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Abstract
Background Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are 
among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically 
important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, 
haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the 
world’s tallest flowering plant.

Results Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome 
conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to 
date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome 
BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the 
two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content 
revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy 
production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly 
duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species.

Conclusions Our study provides a foundation for future research into E. regnans environmental adaptation, and the 
high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.
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Background
Eucalyptus forests are widespread across Australia and 
extend north into tropical islands. They provide habitat 
to a rich biodiversity of marsupials, birds and insects, 
being key foundation species in natural ecosystems [1]. 
Eucalyptus trees are highly diverse and adaptable, exhib-
iting resistance to extreme droughts, fires and floods. The 
Eucalyptus genus contains over 900 species that have 
variable genome sizes of approximately 400–700 Mbp 
[2], high heterozygosity [3] and high frequency of struc-
tural variants [4]. With different phenotypes and adap-
tive traits to varying environments, there is an increasing 
need for representative genomes.

Eucalyptus regnans (Mountain Ash, also known as 
Swamp Gum and Stringy Gum) is part of the diverged 
subgenera Eucalyptus, formerly known as Monocalyp-
tus with several sections and 100 species, including the 
alpine specialist snow gum, E. pauciflora, that is facing 
dieback [5]. Representing a grove of giant trees in Tas-
mania, E. regnans forests are among the highest known 
carbon-dense biomasses in the world [6]. They annually 

sequester and store large amounts of carbon, with the 
wet temperate forests having the highest above and 
below ground carbon densities of 1,000 tC/h [7] to 1,312 
tC/h [6]. This highlights their significance in mitigating 
climate change. However, E. regnans forests are under 
threat from climate change, particularly widespread 
bushfires that can occur in Australia [8, 9]. Increased 
logging and deforestation is also becoming a widespread 
concern. Therefore, there is an increasing need for con-
servation, management, and restoration of these forests.

Among these forests, the E. regnans tree known as 
“Centurion” (Fig. 1), is currently a pre-eminent candidate 
for the world’s tallest known flowering plant [10]. Capti-
vating researchers and enthusiasts alike, it has been mea-
sured at 99.6 m by an aerial laser scanning LIDAR forest 
inventory [11] and at 99.8  m by tape drop techniques 
[12]. In 2018, the tree was remeasured at 100.5 m using 
ground-based observations with a Laser Technologies 
TruPulse 360 [13]. Still alive and growing, despite being 
partially burnt in a bushfire, it is among the tallest known 
angiosperms [14, 15]. Currently, the tallest known trees 

Fig. 1 Eucalyptus regnans the Centurion, located in Tasmania, Australia. (A) Picture is of the Centurion after national bushfires in Australia. (B) The Centu-
rion before the bushfires. Photographs by Yoav Daniel Bar-Ness (Giant Tree Expeditions). (C) Species occurrence distribution map of E.regnans in Australia. 
Red represents natural distribution, orange represents low frequency plantations. Alphabetical letters represent major cities in Australia, bold is capital 
cities. Key areas of natural distribution are Hobart, H, Launceston, L, and Melbourne, M. Map sourced from [21], being provided by the author Dean Nicolle

 



Page 3 of 12Ferguson et al. BMC Genomics          (2024) 25:913 

are the non-flowering Sequoia sempervirens (coast red-
woods, such as the “Hyperion”), which can achieve over 
112  m in height [16]. Further research into the world’s 
tallest trees provides valuable opportunities to under-
stand tree growth, carbon sequestration and wood 
production.

To enable further studies into E. regnans and carbon-
dense giant trees, we assembled a haplotype-resolved 
chromosome-level genome of the Centurion, using 
Pacific Biosciences (PacBio) HiFi reads, Oxford Nano-
pore Technologies (ONT) ultra-long reads and Hi-C 
chromosome conformation capture, in the hybrid assem-
bler Hifiasm ultra-long (UL) [17]. Long-read sequencing 
technologies now enable complete, telomere-to-telo-
mere (T2T) assemblies of complex genomes, such as the 
human genome [18], kiwifruit [19] and maize genome 

[20]. Using this approach, we assemble the most complete 
Eucalyptus genome to date, being the first chromosome-
level, haplotype phased, diploid assembly, approaching 
complete T2T quality. Our genome provides insights into 
the structural variation between haplotypes and enables 
further studies into genome evolution in Eucalyptus.

Results
Long-read native DNA sequencing
To assemble the genome of E. regnans the Centurion, 
we extracted high-molecular weight DNA from leaves 
for long-read sequencing with PacBio for HiFi reads and 
ONT for ultra-long reads ≥ 40  kb. A portion of leaf tis-
sue was crosslinked for Hi-C chromosome conformation 
capture followed by short-read sequencing with Illumina. 
Sequencing generated of 92.07 Gbp HiFi (N50 15.80 
Kbp, ~ 176x coverage), 23.53 Gbp ONT (N50 46.73 Kbp, 
~ 49x coverage), and 8.03 Gbp Hi-C (150 bp paired end) 
(Table 1; Fig. 2.A, 2.B). ONT reads were filtered, remov-
ing all reads < 20 Kbp and < Q7, leaving 21.34 Gbp (N50 
28.35 Gbp, ~ 41x coverage). Hi-C sequences were con-
tained in 26.77 million read pairs.

Table 1 Sequencing data summary
ONT

HiFi Raw Filtered
Size (Gbp) 92.07 23.53 21.34
Coverage 167.39 42.78 38.81
N50 (Kbp) 15.80 46.73 48.35
Number (1,000) 6,482.95 718.32 467.74
Longest (Kbp) 47.93 219.14 219.14
Shortest (bp) 105 36 20,000

Fig. 2 Long-read sequencing statistics and Hi-C contact map. (A) Summary statistics for all assembly sequencing data (HiFi, raw ONT, and filtered ONT). 
(B) Violin plot of read quality scores. (C) Violin plot of sequencing read lengths. (D) Hi-C contact map of scaffolded contigs in E. regnans haplotype (1) E) 
Hi-C contact map of scaffolded contigs in E. regnans haplotype (2) Hi-C contact heatmaps were visualised with Juicebox [22]
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Assembly, scaffolding, and telomere identification
As eucalypt genomes have a highly conserved karyotype 
(11 diploid chromosomes) with minimal differences in 
total genome size [2, 4, 23], a successful assembly was 
expected to generate a diploid genome with 11 chro-
mosomes per haplotype, approximately 500–550 Mbp 
in size. Using all data types as input into HiFiasm (UL) 
(ONT, HiFi, and Hi-C reads), the E. regnans genome 
was assembled into two haplotypes of the expected size. 
Haplotype 1 contained 795 contigs with a size of 523 
Mbp, and haplotype 2 contained 269 contigs with a size 
of 505 Mbp (Table  2). The Contig N50s for haplotypes 
1 and 2 were 36.83 Mbp and 37.75 Mbp, respectively. 
After assembly, we investigated our contigs for con-
tamination sequences, finding and removing 18.1 Mbp 
in haplotype 1 and 17.6 Mbp in haplotype 2. Hi-C reads 
were independently aligned to both E. regnans haplo-
types, followed by removal of low-quality aligned reads 
(MAPQ < 30), chimeric reads, and PCR duplicates. This 
revealed approximately 2.42  million (9.05%) read pairs 
contained inter-chromosomal linkage information, and 
approximately 3.40  million (12.69%) contained intra-
chromosomal linkage information (Table  3). Using the 
linkage information from Hi-C read pairs, both haplo-
types were scaffolded into 11 pseudo-chromosomes, rep-
resenting the correct number of chromosomes (Fig. 2.D, 

2.E). Further analysis revealed a total of 5 joins within the 
two haplotypes. Haplotype 1 had a single join in Chro-
mosomes 2 and 11, while haplotype 2 had joins in Chro-
mosomes 2, 7, and 9.

BUSCO analysis indicated high completeness for both 
haplotypes (Tables 2 and Supplementary Table S1). Scaf-
folding was assessed by aligning both haplotypes to E. 
grandis [24] and against each other, Supplementary Fig-
ures S1, S2, and S3. Scaffolding was confirmed and all 
scaffolds were named according to the E. grandis chro-
mosome names, which is the custom for Eucalyptus. All 
telomeres were identified for haplotype 2, and 21 of 22 
telomeres were identified for haplotype 1. Haplotype 1 on 
Chromosome 4 was missing the 5’ telomere (Supplemen-
tary Table S2). The identified telomere sequence was  A A 
A C C C T. This telomere sequence has also been observed 
in the majority (282 of 332) of Dicotyledons (Magnoli-
opsida) listed in the telomeric repeat database (https://
github.com/tolkit/a-telomeric-repeat-database).

Genome annotation and gene orthogrouping
Both haplotypes were de novo annotated for trans-
posable elements (TE), simple repeats, and genes 
(Table  2). Repeat annotation resulted in the identifi-
cation of ~ 40.52% of both haplotypes as repetitive, of 
which ~ 39.42% was TE. After soft masking, both hap-
lotypes were annotated for genes. Haplotype-specific 
HMM models were trained on all available NCBI [25] 
gene transcripts for A. thaliana (Taxonomy ID: 3702) and 
Myrtaceae (Taxonomy ID: 3931). Subsequently, 71,726 
and 64,961 genes were predicted for haplotype 1 and 2 
respectively.

To examine how similar (or dissimilar) the gene con-
tent of the two E. regnans haplotypes are, all primary 
transcripts (longest) were orthogrouped. Orthogroup-
ing places highly similar genes into groups, within and 
between haplotypes. Genes within each orthogroup are 
identical genes, gene duplicates or members of the same 
gene family, and have identical or highly similar func-
tion. Of a predicted 125,904 primary transcripts, 97,314 
(77.3%) were placed into an orthgroup, the remaining 
28,590 (22.7%) were found to be too dissimilar to all other 
transcripts and not placed within an orthogroup. A total 
of 86,149 primary transcripts were found to be shared 
between both haplotypes (haplotype 1: 41,598 haplo-
type 2: 44,551). The remaining transcripts (haplotype 1: 
24,492 haplotype 2: 15,263) were unique to each haplo-
type (Table 4). Orthogrouping created 39,959 groups, of 
which 36,882 (95.4%) were shared.

Gene functional annotation
To explore the potential functions of haplotype-specific 
and shared genes, all transcripts were functionally anno-
tated. After choosing the best functionally annotated 

Table 2 E. regnans genome assembly statistics
Haplotype 1 Haplotype 

2
Scaffolded genome Size (bp) 523,250,160 504,553,124
Identified telomeres 21/22 22/22
% of genome in scaffolds 91.60% 96.07%
Scaffolded N50 (bp) 43,985,167 48,117,852
Scaffold count 11 11
Contig N50 (bp) 36,825,038 37,748,426
Contig L50 7 7
Number of contigs 795 269
Genome BUSCO
complete and (Duplicated)

99.27% (2.24%) 99.14% 
(1.98%)

Repetitive % (TE %) 39.27% (38.16%) 41.77% 
(40.67%)

Predicted gene candidates 71,726 64,961
Proportion of genome in predicted 
genes

14.09% 13.67%

Gene BUSCO
complete and (Duplicated)

97.25% (13.93%) 95.23% 
(12.51%)

Table 3 Hi-C chromosome conformation capture linkage 
statistics

Haplotype 1 Haplotype 2
Hi-C Read Pairs 26,768,465
Inter-chromosomal 2,387,828 (8.92%) 2,456,369 (9.18%)
Intra-chromosomal 3,408,313 (12.73%) 3,384,634 (12.64%)
Uninformative Read Pairs 20,972,324 (78.35%) 20,927,462 (78.18%)

https://github.com/tolkit/a-telomeric-repeat-database
https://github.com/tolkit/a-telomeric-repeat-database
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transcript for each gene based on the lowest e-value 
and highest score, we examined their COG (Clusters 
of Orthologous Groups) categories (Fig.  3). Functional 
annotation successfully annotated 67.79% and 69.26% 
of genes for haplotype 1 and haplotype 2 respectively. 
Only 48.01% of all genes unplaced within an orthogroup 
were successfully functionally annotated, contributing 
the largest proportion to all non-functionally annotated 
genes. Genes not placed within an orthogroup and not 
functionally annotated may be false positives. Comparing 
COG categories of shared and non-shared genes revealed 
several categories containing different proportions of 
shared and haplotype-specific genes. These COG catego-
ries were found within genes associated with metabolism 
and information storage and processing, and also poorly 
characterised genes.

Table 4 E. regnans genes and orthogroups
Haplotype 1 Haplo-

type 2
Genes Predicted gene candidates 66,090 59,814

Genes in orthogroups 48,880 
(74.0%)

48,434 
(81.0%)

Number haplotype-specific 
genes

24,492 
(37.1%)

15,263 
(25.5%)

Number of shared genes 41,598 
(62.9%)

44,551 
(74.5%)

Orthogroups Total number of 
orthogroups

39,959

Number of shared 
orthogroups

36,882 (95.4%)

Haplotype-specific 
orthogroups

1,765 (4.6%) 1,312 
(3.4%)

Number of orthogroups 
containing haplotype

38,647 
(96.7%)

38,194 
(95.6%)

Fig. 3 Investigating gene functions in both haplotypes. After functionally annotating all transcripts, the COG category of the best scoring transcript was 
chosen. All transcripts for both haplotypes were further categorised as shared, or haplotype-specific. Note: No genes were annotated as “General function 
prediction only”
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Genome synteny and structural variation between 
haplotypes
In addition to examining the gene differences between 
the two E. regnans haplotypes, we also examined the 
conservation of genome structure. After aligning the 
two haplotypes to each other, synteny, inversions, trans-
locations, duplications, and haplotype-specific regions 
were annotated (Fig. 4.A). Haplotype 1 was found to be 
78.11% syntenic to haplotype, conversely haplotype 2 was 
77.28% syntenic to haplotype 1. The remaining propor-
tion contained numerous structural variations, includ-
ing inversions (haplotype 1: 0.20%; haplotype 2: 0.24%), 
translocations (haplotype 1: 8.89%; haplotype 2: 8.79%), 

duplications (haplotype 1: 6.21%; haplotype 2: 6.54%), or 
haplotype-specific regions (haplotype 1: 6.59%; haplotype 
2: 7.14%), representing insertions/deletions (Fig.  4.D). 
Further examination of all genome regions revealed that 
syntenic regions are very large and very common, inver-
sions are rare, translocations are moderately common, 
duplications are very common, and haplotype-specific 
regions are moderately common (Fig. 4.C, 4.B).

Distribution of genes and TEs within across haplotypes
To examine the impact of structural variations on the 
genic content of each haplotype, the location of all genes 
was analysed. This analysis classified genes as originating 

Fig. 4 E. regnansgenome synteny and structural variation. Haplotype 1 and 2 were aligned and all genome regions classified as syntenic, inverted, trans-
located, duplicated, or haplotype-specific. (A) Karyotype plot shows locations of all genome regions, except inter-chromosomal translocations. (B) The 
total number of each annotation type present within each haplotype. (C) Size distribution of genome regions in both haplotypes. (D) The proportion of 
each haplotype annotated as syntenic, haplotype-specific, inverted, translocated, and duplicated
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in part of the genome that was syntenic, inverted, trans-
located, duplicated or haplotype specific. Similarly, 
the location of TEs were analysed, to determine if the 
inverted, translocated, duplicated or haplotype specific 
regions resulted from the movement, insertion, or dele-
tion of TEs.

Analysis of genes revealed that the majority resided in 
syntenic regions, ~ 87.34% of shared genes and ~ 49.25% 
of haplotype-specific genes (Fig. 5). Notably, the propor-
tion of haplotype-specific genes within syntenic regions 
was significantly lower than that of shared genes. Shared 
genes outside of syntenic regions were predominantly 
found within duplications (~ 8.21%), with a few found 
in translocations (~ 4.23%). Inversions (~ 0.11%) and 
haplotype-specific (~ 0.11%) regions contained very few 
shared genes. Haplotype-specific genes were predomi-
nantly found within duplications (~ 34.04%) and, to a 
lesser extent, translocations (~ 16.34%), outside syntenic 
regions. This distribution significantly differed from 
shared genes, which were rarely found in these regions. 
Inversions (~ 0.19%) and haplotype-specific (~ 0.19%) 
regions again contained minimal shared genes. TE loca-
tion analysis showed a similar trend, with the majority 
found within syntenic regions (~ 70.62%). The remain-
ing TEs were found predominantly in duplications 
(~ 14.33%), haplotype-specific (~ 7.98%) and translocated 
regions (~ 6.86%). Inversions contained very few TEs.

Discussion
A chromosome-level, haplotype phased genome resource 
forEucalyptus regnans
In this study, we generated high-coverage, long-read 
sequencing data, consisting of PacBio HiFi and ONT 
ultra-long, and chromosome conformation capture 
(Hi-C), to assemble a high-quality, haplotype-resolved 
genome for E. regnans, the Centurion. Achieving contig 
N50s > 36 Mbp per haplotype and 11 chromosome-scale 
scaffolds of N50s > 43 Mbp per haplotype, it is the most 
contiguous diploid Eucalyptus genome to date (Supple-
mentary Table S3) [4, 24, 26]. The assembly was highly 
complete, achieving BUSCO completeness scores > 99% 
per haplotype. We identified 43 out of 44 expected telo-
meres, with haplotype 1 lacking only a single telomere, 
indicating a near T2T complete genome assembly. 
Long-read sequencing combined with advancements 
in de novo assembly algorithms, such as Hifiasm [17] 
and Verkko [27] has provided an unprecedented level of 
insight into genomes, by retaining haplotype sequence 
data that would typically be collapsed and/or removed in 
previous genome assembly pipelines. A critical advance-
ment has been the recent integration of both long-read 
sequencing platforms (PacBio and ONT), and Hi-C data, 
in a single de novo assembler HiFiasm (UL) [17], utilised 
here in our study. This hybrid approach creates better 
genome assemblies by utilising both HiFi and ultra-long 
ONT reads to create a genome graph, and Hi-C data to 
improve haplotype phasing, resulting in highly contigu-
ous, phased genomes.

Fig. 5 Comparison of the distribution of genes and TEs. All genes and TEs were classified based on their location within the genome (syntenic, inverted, 
haplotype-specific, duplicated, or translocated). Additionally, genes were categorised as shared (belonging to an orthogroup shared by both haplotypes) 
or haplotype-specific (belonging to a haplotype-specific orthogroup or unplaced)
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Eucalyptus genome architecture is shaped by structural 
variations
Investigation of the two haplotypes of E. regnans 
revealed ~ 93.13% sequences were shared, and the 
remaining ~ 6.87% was found to be haplotype-specific, 
likely originating from insertion and deletion polymor-
phisms. The shared sequences were highly syntenic 
(~ 77.7%), but also had high levels of structural varia-
tions, including inversions (0.2%), translocations (8.8%), 
and duplications (~ 12.5%). These structural variations 
were dramatically higher in abundance, size and dis-
tribution, in contrast to the highly syntenic haplotypes 
observed in agricultural crop genomes, such as rice [28], 
mango [29], grapes [30] and strawberry [31, 32]. Our 
findings align with a recent study across 33 Eucalyptus 
genomes that revealed an interplay of stable genome 
structure and accumulation of structural variations that 
drive genome divergence over time [4]. Similar results 
are being observed in other wild Myrtaceae family plants, 
such as Melaleuca [33]. However, the abundance of struc-
tural variations between the two haplotypes of a single E. 
regnans tree suggests a much greater degree of genetic 
variation within this species than previously assumed. 
This highlights the value of haplotype phased reference 
genomes and underscores the need for pan-genome 
approaches to capture the full spectrum of genetic diver-
sity [34].

Given the very high coverage of HiFi and ONT data, 
and Hi-C used in this study, the assembled genome is of 
very high quality. This high quality genome enables a reli-
able analysis of inter-haplotype structural variants (SVs). 
However, it is important to note that some of the identi-
fied SVs may be false positives. Therefore, the validity of 
any particular SV should be confirmed using population 
data or validated through PCR or cytogenetic techniques.

Comparative analysis of annotated genes revealed a 
high degree of conservation between haplotypes, with 
most of the orthogroups and genes found in both. How-
ever, a substantial number of genes were haplotype-spe-
cific. To investigate the origin of these unique genes, their 
locations were compared to syntenic, inverted, translo-
cated, duplicated, and haplotype-specific regions. This 
analysis revealed a clear distinction: half of the haplo-
type-specific genes resided within structurally rearranged 
regions, primarily duplications, with a smaller propor-
tion found in translocations. Conversely, shared genes 
were overwhelmingly located within syntenic regions. 
Similar to the analysis of genes, TE locations were exam-
ined to determine if structural variations between the 
haplotypes originated from TE movement. The major-
ity of TEs resided in regions unaffected by inversions, 
translocations, duplications, insertions, or deletions. A 
small fraction was found within duplications, with an 
even smaller proportion residing in translocated and 

insertion/deletion regions. These findings suggest that 
while the core genome of E. regnans exhibits a high 
degree of synteny, extensive structural variations, partic-
ularly duplications, play a significant role in shaping the 
unique features of each haplotype. This dynamic genome 
structure, potentially fueled by TE induced recombina-
tion errors, may be a key factor underlying the remark-
able adaptability of Eucalyptus to diverse environmental 
conditions [35, 36].

Placing all transcripts within COG categories indicated 
that the most significant difference in haplotype gene 
complements were in energy production and conserva-
tion, and transcription. This suggests that haplotype-spe-
cific variation contributes to environmental adaptation 
in E. regnans. Genes related to energy production and 
conservation could allow different individuals to thrive in 
different environmental niches [37, 38]. Similarly, varia-
tion in genes associated with transcription might enable 
them to respond to specific environmental signals by 
differentially regulating gene expression [39, 40]. These 
findings highlight the potential role of haplotype- or SV-
specific genes in driving environmental adaptation.

While the genes annotated in this study used state of 
the art methods, this approach relied solely on gene 
homology, which may introduce false positives and false 
negatives. Future transcriptomic studies will shed light 
on the functional implications of the structural variations 
identified in our research.

An increasing need to conserve Australia’s giant Eucalyptus 
tree forests
Climate change is rapidly altering the environment 
worldwide, with increased intensity of drought, fire 
and floods [41–43]. This is having a significant impact 
on Australia’s iconic eucalypts, with extreme weather 
causing high tree mortality rates and dieback of forests 
[44]. Furthermore, unprecedented, mega-bushfires that 
occurred 2019–2020 caused widespread destruction of 
the natural landscape, especially eucalypt forests [8, 9]. 
This included E. regnans forests, and indeed the poten-
tially record-breaking Centurion tree was partially burnt 
(Fig.  1A), highlighting vulnerability of even the giants. 
Fires are particularly concerning for typically wet E. 
regnans forests, a keystone species with limited fire tol-
erance [45]. Unlike other eucalypts that can regrow veg-
etatively after fire (epicormic resprouters), E. regnans 
relies solely on seeds for regeneration (obligate seeder) 
[46], which take decades to become mature. Further-
more, tall trees such as E. regnans are huge stores of 
above and below-ground carbon (stem and root mass). 
Their loss would have catastrophic consequences for the 
forest ecosystem and loss of large carbon stores [47]. Loss 
of giant trees would greatly diminish the forest’s ability 
to annually sequester more atmospheric carbon, as these 
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trees are still growing and gaining mass. The unique habi-
tat provided by these forests would be substantially lost, 
impacting dependent wildlife populations and overall 
biodiversity [1]. For instance, tall, old growth E. regnans 
forests provide critical nesting sites and cavities (hollows) 
needed for a high biodiversity of birds and arboreal mar-
supials [48]. Therefore, protecting E. regnans forests and 
their towering giants becomes increasingly critical [49]. 
This study’s contribution lies in providing a high-quality 
genome of E. regnans, using samples from the Centu-
rion itself. This resource will be instrumental in future 
research efforts aimed at understanding E. regnans popu-
lation genomic diversity, complex growth traits includ-
ing carbon capture and storage, and informing tall forest 
ecosystem conservation strategies.

Conclusions
In this study, we assembled a high-quality, near T2T 
complete, haplotype-resolved diploid genome reference 
for E. regnans, the Centurion, a leading contender for 
the world’s tallest known flowering plant. This resource 
represents the most contiguous and complete reference 
genome for a Eucalyptus species, offering a foundation 
for future research into population genomics, functional 
genomics, and conservation of this ecologically signifi-
cant tree species. Analysis revealed extensive structural 
variations and gene content differences between the 
two Centurion haplotypes, highlighting the remarkable 
genomic variation within E. regnans. Among the numer-
ous SVs observed between haplotypes, gene-containing 
duplications were particularly abundant. These dupli-
cations may have contributed to the development of de 
novo genes [50], potentially driving novel functions and 
the divergence of E. regnans [51–53]. Further exploration 
of this variation through pan-genomic or genome-graph 
approaches could provide deeper insights into the extent 
of the species’ genomic variation [34]. This is becoming 
tractable, given highly accurate long-reads from sequence 
consensus [54], specific base caller models [55], and deep 
learning error correction methods [56].

Sampling and sequencing additional trees across popu-
lations and performing genotype-environment associa-
tions can help uncover the molecular mechanisms of how 
E. regnans navigates variable environments, climates and 
potential threats like drought or fire [57]. This will lead 
to a better understanding of the genetic basis of environ-
mental adaptation, carbon capture, and other key biolog-
ical processes in E. regnans. Such knowledge is crucial for 
informing sustainable management practices and conser-
vation efforts to protect carbon-dense giant tree forests 
and the unique ecosystems they support.

Methods.

Sample collection and DNA extraction
The Eucalyptus regnans tree known as Centurion is 
located in the Huon Valley of Southern Tasmania, 
approximately 50  km SW of Hobart within the forestry 
estate (GPS − 43.07708, 146.76859). Standing in an iso-
lated small terrace of intact forest, surrounded by post-
clearfell regeneration of Eucalyptus, it is thirty km south 
of the world’s tallest known flowering forest grove, the 
Tall Trees Reserve of the Styx Valley [58]. Tree identifica-
tion and climbing to sample leaf tissue was performed by 
Yoav D Bar-Ness (Giant Tree Expeditions). This leaf tis-
sue was sent by local postal service with a cool pack to 
Australian National University, Canberra, where it was 
cryogenically stored in a -80 °C until DNA extraction and 
Hi-C preparation. A voucher specimen of E. regnans the 
Centurion is publicly available at the Tasmanian Herbar-
ium, Hobart, Australia (accession number: HO598012, 
project code: GESA 003).

High-molecular weight DNA was extracted following 
our previously described magnetic bead-based protocol 
[59]. After homogenising the leaf material with a mor-
tar and pestle, the optional sorbitol wash was performed 
to help further remove polysaccharides and second-
ary metabolites, notably oils and phenolic compounds. 
After extraction, the DNA was size selected for frag-
ments ≥ 20 kb using a BluPippin (Sage Science) for PacBio 
HiFi sequencing and ≥ 40 kb using a PippinHT (Sage Sci-
ence) for ONT sequencing.

Long-read sequencing of native DNA
For PacBio HiFi sequencing, the HMW DNA was sheared 
to approximately 18  kb fragments with a Megaruptor 3 
(Diagenode), using 1 cycle 31x speed and 1 cycle at 32x 
speed. A PacBio SMRTbell library was prepared accord-
ing to the manufacturer’s SMRTbell Express Template 
Prep Kit 3.0 (Pacific Biosciences). Sequencing was per-
formed on a PacBio Revio 25 M SMRT cell, using circular 
consensus sequencing (CCS) to generate high-accuracy 
HiFi reads. DeepConsensus was automatically performed 
on the PacBio Revio, which increased sequencing accu-
racy [54].

The ONT ultra-long reads were generated as part of our 
previous study [4]. In brief, ONT native DNA sequencing 
libraries (1D Genomic DNA by Ligation SQK-LSK109) 
were sequenced on MinION Mk1B devices, using two 
FLO-MIN106D R9.4.1 flow cells. Flow cells were washed 
and re-loaded, twice per flow cell (Flow Cell Wash Kit 
EXP-WSH004).

Chromosome conformation capture with Hi-C
A proximity ligation library for chromosome conforma-
tion capture was created with a Phase Genomics Proximo 
Hi-C (Plant) Kit (version 4), according to the manufactur-
er’s instructions (document KT3040B). This kit utilised 



Page 10 of 12Ferguson et al. BMC Genomics          (2024) 25:913 

DpnII, HinFI, MseI, DdeI to digest the genome, sticky 
ends were then filled with biotin labelled nucleotides and 
the subsequent blunt ends were re-ligated to neighbour-
ing molecules. The library was multiplexed with other 
projects and sequencing was performed on a NovaSeq 
6000 (Illumina), using an S4 flow cell with a 300 cycle kit 
(150 bp paired-end sequencing).

Assembly and scaffolding
All PacBio HiFi reads from the Revio were used in the 
assembly (≥ Q20). For ONT reads, both read ends were 
trimmed of 200  bp, followed by filtered to length of 
≥ 1  kb and Q7, with NanoFilt (version: 2.8.0) [60]. For 
Hi-C reads, Illumina adapter sequences were removed 
(--nextera) and read pairs validated, using Trim Galore! 
(version: 0.6.10) [61].The de novo genome assembly was 
performed with Hifiasm ultra-long (UL) (version: 0.19.6-
r595) [17], incorporating the PacBio HiFi, ONT ultra-
long (--ul) and Hi-C reads (--h1 --h2). After assembly, 
both haplotypes were screened for contaminant contigs 
using BlobTools [62], which utilised minimap2 (version: 
2.24) [63] and blast (version: 2.11.0) [64]. Subsequently 
both haplotypes were independently scaffolded using 
YaHS (version: 1.2a.2) [65] following the Arima Genom-
ics mapping pipeline [66]. Briefly, bwa mem (0.7.17) [67] 
independently aligns both R1 and R2 Hi-C read sets to 
the current haplotype. Alignments were then filtered 
to remove chimeric reads and reads with poor MAPQ 
scores, subsequently the R1 and R2 alignment files were 
merged. Next, PCR duplicates were removed using Picard 
Tools (version: 2.26) [68]. Processed and combined pair-
end alignments were then analysed with YaHS, gener-
ating a Hi-C contact map. As our ONT reads are very 
long and had high coverage, YaHS was run without the 
assembly error correction step. YaHS’s Hi-C contact map 
was checked, and when necessary, manually edited using 
Juicebox (version: 2.17) [69]. After manual curation, scaf-
folds were finalised with Juicer tools (version: 1.6) [70], 
producing chromosome-scale de novo genomes. Using 
tidk (version: 0.2.41) [71] candidate telomere sequences 
were generated and each candidate subsequently tested 
using seqtk telo (version 1.4) [72]. BUSCO completeness 
analysis was performed using compleasm (version: 0.2.2) 
[73]. All commands used during assembly and scaffold-
ing, including their parameters, are available at https://
github.com/fergsc/Eucalyptus-regnans-genome.

Annotation
De novo repeat libraries were generated for each hap-
lotype using EDTA (version: 1.9.6) [74], including both 
simple repeats and transposable elements (TEs), and 
annotated with RepeatMasker (version: 4.0.9) [75]. 
The repeat-masked genomes were annotated for genes 
using BRAKER3 (version: 3.0.6) [76]. BRAKER3 aligned 

training proteins to our haplotypes using DIAMOND 
(version: 0.9.24) [77], and subsequently the ProtHint 
(version: 2.6.0) [78] pipeline generated the training data 
for AUGUSTUS (version: 3.5.0) [79]. Training protein 
sequences were obtained from the National Center for 
Biotechnology Information (NCBI) [25], including all 
available transcripts for Myrtaceae (Taxonomy ID: 3931) 
and Arabidopsis thaliana (Taxonomy ID: 3702).

Predicted gene candidates were subsequently organ-
ised into orthogroups using Orthofinder (version: 2.5.5) 
[80]. All candidate genes were functionally annotated for 
eggNOG orthogroup, COG category, GO term, KEGG 
term, and PFAM using eggNOG-mapper (version: 2.1.12; 
parameters: -m diamond --itype CDS --tax_scope Viridi-
plantae) [81].

Genome alignments
We identified all shared sequences between our two E. 
regnans haplotypes through alignment using the MUM-
mer tool (version: 3.23) [82] with NUCmer (--max-
match -l 40 -b 500 -c 200). NUCmer identified all shared 
40-mers between genomes and merged adjacent 40-mers 
into a single alignment. Alignments were filtered to 
remove those < 200  bp and with an identity < 80% using 
MUMmer’s delta-filter tool. We chose a conservative 80% 
sequence identity threshold considering the high hetero-
zygosity of Eucalyptus [3], and a higher score may incor-
rectly filter out real alignments. The filtered NUCmer 
alignments were then analysed for syntenic, inverted, 
translocated, and duplicated regions using SyRI (ver-
sion: 1.6.3) [83]. All unaligned regions were annotated 
as haplotype-specific. A karyotype plot showing synteny 
and structural variations between haplotypes was cre-
ated with Plotsr [84]. All commands to align and struc-
turally annotate the two haplotypes, including their 
parameters, are available at https://github.com/fergsc/
Eucalyptus-regnans-genome.
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