
Epilepsia. 2021;62:2333–2343.	﻿	     |  2333wileyonlinelibrary.com/journal/epi

Received: 6 January 2021  |  Revised: 17 June 2021  |  Accepted: 17 June 2021

DOI: 10.1111/epi.16990  

F U L L - L E N G T H  O R I G I N A L  R E S E A R C H

The power of ECG in multimodal patient-specific seizure 
monitoring: Added value to an EEG-based detector using limited 
channels

Kaat Vandecasteele1   |   Thomas De Cooman1  |   Christos Chatzichristos1  |   Evy Cleeren2  |   
Lauren Swinnen3   |   Jaiver Macea Ortiz3   |   Sabine Van Huffel1  |   
Matthias Dümpelmann4   |   Andreas Schulze-Bonhage4   |   Maarten De Vos1,5  |    
Wim Van Paesschen3  |   Borbála Hunyadi6

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution-NonCo​mmercial License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy

Wim Van Paesschen and Borbála Hunyadi share last authorship.  

1Department of Electrical Engineering, 
STADIUS Center for Dynamic Systems, 
Signal Processing and Data Analytics, 
KU Leuven, Leuven, Belgium
2Department of Neurology, University 
Hospitals Leuven, Leuven, Belgium
3Laboratory for Epilepsy Research, 
Department of Neurology, University 
Hospital, KU Leuven, Leuven, Belgium
4Faculty of Medicine, Department 
of Neurosurgery, Epilepsy Center, 
University of Freiburg, Freiburg, 
Germany
5Department of Development and 
Regeneration, KU Leuven, Leuven, 
Belgium
6Department of Microelectronics, TU 
Delft, Delft, Netherlands

Correspondence
Kaat Vandecasteele, Department 
of Electrical Engineering (ESAT), 
STADIUS Center for Dynamic Systems, 
Signal Processing and Data Analytics, 
KU Leuven, Kasteelpark Arenberg 10 - 
bus 2446, 3001 Leuven, Belgium.
Email: kaat.vandecasteele@esat.
kuleuven.be

Funding information
EIT 19263 - SeizeIT2; AI Research 
Program (Flemish Government)

Abstract
Objective: Wearable seizure detection devices could provide more reliable seizure 
documentation outside the hospital compared to seizure self-reporting by patients, 
which is the current standard. Previously, during the SeizeIT1 project, we studied 
seizure detection based on behind-the-ear electroencephalography (EEG). However, 
the obtained sensitivities were too low for practical use, because not all seizures are 
associated with typical ictal EEG patterns. Therefore, in this paper, we aim to develop 
a multimodal automated seizure detection algorithm integrating behind-the-ear EEG 
and electrocardiography (ECG) for detecting focal seizures. In this framework, we 
quantified the added value of ECG to behind-the-ear EEG.
Methods: This study analyzed three multicenter databases consisting of 135 patients 
having focal epilepsy and a total of 896 seizures. A patient-specific multimodal auto-
mated seizure detection algorithm was developed using behind-the-ear/temporal EEG 
and single-lead ECG. The EEG and ECG data were processed separately using machine 
learning methods. A late integration approach was applied for fusing those predictions.
Results: The multimodal algorithm outperformed the EEG-based algorithm in two 
of three databases, with an increase of 11% and 8% in sensitivity for the same false 
alarm rate.
Significance: ECG can be of added value to an EEG-based seizure detection al-
gorithm using only behind-the-ear/temporal lobe electrodes for patients with focal 
epilepsy.

K E Y W O R D S

behind-the-ear EEG, ECG, epilepsy, multimodal algorithms, reduced electrode montage, seizure 
detection, wearable sensors

www.wileyonlinelibrary.com/journal/epi
mailto:﻿
https://orcid.org/0000-0002-9888-577X
https://orcid.org/0000-0003-0531-9101
https://orcid.org/0000-0002-7645-897X
https://orcid.org/0000-0002-1476-7777
https://orcid.org/0000-0003-2382-0506
http://creativecommons.org/licenses/by-nc/4.0/
mailto:kaat.vandecasteele@esat.kuleuven.be
mailto:kaat.vandecasteele@esat.kuleuven.be


2334  |      VANDECASTEELE et al.

1  |   INTRODUCTION

Epilepsy is among the most common neurological disor-
ders, affecting almost 1% of the population worldwide.1 
Antiepileptic drugs provide adequate treatment for about 
70% of patients.2 The remaining 30% continue to have sei-
zures, which drastically affect their quality of life. For 
optimizing therapeutic interventions for these patients, ob-
jective measures of seizure documentation and counting are 
needed during daily life.3 However, seizure self-reporting 
by patients, which is the current standard, is unreliable.4-8 
Alternatively, wearable seizure detection devices could pro-
vide more reliable seizure documentation. Previously, during 
the SeizeIT1 project, we investigated whether behind-the-ear 
electroencephalography (EEG) could be useful to capture 
seizure patterns as part of a wearable device. Consequently, 
we developed algorithms using only behind-the-ear EEG 
channels for patients with focal epilepsy.9,10 However, we 
concluded that the obtained sensitivities were too low for 
practical use. Low sensitivities are explained by the fact that 
not all seizures are associated with typical ictal EEG patterns. 
Independent research studies reported that the sensitivity of 
full-scalp EEG for localizing focal seizures is around 21% 
in focal aware11 and 50%–70% in focal impaired awareness 
seizures.12-14 Furthermore, from the seizures with EEG corre-
lation on full scalp EEG, 62% could be annotated as a seizure 
by a neurologist using only the behind-the-ear EEG channels 
in our study.10 To improve overall sensitivity, a complemen-
tary monitoring modality is necessary.

Ictal heart rate (HR) changes as measured with electrocar-
diography (ECG) was shown to be useful for seizure detec-
tion in patients with focal epilepsy,15-18 especially temporal 
lobe epilepsy. Ictal tachycardia was observed in 71%–84% of 
the seizures.19-21 To illustrate this, Figure 1 shows the behind-
the-ear EEG and ECG signals during a selected seizure.

Multimodal algorithms have been developed combin-
ing ECG with full/reduced EEG montages.22-24 Fürbass 
et al.22  showed the added value of ECG to a 7/8 electrode 
EEG montage in terms of sensitivity. However, the question 
of whether adding ECG can increase sensitivity while main-
taining the same false alarm rate (FAR) remains unanswered. 
Furthermore, the added value of ECG compared to behind-
the-ear EEG remains uninvestigated.

In this paper, we develop a patient-specific multimodal 
seizure detection algorithm using three behind-the-ear/tem-
poral EEG channels and single-lead ECG, with the focus 
on obtaining high sensitivity. The EEG and ECG data are 
processed separately using machine learning methods, which 
give rise to the unimodal EEG and unimodal ECG models, 
respectively. A late integration approach is applied to fuse the 
predictions from the unimodal models. We analyze data from 
three independent centers, with a total of 135 patients with 
focal epilepsy and 896 seizures.

The novelties of the paper are twofold. First, we propose 
a novel ECG-based seizure detection algorithm. Second, we 
propose a multimodal algorithm that combines this ECG-
based algorithm and our existing behind-the-ear/temporal 
EEG-based algorithm.10 We investigate the added value of 
ECG in comparison with seizure detection using only behind-
the-ear/temporal EEG. To this end, we construct graphs that 
demonstrate sensitivity in relation to FAR, allowing a com-
parison of sensitivities for different modalities at the same 
FAR. Furthermore, we investigate the dependence of detec-
tion performance on seizure type and localization.

This is a Phase 1 study according to the proposed stan-
dards for testing seizure detection devices,25 because real 
seizure data from patients were included and gold standard 
annotations were used for validation. However, the data were 
not acquired with wearable devices. [Correction added on 
August 10, 2021, after first online publication: In the pre-
ceding sentence, “Class 1” has been changed to “Phase 1”.]

2  |   MATERIALS AND METHODS

The methods section starts with an overview of the datasets 
used. This is followed with a description of the seizure detec-
tion algorithm.

2.1  |  Datasets

The data used in this study consist of three different data-
bases: SeizeIT1, Epilepsiae-Freiburg, and Epilepsiae-Paris. A 
detailed description is given in the following two paragraphs.

2.1.1  |  SeizeIT1 dataset

The SeizeIT1 dataset contained recordings from 82 patients 
with refractory focal epilepsy, who underwent presurgical 
evaluation at UZ Leuven, Belgium. Only those patients having 
at least two focal epileptic seizures were used in this study. This 
inclusion criterion was set for training and testing of a person-
alized algorithm. The dataset consisted of 42 patients having 
in total 221 seizures. Most seizures were focal impaired aware-
ness (FIA) seizures, originating from the temporal lobe with 
a length between 10 and 30 s. A total of 176 (80%) seizures 
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had ictal EEG changes on full scalp EEG. The overview of 
seizure types, localization, lateralization, and duration is given 
in Figure 2. Patients were recorded using the 10–20 EEG sys-
tem and one bipolar ECG. Additionally, four behind-the-ear 
EEG electrodes (two at each side) were recorded and used in 
this study. Of the 176  seizures with ictal EEG changes, 109 
(62%) could be blindly recognized by a neurologist using only 
the behind-the-ear EEG channels. More information about the 
SeizeIT1 dataset is described in detail in Vandecasteele et al.10

2.1.2  |  Epilepsiae-Freiburg and Epilepsiae-
Paris datasets

The Epilepsiae-Freiburg and Epilepsiae-Paris datasets 
are subsets of the surface EEG Epilepsiae Database,26,27 
recorded in Freiburg, Germany and Paris, France. The 
Freiburg dataset consisted of 30 patients having 275  sei-
zures in total, whereas the Paris dataset contained 63 pa-
tients and 400 seizures in total. Information about seizure 
localization/lateralization was provided for these datasets 
by the electrodes involved during seizure onset, listed for 
each seizure. Most of the seizures were FIA seizures origi-
nating in the (fronto-)temporal lobe with a duration between 
60 and 120  s for both datasets. The overview of seizure 
types, localization, lateralization, and duration is provided 
in Figure 2. In the Freiburg dataset, 243 (88%) seizures had 
ictal EEG changes, whereas all the seizures from the Paris 
dataset were associated with ictal EEG changes. From the 

Freiburg/Paris datasets, 196 (71%)/278 (70%) seizures had 
temporal lobe involvement.

The patients were recorded with 10–20 scalp EEG with 
one bipolar ECG. No behind-the-ear channels were recorded 
as in the SeizeIT1 database. In our study, we have used the 
closest electrodes of the behind-the-ear placements as surro-
gates: namely, the T7, T8, P7, and P8 electrodes.28

2.2  |  Automated seizure detection algorithms 
using EEG and ECG

A schematic overview of the different steps of the automated 
seizure detection algorithm is shown in Figure 3. First, the 
steps of the unimodal EEG-based seizure detection are de-
scribed. Second, the unimodal ECG-based seizure detection 
is explained. Third, the multimodal algorithm, combining the 
outcomes of the unimodal models, is clarified. Last, the per-
formance metrics are depicted.

2.2.1  |  Unimodal EEG-based seizure detection 
algorithm using behind-the-ear/temporal 
EEG electrodes

A patient-specific algorithm for offline seizure detection10 
was used as a unimodal EEG-based seizure detection algo-
rithm. For SeizeIT1, only the behind-the-ear EEG channels 
were used.10 For the Epilepsiae databases, those specific 

F I G U R E  1   The behind-the-ear 
electroencephalogram (EEG) and 
electrocardiogram (ECG) are shown during 
a temporal focal impaired awareness seizure 
from the right hemisphere. The top panel 
contains four channels: crosshead (CROSS), 
left channel, right channel, and ECG. The 
amplitude of the ECG signal is decreased 
by a factor 10. The seizure onset is depicted 
with a vertical black line at 10 s. The bottom 
left panel shows the extracted heart rate 
(HR) in beats per minute during the seizure. 
A heart rate increase from 40 to 80 beats per 
minute is observed. The bottom right panel 
shows a close-up of the behind-the-ear EEG 
channels during 20–30 s after the seizure 
onset
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EEG channels were not recorded and the midposterotem-
poral electrodes T7, T8, P7, and P8 were used instead.

1.	 Feature extraction: The data were segmented into 2-s 
windows with 1-s overlap. For each window, time 
domain, frequency domain, entropy derived, and asym-
metry features were extracted.10

2.	 Classification: For classifying those 2-s windows, a sup-
port vector machine (SVM) with a radial basis function 
kernel was applied. For training the SVM model for 
SeizeIT1, original seizure annotations (onset and end of 
seizure) from the neurologist were adapted by an engineer 
for excluding artifacts and nontypical EEG patterns.10 For 
the Epilepsia datasets, the provided annotations were used 
for training the models. To obtain “sensitivity in relation 
to FAR” graphs, the continuous output of the SVM clas-
sifier was rescaled to a probability between 0 (very low 
probability) and 1 (very high probability to be a seizure 
segment). By changing the cutoff value for this probabil-
ity, receiver operating characteristic (ROC) graphs were 
obtained with the sensitivity in relation to FAR.

3.	 Cross-validation: A patient-specific seizure detec-
tion algorithm was applied in this work, meaning that 
we used data from the test patient for training the 
models. We have shown before that patient-specific 
algorithms achieve better performances than patient-
independent ones.10 The cross-validation scheme was 
leave-one-seizure-out.

2.2.2  |  Unimodal ECG-based seizure 
detection algorithm

A new patient-independent ECG algorithm was devel-
oped using the SeizeIT1 database. The performance of the 
algorithm is compared to two state-of-the-art algorithms 
in Appendix S1. The different steps of the algorithm are 
summarized.

1.	 R-peak detection: The method consists of an ensemble 
of three different R-peak detection algorithms. The first 
one is based on a wavelet decomposition,29 the second 
one extracts the R-peaks from the derivative signal with 
an adaptive threshold,16 and the last one uses an adapted 
version of the Pan–Tompkins algorithm. Upper and lower 
envelopes were extracted for obtaining a clean signal.30 
The different R-peak detection algorithms generate three 
different R-peak series. These R-peak locations were 
combined with an ensemble method.31

2.	 Feature extraction: The data were segmented in windows 
of 60 s with 10-s overlap. Compared to EEG (windows of 2 
s), larger windows are needed for extracting reliable ECG 
features. For each window, 133 features were extracted 
(the detailed description of all the features is provided in 
Appendix S2). The feature set consisted of different fea-
tures from both the time domain HR variability (HRV) and 
frequency domain HRV and other features also applied in 
various (non-)epilepsy publications.16,32,33,34,35,36,37,38,39,40

F I G U R E  2   An overview of the seizure 
type (A), localization (B), lateralization 
(C), and duration (D) for the three different 
datasets. bi, bilateral; F, frontal; FA, focal 
aware; F-BTC, focal to bilateral tonic–
clonic; FIA, focal impaired awareness; 
NC, not clear; O, occipital; P, parietal; T, 
temporal; UC, unclassified
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3.	 Feature selection: For selecting discriminatory features, a 
random forest-based feature selection scheme41 resulted 
in a subset of the six most discriminant features, namely 
the modified cardiac sympathetic index based on Lorenz 
plot (CSI100),32 circadian rhythm-based feature, dura-
tion of the HR increase, HR after tachycardia/HR before 
tachycardia, very low frequency power and low frequency 
power.

4.	 Classification: For classifying each 60-s window, a ran-
dom forest classifier was used. Following the rationale 
used in the EEG algorithm, the continuous output of the 
random forest was converted to a probability, and an ROC 
“sensitivity in relation to FAR” graph was computed.

5.	 Cross-validation: A patient-independent seizure detec-
tion algorithm was developed. In an ideal case, the same 
patient-specific cross-validation scheme would be ap-
plied for ECG as for the EEG model. However, due to 
the lack of multiple available data points per patient, this 
was not possible without overfitting the model. In the case 
of EEG, multiple 2-s windows are available per seizure, 
whereas for ECG, only one HR increase is present per sei-
zure. The cross-validation scheme was leave-one-patient-
out for SeizeIT1. The Epilepsiae databases were tested 
with a model trained on SeizeIT1.

2.2.3  |  Multimodal seizure detection algorithm

Different strategies for fusing multiple modalities exist; the 
main categories of such fusing strategies are the early and late 
fusion. In this work, we opted for a late integration strategy 
due to the difference in the cross-validation schemes used and 
the different alignment of the events in both modalities. The 
typical patterns of EEG and ECG do not occur exactly at the 
same time. The HR increase/decrease can follow or precede 
the EEG onset.20 Hence, a late integration, “OR” strategy, has 
been applied; a seizure should be detected by at least one of 
the modalities (EEG or ECG) for generating a seizure detec-
tion alarm, similarly as in Fürbass et al.22 This choice was 
made because not all seizures have ictal ECG changes or EEG 
correlation and we aimed for high sensitivity.

For this multimodal algorithm, there are two varying 
thresholds (one for EEG and one for ECG). Visualizing sen-
sitivity and FAR for all possible combinations of the two 
threshold values would give rise to a three-dimensional plot 
that is difficult to read. Therefore, for simplicity, a threshold 
was selected for each modality leading to 0.2 false positives 
(FP)/h and those two thresholds were used for producing the 
multimodal results. This procedure was also done for 0.5 and 
1 FP/h.

F I G U R E  3   A schematic 
overview of the different steps in the 
automated seizure detection algorithm. 
ECG, electrocardiography; EEG, 
electroencephalography; RF, random forest; 
SVM, support vector machine
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2.2.4  |  Performance evaluation

The following measures were applied to determine the per-
formance of the seizure detection algorithm:

1.	 Detection sensitivity: TPs / (TPs + FNs), where TP is 
true positive and FN is false negative. A seizure was 
detected correctly (TP) if a detection occurred between 
the EEG onset and offset of the seizure.

2.	 FAR per hour: FPs/recording length. FPs within 10 s of 
each other were counted as one FP.

The “sensitivity in relation to FAR” graphs were con-
structed by changing the cutoff values of the probabilities for 
both the ECG- and EEG-based algorithms. For each patient, 
a graph was constructed, and the graphs of all patients were 
averaged.

3  |   RESULTS

3.1  |  Performance of the unimodal models: 
EEG and ECG

In Figure 4, the “sensitivity in relation to FAR” graphs are 
shown for the unimodal algorithms: EEG and ECG. Table 1A 

shows the average sensitivities corresponding to an FAR of 
one FP/h. For the EEG-based algorithm, Epilepsiae-Freiburg 
had the lowest sensitivity (77%), SeizeIT1  had a sensitivity 
of 79%, whereas Epilepsiae-Paris had the highest sensitivity 
(82%). For the ECG-based algorithm, Epilepsiae-Freiburg had 
the highest sensitivity (74%), SeizeIT1 had a sensitivity of 65%, 
whereas Epilepsiae-Paris had the lowest sensitivity (52%). The 
unimodal algorithms, developed originally using the SeizeIT1 
dataset, had similar performance on completely independent 
datasets, recorded at other centers (Freiburg and Paris). The 
performance of the unimodal ECG algorithm is compared a 
against state-of-the-art algorithm in Figure 5. Details on this 
state-of-the-art comparison can be found in Appendix S1.

For all the databases, the EEG-based seizure detection 
algorithm had the highest average and median sensitivities. 
By analyzing individual patients, 88 patients (65%) exhib-
ited higher sensitivity with EEG, 29 patients (21%) had equal 
sensitivity with EEG and ECG, and 18 patients (13%) exhib-
ited higher sensitivity with ECG. In total, 463 seizures (52%) 
were detected with both EEG and ECG, 244 seizures (27%) 
were detected only with EEG, and 131 seizures (15%) were 
not detected either with EEG or with ECG. It should be noted 
that 58 seizures (6%), from 38 patients, were detected only 
with ECG. Appendix S3 describes the percentage of seizures 
detected in relation to seizure type and localization for the 
different modalities, which is shown as well in Figure 6.

F I G U R E  4   Sensitivity in relation to 
false alarm rate (FAR) for the different 
datasets. The blue graph depicts the 
unimodal results of electroencephalography 
(EEG), the orange one the results of 
electrocardiography (ECG). On those 
graphs, the sensitivities at an FAR at 0.2 
false positives (FP)/h, 0.5 FP/h, and 1 FP/h 
are depicted with circles. The black symbols 
indicate the results of the multimodal 
algorithm at three discrete thresholds 
(squares, 0.2 FP/h; diamonds, 0.5 FP/h; 
stars, 1 FP/h). For comparison, the results 
on the EEG graph with the same FAR are 
indicated with blue marks. std, standard 
deviation
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3.2  |  Performance of the multimodal model

In Figure 4, we present the results of the multimodal algo-
rithm. The outcome of the two unimodal algorithms were 
combined with a late integration approach at three discrete 
thresholds: the thresholds leading to 0.2, 0.5, and 1 FP/h 
for both the EEG and ECG algorithms. Those three (sen-
sitivity, FP/h) pairs were shown together with the corre-
sponding sensitivities leading to the same FAR on the EEG 
graph. By analyzing those three pairs, the lowest increase 
in sensitivity was observed with the 0.2 FP/h threshold 
and the highest with the 1 FP/h threshold. In Table 1B, 
the sensitivity of the multimodal algorithm (threshold lead-
ing to 1 FP/h) is presented along with the outcome of the 
EEG-based detectors with the same FP/h. For SeizeIT1, an 

increase was observed from 81% (EEG unimodal) to 92% 
(multimodal). A similar increase was seen for Epilepsiae-
Freiburg (from 82% to 90%). No increase was observed for 
Epilepsiae-Paris (from 84% to 84%). In total, 31 (23%) pa-
tients had increased sensitivity (with the multimodal algo-
rithm compared to the EEG unimodal), 88 (65%) patients 

T A B L E  1   (A) FAR and Sens for the unimodal EEG and ECG at an FAR of 1 FP/h for the different databases; (B) FAR and Sens of the 
multimodal (at a threshold generating 1FP/h for the unimodal modalities) and EEG-based detectors at the same FAR for the different databases.

A FAR, FP/h Sens, unimodal EEG, % Sens, unimodal ECG, %

SeizeIT1 1,00 79 (70–89)/100 (0 100) 65 (55–76)/67 (0 100)

Epilepsiae-Freiburg 1,00 77 (68–87)/85 (0 100) 74 (66–83)/79 (12 100)

Epilepsiae-Paris 1,00 82 (74–89)/100 (0 100) 52 (44–61)/50 (0 100)

B FAR, FP/h Sens, multimodal, % Sens, unimodal EEG, %

SeizeIT1 1.85 92 (87–96)/100 (50 100) 81 (72–91)/100 (0 100)

Epilepsiae-Freiburg 1.94 90 (85–95)/100 (50 100) 82 (73–91)/88 (6 100)

Epilepsiae-Paris 1.90 84 (77–91)/100 (0 100) 84 (78–91)/100 (0 100)

Note: Data are shown as mean (95% confidence interval) / median (minimum maximum).
Abbreviations: ECG, electrocardiography; EEG, electroencephalography; FAR, false alarm rate; FP, false positives; Sens, sensitivity.

F I G U R E  5   Performance comparison of our proposed 
electrocardiography-based seizure detection algorithm. The sensitivity 
versus false alarm rate (FAR) is plotted together with the standard 
deviation on the sensitivity (dotted lines). The sensitivity and FAR 
are shown for two state-of-the-art solutions: Fürbass et al.22 and De 
Cooman et al.16 The dotted lines indicate the standard deviation in two 
directions: the FAR and sensitivity. FP, false positives

F I G U R E  6   Percentage of detected seizures at a false alarm rate 
(FAR) of 1/h is displayed for the four groups: seizures detected with 
both electroencephalography (EEG) and electrocardiography (ECG), 
only with EEG, only with ECG, or not detected either with EEG or 
with ECG, in relation to seizure type (A) and in relation to localization 
(B). The number of seizures in each group is indicated. F, frontal; 
FA, focal aware; F-BTC, focal to bilateral tonic–clonic; FIA, focal 
impaired awareness; NC, not clear; T, temporal; UC, unclassified
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had the same sensitivity, and 16 (11%) patients had de-
creased sensitivity.

4  |   DISCUSSION

Mobile health and digital biomarkers involve the application 
of wearable sensors to obtain data pertinent to wellness and 
disease diagnosis, prevention, and management.42 Current 
noninvasive wearable devices in epilepsy are accelerome-
ter- and surface electromyography (sEMG)-based devices 
for online automated detection of tonic–clonic seizures, the 
easiest group of seizures to detect. Accelerometry can be re-
corded unobtrusively with wristbands, which are commonly 
used in daily life nowadays. sEMG can be recorded with 
a wearable device placed on the upper arm. These devices 
have a sensitivity of around 90% and a positive predictive 
value of around 55%. The F1-score of these devices is ap-
proximately 0.68.43,44 Focal nonmotor seizures are typically 
not accompanied by such strong and typical movement and/
or muscle activity. For those focal seizures, the authors are 
aware of only one automated seizure detection device, made 
by UNEEG medical.45 This device is a minimally invasive, 
subscalp, implantable EEG system allowing ultra-long-term 
seizure monitoring.

No noninvasive wearable devices are currently available 
for the detection of focal seizures. An important method-
ological problem is the diversity of focal epileptic seizures; 
there are three main focal seizure types, namely focal aware, 
focal impaired awareness, and focal to bilateral tonic–clonic 
seizures, which can be generated from any lobe, namely 
temporal, frontal, occipital, or parietal lobe.46 We observe 
that a single biosignal is not able to detect all types of focal 
seizures. Therefore, including multiple biosignals is recom-
mended for achieving higher sensitivities. As variability in 
performance across datasets is high, we included multiple 
datasets in this study, allowing us to derive general claims. 
More specifically, we used a multicenter dataset of 135 pa-
tients with 896  seizures recorded during presurgical eval-
uation. The multimodal algorithm using behind-the-ear/
temporal EEG and ECG was able to capture 85% of the 
seizures with 1.90 FP/h. Fifty-two percent of seizures were 
captured with both EEG and ECG, 27% with only EEG, and 
6% with only ECG. For those 6%, probable reasons why 
those seizures could not be picked up with EEG are listed in 
Appendix S4. Approximately 21% of the seizures remained 
difficult to detect with behind-the-ear EEG, which was due to 
unclear ictal EEG patterns, short seizures, or artifacts on the 
restricted set of temporal lobe or behind-the-ear electrodes. 
These observations suggest that wearable devices to detect 
focal seizures should be multimodal, that is, able to record 
different biosignals. In an ideal setting, a neurologist super-
vises the use of the wearable device. Neurologists should be 

aware of ictal EEG and ECG changes of an individual patient 
beforehand and select which biosignals to capture with the 
multimodal wearable device. Moreover, neurologists could 
provide labels for a portion of seizure and nonseizure data to 
create a personalized algorithm, as done in our study.

Our "sensitivity in relation to FAR" graphs showed that 
high sensitivity can be obtained at the cost of a higher num-
ber of FP detections. In our view, the FAR is too high to 
use this algorithm for online/immediate seizure detection in 
daily practice. It would be very useful, however, to use the 
algorithm for reducing the amount of data to be reviewed. 
Neurologists have only to review the automatically flagged 
regions and decide whether they represent seizures or FP de-
tections. Our multimodal algorithm had a high average sen-
sitivity of 90% at 2 FP/h. This means that two data points 
should be reviewed per hour, which would reduce the review 
time probably more than 90%. A follow-up study will be con-
ducted for measuring the performance against visual analy-
sis by a neurologist/EEG expert, and the review time will be 
quantified. Furthermore, this study will investigate whether 
ECG can improve visual behind-the-ear EEG seizure recog-
nition by a neurologist/EEG expert.

With our current algorithm, 15% of all seizures were not 
captured with EEG or ECG. The majority of those seizures 
had an unclear or frontotemporal onset zone. Seizures with 
an unclear origin often have motion and noise artifacts on 
the EEG, which hampers localization. Seizures with fronto-
temporal origin could have an onset zone in the frontal lobe. 
Those seizures are typically associated with motor and mus-
cle components and could be picked up with EMG. Adding 
EMG/motion to the analysis could potentially increase the 
sensitivity even more.

For integrating the EEG and ECG, a late integration ap-
proach with an “OR” strategy was applied; the ECG or the 
EEG should detect a seizure for generating a seizure detec-
tion alarm. Assigning the same contribution to the different 
modalities might be suboptimal. Different weights attributed 
to the different modalities can be trained in an additional sec-
ond classification level. Alternatively, those weights can be 
assigned based on the level of noise of the raw signals or the 
certainties of detections (seizure/no seizure). Also, different 
weights could be assigned to the output seizure probabilities 
of the two modalities. For quantifying uncertainties, trust 
scores could be a good methodology.48

In this work, the EEG model is patient-specific, trained 
on data from a specific patient. We have shown before that 
patient-specific algorithms are more sensitive than patient-
independent ones.10 However, limited seizure data from pa-
tients are available due to low seizure frequencies, possibly 
leading to overfitted models. Improvements can be made by 
starting with a patient-independent model and adapting this 
model to a particular patient with limited patient-specific 
data. Deep transfer learning approaches have been shown to 
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be successful for reduced EEG montages in other fields, such 
as automatic sleep staging.49 The ECG model in this work is 
patient-independent, using data from other patients for train-
ing the model. Patient-independent models achieved better 
performance than fully patient-specific ones.47 This is due to 
limited patient-specific seizure data, as only one HR increase 
per seizure is available. Transfer learning approaches could 
be helpful for the ECG modality as well.47

When developing a wearable device, good quality of sig-
nals will be vital for obtaining reliable results. In the cur-
rent study, a lower sensitivity for the ECG-based algorithm 
was observed for Epilepsiae-Paris. By inspecting the raw 
ECG data, an increased number of artifacts was observed. 
Those artifacts looked like motion artifacts with usually high-
frequency muscle activity on top.

The present work was part of the SeizeIT1 project, in 
which we used EEG and ECG data from standard hospital 
equipment. We are continuing this work in the SeizeIT2 proj-
ect (https://eithe​alth.eu/proje​ct/seize​it2/; ClinicalTrials.gov: 
NCT04284072) with a multimodal wearable device based on 
Byteflies's Sensor-Dot (https://www.bytef​lies.com/), mea-
suring two channels EEG behind the ear, ECG, accelerom-
etry, and EMG of the left deltoid muscle. We are planning 
to determine F1  scores for typical absences, focal seizures, 
and tonic–clonic seizures in a hospital-based and home-based 
international multicenter study. We are further developing 
new and improved electrode patches for measuring EEG, 
ECG, EMG, respiration, oxygen saturation, and skin tem-
perature in the study of epileptic seizures (ClinicalTrials.gov: 
NCT04642105). We will study the prevalence of epileptic sei-
zures and sleep–wake disturbances in Alzheimer disease using 
this wearable device (ClinicalTrials.gov: NCT03617497) 
and tonic, atonic, and myoclonic seizures in childhood ep-
ilepsy (ClinicalTrials.gov: NCT04584385). Development of 
improved seizure detection algorithms based on artificial in-
telligence and machine learning will be an essential step for 
integrating this wearable device into the everyday clinical 
practice of the neurologist–epileptologist to improve manage-
ment of patients with refractory focal epilepsy.
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