in the immune effects

of different regions of the tumor caused by TIME, and the

evolution of tumor cell subclonal populations driven by this

process is believed to be themain cause of the formation of spatial

heterogeneity of HCC tumors (Lloyd et al., 2016). It is the

selective role of the tumor microenvironment of liver cancer

that leads to the continuous evolution of tumor cells toward the

direction of optimal phenotypic characteristics, that is, the

survival of a large number of well-adapted tumor cells (Lee

et al., 2011). It has been proposed that the rate of tumor

progression depends on a complex interaction between genetic

and environmental factors (Wallace et al., 2015).

For the study of the immune microenvironment in HCC, SCS

allows for more precise targeting of specific immune cell

subpopulations. In 2017, The Center for Frontier Innovation in

Biomedicine at Peking University selected T cells in HCC patients

for deep single cell RNA sequencing, identified 11 T cell subsets

based on their molecular and functional properties and delineated

their developmental trajectories, and the genes characteristics of

each subset were finally identified; And found that layilin was

upregulated in activated CD8+ T cells and Tregs, and inhibited

the function of CD8+ T cells in vitro (Zheng et al., 2017). In 2019, the

same research team performed Single-cell sequencing of CD45+

immune cells selected from HCC tumors, liver lymph nodes (LN),

blood and ascites, compared the two methods of SMART-seq and

10x Genomics, revealed that LAMP3+ DCs were mature DCs from

tumor to local LN and play amajor role in T-cell activation; different

macrophage subpopulations exist in tumors, among which tumor-

associated macrophages (TAM) are associated with the survival

prognosis of HCC patients (Zhang et al., 2019b). Single-cell level

studies have been conducted onHCCmucosa associated invariant T

(MAIT) cells and found that MAIT cells were significantly enriched

in the HCC microenvironment with upregulated expression of

suppressor molecules such as PD-1, CTLA-4, and TIM-3, which

correlated with poor clinical outcomes (Duan et al., 2019). Studies

have found that TCR repertoires within a single tumor are low in

similarity, and tumor-infiltrating lymphocyte (TIL) subsets differ

between different regions of the same tumor; I Furthermore,

correlation analysis showed that TIL diversity was significantly

correlated with the expression of immunoreactive genes (Shi

et al., 2017). According to the number and status of immune

cells in the immune microenvironment, researchers divided HCC

into three distinct HCC subtypes: immune-activated, immune-

deficient, and immune-excluded (Zhang et al., 2019a).

In addition to acting on tumor cells, different immune cells also

play an interactive role in TIME. Hong Kong scholars found that in

HBV-HCC, TAMsuppress tumorT-cell infiltration and regulate the

immunosuppressive environment through TIGIT-NECTIN2

FIGURE 1
Immune cells and their markers isolated and identified in the immune microenvironment of HCC tumors.
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interactions (Ho et al., 2021). A single-cell study of early-stage

recurrent HCC found that the number of Tregs decreased in

recurrent foci, dendritic cells (DC) and intratumorally infiltrating

CD8+ T cells increased; T cells in recurrent tumors overexpressed

KLRB1(CD161) and exhibited a naive hypocytotoxic state (Sun

et al., 2021a). Exploring the mechanisms of immune evasion

associated with tumor recurrence provides deeper insights into

the treatment of HCC tumor recurrence. In addition, some

scholars sorted PD-1highCD4+CD8+ T cells by flow cytometry for

single-cell sequencing, found the presence of 11 clustered CD4/

CD8 double positive T cell (DPT) subpopulations with different

cytotoxicity, depletion and activation scores, and which were

enriched in the tumor marginal zone; The above DPT subsets

are co-expressed with PD-1/HLA-DR/ICOS/CD45RO and affect

the immune status of the microenvironment (Zheng et al., 2020).

The above studies show that SCS technology (mainly scRNA-seq)

can be used to discover the role of immune cells on tumor cells and

the interaction between immune cells in TIME.

6 Outlook

In the era of molecularly targeted tumor therapy, the

identification of predictive biomarkers is critical to the

successful implementation of personalized medicine. However,

tumor heterogeneity can be one of the major challenges of

precision medicine. SCS can perform sequencing analysis and

subtype classification of single cells, providing a favorable way to

resolve tumor heterogeneity and better define immune

microenvironment types, and hopefully become the theoretical

basis for a new era of precision medicine. Overall, the prospects

of SCS for tumor diagnosis, targeted therapy, and prognosis

prediction are bright. In the near future, advances in SCS will

undoubtedly improve our understanding of tumor biological

characteristics, help us find potential therapeutic targets for

patients, and then achieve precise tumor treatment.
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Glossary

PLC primary liver cancer

HCC hepatocellular carcinoma

ICC intrahepatic cholangiocarcinoma

CSC single-cell sequencing

HBV hepatitis B virus

MACS magnetic-activated cell sorting

FACS flow-activated cell sorting

LCM laser capture microdissection

scRNA-seq single-cell RNA sequencing

UMI unique molecular identifiers

PCR polymerase chain reaction

IVT in vitro transcription

scEpig-seq Single-cell epigenomics sequencing

DOP-PCR degenerate oligonucleotide–primed polymerase

chain reaction

MDA multiple displacement amplification

MALBAC multiple annealing and looping-based amplification

cycles

LIANTI Linear Amplification via Transposon Insertion

CNV copy number variation

SNV singlenucleotide polymorphisms

DR-seq DNA-mRNA sequencing)

G&T-seq genome and transcriptome sequencing

scTrio-seq single-cell triomics sequencing

LrIC liver-resident immune cells

ITH intra-tumor heterogeneity

ST spatial Transcriptomics

TME tumor microenvironment

CTCs circulating tumor cells

CSCs cancer stem cells

EMT mesenchymal transition

DC dendritic cells

iDC immature dendritic cells

aDC activated dendritic cells

Treg regulatory T cell

Tcm central memory T cell

Tem memory effector T cell

Tfh T follicular helper cell

TAMs tumor-associated macrophages

VEGF vascular endothelial growth factor

MLXIPL MLX interacting protein-like
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