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A B S T R A C T   

Background: The assumption that functional magnetic resonance imaging (fMRI) noise has constant volatility has 
recently been challenged by studies examining heteroscedasticity arising from head motion and physiological 
noise. The present study builds on this work using latest methods from the field of financial mathematics to 
model fMRI noise volatility. 
Methods: Multi-echo phantom and human fMRI scans were used and realised volatility was estimated. The Hurst 
parameter H ∈ (0,1), which governs the roughness/irregularity of realised volatility time series, was estimated. 
Calibration of H was performed pathwise, using well-established neural network calibration tools. 
Results: In all experiments the volatility calibrated to values within the rough case, H < 0.5, and on average fMRI 
noise was very rough with 0.03 < H < 0.05. Some edge effects were also observed, whereby H was larger near the 
edges of the phantoms. 
Discussion: The findings suggest that fMRI volatility is not only non-constant, but also substantially more irregular 
than a standard Brownian motion. Thus, further research is needed to examine the impact such pronounced 
oscillations in the volatility of fMRI noise have on data analyses.   

1. Introduction 

A given functional magnetic resonance imaging (fMRI) blood 
oxygenation level dependent (BOLD) time series can be defined as 

yt = μt +
̅̅̅̅
vt

√ εt (1)  

where the μt is the mean, εt is a one dimensional noise process, and vt is 
the volatility of the noise process. Detrending is typically conducted as 
part of preprocessing to remove signal drift. Thus, a given fMRI time 
series is often assumed to be a constant process, indicating that vt in Eq. 
(1) could be replaced by constant v. This assumption, however, has 
recently been challenged and there has been increasing interest in 
exploring time-dependent properties of fMRI noise [1–6]. It has been 
shown that factors such as head motion and physiological processes 
including respiration and pulse can introduce heteroscedasticity to the 
time series [1–3,7]. Heteroscedasticity in turn has been found to 
complicate the linear modelling, which has led to the introduction of 

several statistical models to counteract the impact of these artifacts 
[1,2,7]. One limitation of these models is that they cannot explain non- 
constant volatility arising from unknown or uncontrollable sources, such 
as scanner noise. 

As volatility of a time series cannot be directly observed, a plethora 
of deterministic and stochastic models have been proposed to estimate it 
in financial returns data [8–10]. Over the years, direct comparisons of 
different volatility models have shown that stochastic models, which 
assume that logarithm of the volatility process behaves like standard 
Brownian noise with Hurst parameter H = 0.5, outperform their deter
ministic, data-driven counterparts providing a better fit to data [11–13]. 
This assumption implies in particular that volatility is not constant,1 and 
exhibits an oscillatory behaviour on any finite time interval. This 
oscillatory behaviour is governed by a parameter H which in the 
Brownian case takes the value H = 0.5. 

More recently rough stochastic volatility models have been consid
ered (see [14–18]) where the parameter H is allowed to vary in the range 
H ∈ (0,1). In these models, as mentioned above, the parameter H 
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governs the oscillations of the volatility process; the lower the parameter 
H, the stronger the oscillations on any finite interval. In particular, the 
values H ∈ (0,0.5) correspond to the rough case (i.e. rougher paths than a 
standard Brownian motion). Fig. 1 shows the roughness/irregularity of 
volatility paths for different H values. As H approaches 0 the paths 
become more irregular/rough. 

A rough stochastic volatility model, the rough Bergomi (rBergomi) 
model introduced in [15] by Bayer Friz and Gatheral, is described by the 
system 

dSt

St
=

̅̅̅̅
vt

√
d

(
ρWt +

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
√

W⊥
t

)

vt = ξ0(t) exp
(

η
∫ t

0
(t − s)H− 1/2dWs −

1
2
η2t2H

)

,

(2)  

where W and W⊥ represent two independent standard Brownian mo
tions with ρ ∈ [− 1,1], η >0 describes the volatility of volatility, and ξ0(⋅) 
describes the initial variance curve, which we assume to be constant. 
Our motivation for choosing the mean reverting, driftless rough Bergomi 
model (2) derives from the practice of detrending mentioned above. As it 
is common practice to remove linear drifts from fMRI prior to further 
analysis, such a driftless model would be a good fit to the data. Volatility 
processes simulated using the rBergomi model exhibit remarkable sim
ilarity to realised volatility processes [15,18]. Furthermore, the rBer
gomi and other rough models introduced since have been found to 
provide important improvements to forecasting volatility [9,10,15,19]. 

In addition to improving forecasting accuracy, rough models can be 
used to assess smoothness of a given process by estimating the parameter 
H [17,18,20,21]. Estimating the parameter H can provide information 
about the extent of heteroscedasticity in the series, but requires access to 
the realised, historical volatility process, which cannot be directly 
observed. To bypass this difficulty, in finance intra-day data such as 5- 
min asset prices returns are used to estimate daily realised volatility 
[22–24]. The daily estimates are then combined to form a realised 
volatility process, providing information about daily variances in an 
asset price over the course of months or years. 

Considering recent calls to explore the possibility of implementing 
models from the field of financial mathematics to fMRI [6,25] and the 
visual similarities between financial returns data and fMRI BOLD signal 
(Fig. 2), such an approach could be applied to fMRI data as well to 
examine time-dependent behaviour in volatility of the noise process. 
Utilising multi-echo acquisition, the data from each echo could be used 
as intra-time point data to estimate volatility. Thus, in a manner similar 
to standard combination of data from each echo time, we can produce a 
realised volatility series. These series could then be used to estimate the 
smoothness of volatility in fMRI data using models such as the rBergomi. 

A. S&P 500 returns over 200 days during the year 2000; B. Dow 
Jones returns over 200 days over the year 2004; C. Nasdaq 225 returns 
over 200 days during the year 2003; D. Nikkei 100 returns over 200 days 
during the year 2000; E. Demeaned BOLD signal from voxel [14,26,28]; 
F. Demeaned BOLD signal from voxel [12,27,30]; G. Demeaned BOLD 
signal from voxel [17,24,36]; H. Demeaned BOLD signal from voxel 

[15,19,37]. All returns data is from the Oxford-Man database https:// 
realized.oxford-man.ox.ac.uk/. All fMRI data is from participant sub- 
17,821 from dataset ds000258 available at https://openneuro.or 
g/datasets/ds000258. 

Estimating rBergomi model parameters, including H, is computa
tionally expensive and often relies on the use of Monte Carlo based 
calibration methods [26,27]. This limits the use of this model in practice 
despite the benefits it offers [15,18,28]. Recently, neural networks have 
been proposed as an efficient way to solve the calibration problem 
[29–32]. Neural networks provide a powerful way of identifying re
lationships between input parameters and model output and can be 
particularly useful for models that do not have closed-form solution 
[29,30]. Recent work found that neural network calibration framework 
can be successfully applied to a range of rough stochastic volatility 
models to aid accurate pricing and hedging [29,33]. 

The aim of this paper was to conduct an exploratory empirical study 
examining the volatility of fMRI noise. We were specifically interested in 
exploring whether volatility of fMRI noise exhibits time-dependent 
behaviour that cannot be explained by factors such as head motion 
and physiological noise. We aimed to collect multi-echo fMRI signal 
from a phantom to examine thermal noise. We also aimed to examine 
whether volatility patterns observed in the phantom data were present 
in noise in human scans. To achieve this aim, multi-echo resting state 
data was extracted from the ventricles of four participants from two 
different datasets. 

Observations collected at each echo time were treated as intra-time 
point data and were used to estimate realised volatility. The roughness 
of the realised volatility was assessed by estimating the Hurst parameter 
H, which was accomplished with using neural network calibration tools. 
As the study was exploratory in nature we did not have prior hypotheses. 
However, considering the visual similarities between many financial 
returns and fMRI BOLD series, we anticipated that the estimated H of the 
realised volatility processes was in the rough volatility range, 0 < H <
0.5. 

2. Material and methods 

2.1. FMRI data acquisition 

Phantom data. Two MRI phantom s filled with liquid material was 
used to acquire multi-echo fMRI signal consisting entirely of thermal 
noise. The data were acquired with two different 3 Tesla GE Discovery 
MR750 units using 32-channel receive only head coils (Nova Medical, 
Wilmington, MA, USA). This was done to ensure the findings were not 
unique to a specific scanner. The functional multi-echo echo planar 
imaging (EPI) data consisted of 200 volumes and each volume consisted 
of 18 slices with the following parameters: 2.5 s repetition time (TR), 80∘ 
flip angle, 64 × 64 acquisition matrix, 3 mm slice thickness with 4 mm 
slice gap. The fMRI slices were acquired in an ascending order and eight 
echo times were used: 12 ms, 28 sm, 44 ms, 60 ms, 76 ms, 92 ms, 108 ms, 
124 ms. Eight echo times were used as this was the maximum number of 
echoes that can be acquired with the MR units used. 

Fig. 1. Three sample paths of fractional Brownian motion with H = 0.1, H = 0.5, and H = 0.9.  
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Human data. Multi-echo resting state data from two different data
sets, ds000258 (https://openneuro.org/datasets/ds000258/versions 
/1.0.0) and ds000210 (https://openneuro.org/datasets/ds000210 
/versions/00002), were used to examine whether patterns identified 
in the phantom data could be seen in vivo. The ds000258 data were 
acquired with a Siemens Trio 3 Tesla MRI scanner using 32-channel 
receive only head coil. T1-weighted magnetization prepared rapid 
gradient echo (MPRAGE) sequence was used to acquired the anatomical 
data with the following parameters: 1 mm slice thickness and 1.1 s 
inversion time. The functional multi-echo EPI data consisted of 239 
volumes and each volume consisted of 32 oblique slices with the 
following parameters: 2.47 s TR, 78∘ flip angle, 64 × 64 matrix size, and 
4.4 mm slice thickness with 10% slice gap. Alternating slice acquisition 
was used with ascending interleaved order and four echo times were 
used: 12 ms, 28 ms, 44 ms, and 60 ms. 

The data from the second dataset, ds000210, was acquired with a 3 
Tesla GE Discovery MR750 unit using a 32-channel receive only phased- 
array head coil. T1-weighted MPRAGE sequence was used to acquired 
the anatomical data with the following parameters: 2530 ms TR, 1 mm 
slice thickness, and 1.1 s inversion time. The resting state multi-echo EPI 
data consisted of 204 volumes and each volume consisted of 46 axial 
slices. The following parameters were used to acquire the data: 3.0 s TR, 
83∘ flip angle, 72×72 matrix size, and 3.0 mm isotropic voxels. The 
slices were acquired in inferior-superior interleaved order and three 
echo times were used: 13.7 ms, 30.0 ms, and 47.0 ms. 

2.2. FMRI data preprocessing 

Phantom data. The phantom data were preprocessed using SPM12 
(http://www.fil.ion.ucl.ac.uk/spm). Each echo was preprocessed sepa
rately to ensure the echoes could be used as intra-TR data to estimate 
realised volatility. The following preprocessing steps were taken: slice 
timing correction was applied first with the middle slice used as a 
reference slice. Although no motion was expected, the data were real
igned and resliced to correct for head motion and estimate six rigid body 
transformations. Prior to combining the echoes and estimating realised 
volatility linear model based de-trending was conducted. 

Human data. As with the phantom data, SPM12 was used to pre
process the human data one echo at a time to enable estimation of 
realised volatility. The following preprocessing steps were taken: slice 

timing correction with the middle slice serving as a reference slice, and 
realignment with reslicing was used to correct for head motion and es
timate six rigid body transformations. The anatomical data were then 
segmented into grey matter, white matter, cerebrospinal fluid, and skull, 
after which the anatomical data were co-registered with the mean 
functional image. 

After preprocessing, the six rigid body transformations were used to 
calculate framewise displacement using the spmup_FD function (https 
://github.com/CPernet/spmup/blob/master/QA/spmup_FD.m). 
Framewise displacement was then used to determine which participants 
had the least amount of head motion. From each dataset, two partici
pants who moved the least were selected (Supplementary Table 1), the 
data was subjected to linear model based de-trending, and then taken 
forward for further analysis. Additionally, to study the noise present in 
vivo, the anatomical scans were used to create ventricle masks. Studying 
signal from the ventricles enabled us to examine the volatility of the 
combination of scanner and physiological noise while avoiding 
contamination from true brain signal. Thus, only resting state data 
extracted from the ventricles were used for further analysis to estimate 
realised volatility and examine its roughness. 

2.3. T2*-weighted realised volatility 

As our data from the phantoms and ventricles contains only noise, we 
can re-write Eq. (1) at a given time point t…T as 

yt =
̅̅̅̅
vt

√ εt (3) 

μt = 0 as no true brain signal is present. 
Observations from each echo time n up to the last echo N were 

treated as intra-TR data which were used to estimate realised volatility 
for each point in the time series. To follow standard procedures and take 
into consideration the fact that fMRI signal decays rapidly (Supple
mentary Figs. 1–6), the observations from each echo time were weighted 
to avoid bias [34]. The weighting was based on T2* estimates, which 
were calculated in accordance with methodology used in tedana 
[35–37]: 

Sn = S0exp
(
− R*

2 ×En
)

(4)  

where Sn represents the signal intensity at a given echo time n, R*
2 = 1

T*
2
, E 

Fig. 2. Financial returns and fMRI BOLD series.  
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represents the echo time in milliseconds, and S0 represents the signal 
intensity at E = 0. The value of R2* is solved by a log-linear regression. 

T2*-based weights were then calculated as follows 

wn =
Enexp

(
− E

/
T*

2

)

∑N
n=1Enexp

(
− En

/
T*

2
) (5) 

The weights were used to estimate the mean of the fMRI noise pro
cesses at each echo time n at each time point, t = 1…T. 

yt =

∑N
n=1wnyn,t
∑N

n=1wn
. (6) 

Realised volatility at each time point, t = 1…T, was estimated by 
calculating variance between observations at each echo time n. 

v̂t =

∑N
n=1wn

(

yn,t − yt

)2

∑N
n=1wn

. (7) 

The estimated T2*-weighted variance, v̂t, served as a proxy of the 
unobserved volatility process and was used to investigate the smooth
ness of the fMRI noise series. As fMRI noise is believed to not exhibit 
similar exponential decay as true brain signal, we wanted to illustrate 
that the T2*-weighting used did not unduly impact the present findings 
by presenting analyses using non-weighted realised volatility data in the 
Supplementary Materials. The analyses using non-weighted data pro
duced results which mirror those reported here. 

2.4. Estimating roughness of realised volatility 

We examined the roughness of fMRI noise volatility by adopting a 
neural network calibration method established in [31]. The rBergomi 
model was chosen to simulate the training data because it produces 
driftless, mean reverting processes which closely resemble fMRI data. 
Roughness of the volatility series was examined by estimating the H 
parameter. In addition to examining the roughness of the volatility 
paths, we also wanted to extract information about the volatility of 
volatility by simultaneously estimating the η parameter. If any of the 
fMRI noise volatility series had constant volatility the estimated η =
0 and if the volatility was not constant η > 0. 

2.4.1. Neural network architecture 
To estimate the roughness and volatility of volatility of the fMRI 

noise volatility series we used a one-dimensional feed-forward con
volutional neural network (CNN) [31]. This approach has been previ
ously shown to accurately estimate the Hurst parameter H and 
outperform other methods such as the least squares method both in 
terms of accuracy, as measured using root mean squared error (RMSE), 
and speed. A further introduction to neural networks is given in Ap
pendix A; very simply one can think of a neural network as a composi
tion of affine and non-linear functions that approximates a mapping of 
inputs to outputs. 

The CNN consisted of three kernel layers with kernel size 20. The first 
convolutional layer had 32 kernels followed by a dropout layer with 
dropout rate of 0.25, the second had 64 kernels followed by a dropout 
layer with dropout rate of 0.25, the third had 128 kernels followed by a 
dropout layer with dropout rate of 0.4, and the fourth dense layer had 
128 units followed by a dropout layer with dropout rate of 0.3. Leaky 
ReLU activation functions followed each layer with α = 0.1 and max 
pooling layers with size 3 were added between each kernel layer. See 
[31] for rationale of this architecture and hyperparameter choice. 

2.4.2. Neural network training and test 
Altogether, 50,000 sample paths of the normalised rBergomi model 

log-volatility process, ṽt := η
∫ t

0 (t − s)H− 1/2dWs, were simulated. For 
each of the 50,000 sample paths simulated, 200 time points were used 

and H ~ Unif(0,1.0) and η ~ Unif(0,3.0). Hyperbolic tangent was used to 
scale η. Stone provides a rigorous mathematical justification for this set 
up [31, Section 3.2, p382]. The sample paths were generated using 
classical methodology which utilises the Cholesky decomposition to 
achieve exact distribution of the log-volatility paths (https://github. 
com/jennileppanen/fmri_vol). The sampling was conducted in a 
manner that ensured that each sample path had a unique H and η 
enabling better fitting to varying fMRI noise log-volatility processes. 

We took a nested cross-validation approach whereby the simulated 
sample paths were first divided into training and test datasets with 30% 
holdout. The training dataset was then further divided into training and 
validation sets with 20% hold out. Thus, the training dataset consisted of 
28,000 training and 7000 validation sample paths and the final test 
dataset included 15,000 sample paths. 

2.5. Evaluation of CNN H and η parameter estimation 

The performance of the trained CNN was assessed by calculating the 
RMSE between the predicted θ̂n = {θ̂}

n
i=1 and true θn = {θ}i=1

n parame

ters, where θ̂ =
(

Ĥ, η̂
)

and θ = (H,η). 

RMSE
(

θ̂n, θn

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

((
θ̂ i − θi

)2
)√

. (8) 

In the present study, the test error was small, RMSE = 0.065, and the 
relationship between predicted and true H and η in Fig. 3 were strongly 
linear. 

the parameter H governs three aspects of fractional Brownian motion 
at the same time: the self-similarity, the roughness of the paths (the 
oscillation) and the autocorrelation of the time series. Therefore, per
formance of the CNN was additionally evaluated by examining agree
ment between the estimated H parameters and the memory in the fMRI 
noise log-volatility series. Agreement between the CNN H parameter 
estimates and memory was evaluated by conducting a Spearman cor
relation test. Memory was estimated by fitting autoregressive fraction
ally integrated moving average (ARFIMA) [0,d,0] model to the log- 
volatility data and calculating the d parameter: 

εt = (1 − B)dlog(σt), (9)  

where B is the backshift operator and d represents the memory param
eter to be calculated. 

0 < d < 0.5 indicates the series is a stationary, mean reverting long 
memory process, while d < 0 indicates the series is anti-persistent short 
memory process. 0.5 < d < 1 indicates the series is a mean reverting, 
non-stationary long memory process. Although the relationship between 
smoothness of log-volatility processes and long memory is a complicated 
one [18,38–40], this correlation will give us an indication of the per
formance of the CNN in estimating H. 

3. Results 

3.1. Estimated roughness and volatility of volatility 

The summary statistics of the estimated H parameter of the realised 
log-volatility series in phantom and human data from the ventricles are 
presented in Table 1. On average the log-volatility series were rough, but 
the average H parameter estimates were somewhat higher in the data 
extracted from the ventricles (human) than in the phantom data. This 
could be because the phantom data should only contain scanner noise 
while the data extracted from the ventricles should include both scanner 
and physiological noise. In the phantom data there was also substantial 
variability in the H parameter estimates. The maximum estimated H 
remained under 0.5, suggesting that despite the substantial variability 
fMRI noise was rough across the phantoms. Similar variability was not 
observed in the data extracted in the ventricles and the maximum H 
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parameter estimates were smaller in the human data. Finally, all η >
0 suggesting that there were no fMRI noise volatility processes that had 
constant volatility. 

3.2. Spatial pattern in estimated Hurst parameters 

Fig. 4 shows how the estimated H varied from region to region across 
the phantoms and Figs. 5 and 6 show H parameter estimates in the 
ventricles. Log-volatility series associate with the maximum, minimum, 
and H parameter estimates close to the mean are also shown. 

Some edge effects were observed, such that the estimated H pa
rameters were generally larger near edges of the phantoms than the 
middle. In both phantoms the voxels with the maximum H parameter 
estimates were found near the edge and appeared to form large clusters. 
In the middle of the phantoms the H parameter estimates were generally 
very small yet varied. Similar edge effects were not observed in the 
resting state data extracted from the ventricles, which could be due to 
the fact that the ventricles reside close to the middle of the brain. Still, as 
in the phantom data, it was apparent that the H parameter estimates 
varied from voxel to voxel within the ventricles suggesting spatially non- 
constant volatility was present. 

Interestingly, phantom 1 has a small region near the top where the 
signal intensity was lower than in the nearby voxels, suggesting signal 
dropout due to a possible air bubble (Supplementary Fig. 14). This area 
consisted of four voxels and one of these voxels had the largest H 
parameter estimate in phantom 1. This voxel also represents the centre 
of the cluster near the top of the phantom in Fig. 4A. No such signal 

dropout was seem in phantom 2. 
Multi-slice view of scanner 1 phantom 1 (A) and scanner 2 phantom 

2 (B) with log-volatility processes corresponding to maximum, mini
mum and mean H estimates. 

Multi-slice view of data extracted from the ventricles of two partic
ipants, sub-17,821 (A) and sub-21,300 (B), from the ds000258 dataset 
with log-volatility processes corresponding to maximum, minimum and 
mean H estimates. 

Multi-slice view of data extracted from the ventricles of two partic
ipants, sub-28 (A) and sub-30 (B), from the ds000210 dataset with log- 
volatility processes corresponding to maximum, minimum and mean H 
estimates. 

3.3. Agreement between the correlation governed by the Hurst parameter 
H and ARFIMA autocorrelation 

As mentioned earlier, the Hurst parameter not only governs the 
roughness of a volatility path, but also the autocorrelation function of 
the volatility time series. In this section we test for the agreement be
tween the presence of autocorrelation predicted by the rough volatility 
model and the autocorrelation predicted by a standard ARFIMA model. 
As shown in Table 2 the correlation was significant and positive in both 
phantoms and data extracted from the ventricles. 

ρ = Spearman correlation coefficient; ds000258 and ds000210 refer 
to the two Openneuro. datasets used. 

The relationship between estimated H parameter and the ARFIMA[0, 
d,0] memory parameter, d, of the log-volatility processes are presented 
in Supplementary Figs. 7 and 8. The correlations between the H and 
d parameters was more variable in the resting state data extracted from 
the ventricles, which may be related to the fact that the size of the 
ventricles and thus the number of voxels in the the ventricles varied 
between participants and participants with more voxels inside the 
ventricles has higher correlations. 

4. Discussion 

The aim of the present empirical study was to examine the roughness 
of fMRI noise volatility. We used multi-echo scans of two phantom s 
from two different MRI scanners to estimate realised volatility. We also 
used human data from two separate multi-echo resting state datasets to 
examine whether patterns observed in the phantom data were present in 
vivo noise, specifically, focusing on signal extracted from the ventricles. 
Roughness of logarithm of the realised volatility processes was 

Fig. 3. Scatter plot showing the correlation between predicted and true H parameter.  

Table 1 
Estimated H and η parameters in phantom and human data.    

Phantom data ds000528 ds000210   

Phantom 
1 

Phantom 
2 

sub- 
17,821 

sub- 
21,300 

sub- 
28 

sub- 
30 

H Mean 0.020 0.019 0.020 0.021 0.031 0.042  
SD 0.021 0.015 0.009 0.010 0.013 0.020  
Max 0.498 0.396 0.042 0.052 0.107 0.127  
Min 0.0005 0.001 0.003 0.004 0.004 0.008 

η Mean 0.232 0.234 0.331 0.345 0.462 0.526  
SD 0.111 0.071 0.053 0.058 0.098 0.134  
Max 4.503 3.020 0.443 0.493 1.058 1.193  
Min 0.036 0.055 0.203 0.184 0.235 0.285 

Human data was extracted from the ventricles. SD = standard deviation; 
ds000258 and ds000210 refer to the two Openneuro. datasets used. 
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estimated using CNN calibration tools introduced in [31]. The findings 
indicated that no fMRI noise volatility series had constant volatility with 
estimated volatility of volatility η > 0. On average the volatility of fMRI 
noise is very rough with H ≈ 0.03, but substantial variability was also 
observed. The variability was caused by the fact that the smoothness of 

the volatility was not constant across the phantoms, with higher H es
timates observed near the edges of the images. Interestingly, similar 
patterns of variability, with the exception of edge effects as we focused 
on data from the ventricles, were also observed in vivo noise, but the 
average was somewhat higher, H ≈ 0.05 and maximum substantially 

Fig. 4. Spatial distribution of estimated H parameters in the phantom data.  

Fig. 5. Spatial distribution of estimated H parameters in vivo noise.  
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lower. Overall, all H < 0.5 suggesting that across the phantom and 
human data, volatility was consistently rough. 

The present findings suggest that log-volatility of fMRI noise appears 
to behave like fractional Brownian motion with H parameter estimates 
between 0.03 and 0.05. As anticipated, these findings go some way to 
mimic the rough volatility pattern observed in high frequency financial 
data with Hurst parameter estimates varying between 0.02 and 0.14 
[17,18]. Thus, it appears that although fMRI scanner noise on average 
does not have large fluctuations in volatility over time, i.e. the noise 
does not exhibit sustained periods of high volatility followed by sus
tained periods of low volatility. Instead, the noise processes exhibit 
rapid spikes and oscillations, indicating more “severe” hetero
scedasticity. The heteroscedasticity observed in the phantom data 
cannot be explained by head motion, physiology, or other known 
sources of non-constant noise and cannot be easily entered into analysis 
as a covariate because scanner noise processes cannot be directly 
observed during brain scanning. These findings challenge the assump
tion that fMRI noise has constant volatility and adds to the steady 
accumulation of literature exploring heteroscedasticity in fMRI noise 
[1–6], further highlighting the importance of taking non-constant noise 
into consideration during analysis of the time series data. 

The impact of rapidly spiking and oscillating volatility on fMRI data 
analysis has recently been investigated. One study examined the impact 
of heteroscedasticity introduced by simulated head motion spikes on 
fMRI data analysis [1]. The authors found that a linear modelling 
approach based on weighted least sum of squares (WLSS) was able to 
accurately model impulse responses to stimuli if the heteroscedasticity 

was constant across all voxels [1]. However, when the number of head 
motion spikes varied from voxel to voxel, the WLSS failed to accurately 
detect impulse responses. These findings led the authors to propose a 
heteroscedastic general linear model which incorporates head motion 
covariates. However, our findings suggest that not only can hetero
scedasticity also be present in the scanner noise, but also the pattern of 
heteroscedasticity varies from voxel to voxel, with different patterns of 
spiking and rapid oscillations. Furthermore, our findings also indicate 
that similar patterns in volatility can be observed in the human data, 
which can be taken to suggest that the heteroscedasticity observed in 
scanner noise is also present in vivo noise. Taking the above findings by 
[1] into consideration, it is possible that such spatially non-constant 
heteroscedasticity in fMRI noise could influence data analysis. 

Interestingly, to our knowledge only a few studies to date have 
examined the impact of heteroscedastic noise not explained by head 
motion or physiology on fMRI data analysis. In all studies the authors 
examined the usefulness of deterministic autoregressive conditional 
heteroscedasticity (ARCH) and generalised ARCH (GARCH) -type 
models, to aid investigation of time-dependent functional connectivity 
[6,25,41]. The studies specifically investigated GARCH(1,1) models 
with only one autoregressive and one moving average lag, suggesting 
the authors assumed the volatility would exhibit short memory. Simu
lation and real data experiments both showed that incorporating 
GARCH(1,1) model into the analysis helped to accurately model the 
time-dependent functional connectivity. Traditional approaches, 
including sliding window and exponentially weighted moving average 
models, on the other hand, were found to produce more false positive 

Fig. 6. Spatial distribution of estimated H parameters in vivo noise.  

Table 2 
Correlations of H and d parameters from different sources.   

Phantom data ds000528 ds000210  

Phantom 1 Phantom 2 sub-17,821 sub-21,300 sub-28 sub-30 

ρ 0.69 0.69 0.40 0.58 0.68 0.79 
p-value <0.001 0.002 <0.001 <0.001 <0.001 <0.001  
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findings [6,25,41]. Moreover, previous Monte Carlo experiments have 
shown that heteroscedasticity violates the assumptions of not only cor
relation tests but also linear regressions in ways that can produce false 
positive findings [42–44]. Taken together with the present findings, we 
believe that further investigation of the impact of short memory heter
oscedasticity on various different fMRI data analysis methods as well as 
selecting the most efficient and accurate methods to model the time- 
dependent volatility is of interest. Such further work could ultimately 
help improve both resting state and task-based data analysis as the noise 
in the time series is better understood [3,45]. 

The present findings also show that the roughness of fMRI noise is 
not constant across regions in the phantom with the edges showing 
greater smoothness in the volatility relative to the centre of the phan
tom. This suggests that the volatility near the edges of the phantom was 
more likely to exhibit sustained periods of high and low volatility rather 
than rapid oscillations or spiking behaviour. To an extent these findings 
mirror those from previous work examining long-range dependence in 
the mean of fMRI noise [46,47]. Previous studies have found that the 
long-range dependence near the edges of the phantom has estimated H 
> 0.5, indicating persistence and sustained periods of high and low 
mean in the series [46]. Similar edge effects have also been observed in 
real brain scans [46,48]. Taken together with the present findings this 
suggests that fMRI data near the edges of an image appears to be more 
complex than that near the centre. Such time-dependent behaviour in 
the noise near the edges complicates data analysis as these effects violate 
assumptions of most time series modelling methods and can lead to both 
spurious regressions and correlations [42–44,49–53]. Further investi
gation of the impact of reported edge effects on fMRI data analysis 
methods is of interest. 

It is also important to note that in the present study, one of the 
phantoms had a small region of signal dropout, possibly indicating a 
presence of an air bubble. This region was the centre of one of the 
clusters where the smoothness of the volatility process was greater than 
in nearby regions. Previous studies have also found that air bubbles in 
phantoms can lead to drop in signal intensity, which has been suggested 
to due to susceptibility artifacts at the air-water boundary [54]. Air 
bubbles can also introduce phase errors and related magnetic field 
heterogeneity [55,56], which could go some way to explain the larger H 
estimates in one of the clusters in one of the phantoms. Interestingly, 
such an effect was only found in one of the phantoms, suggesting that all 
the edge effects could not be explained by air bubbles. Still further 
investigation of the spatial pattern of volatility in fMRI noise in a gel 
phantom prepared with warm water, which are less susceptible to air 
bubbles [57], would be of interest. 

The present study is not without limitations. First, the CNN was 
trained using simulated data as it was not possible use true realised 
volatility data because the true H and η of such data are unknown. 
Although such methods have been previously used in the field of 
financial mathematics and have been shown to outperform alternative 
models, such as those based on the sum of least squares [31], a model is 
always a simplification of reality. However, we argue that even though 
the simulated log-volatility paths used in the training of the CNN may 
indeed be different from the real data, they are no more different than 
the constant volatility assumption of traditional fMRI time series anal
ysis methods. Additionally, we chose to use the mean reverting and 
driftless rBergomi model to simulate data because it closely reflects the 
behaviour in fMRI data. Additionally, the resting state data used to 
examine whether volatility patterns observed in the phantoms could 
also be seen in noise in vivo could have been influenced by head motion. 

Although, we took steps to minimise the impact of head motion on the 
analysis, it is possible that H parameters estimates were still influenced 
by head movements. However, considering the pattern of volatility 
observed in the resting state data extracted from the ventricles largely 
mirrored that seen in the middle of the phantoms we believe it can be 
concluded that at least some of the rapidly oscillating heteroscedastic 
scanner noise is present in vivo. 

In the present study, realised volatility was estimated after slice 
timing correction and realignment, but no further preprocessing or de- 
noising steps were taken prior to estimation. This was done in an 
attempt to mirror standard multi-echo preprocessing pipelines where 
the echoes are normally combined prior to further preprocessing steps, 
such as smoothing, and independent component analysis-base de- 
noising [34,36,58]. This meant that we were unable to examine the 
impact of de-noising on realised volatility. Additionally, realised vola
tility was estimated using only eight echo time points as this was the 
maximum number we were able to collect. In finance, on the other hand, 
it is common to use high frequency asset price data, with sub-second 
granularity, to estimate daily volatility. It is difficult to ascertain 
whether our use of lower frequency data to estimate realised volatility 
had an impact on the present findings. Finally, the phantom and human 
data were acquired using different 3 Tesla MRI units. It is possible that 
the volatility of fMRI noise from scanners with different field strengths 
might vary and further investigation of this may be of interest. 

5. Conclusions 

The aim of the present study was to examine the smoothness of 
estimated realised volatility of fMRI noise as well as to examine whether 
patterns identified in the phantom scans were present in human data. 
This was done by conducting two multi-echo scans of two phantoms 
using two different MRI scanner units and using publicly available multi- 
echo resting state data. Multi-echo data were used to estimate realised 
volatility by T2*-weighted variance. Smoothness of the realised vola
tility data was estimated by following cutting edge methods developed 
in the field of financial mathematics, namely by training a CNN to 
predict the Hurst parameter, H. The findings showed that on average 
scanner noise is very rough with H ≈ 0.03 and the roughness of the 
volatility data varied across the spatially across the phantoms. In both 
phantom scans the H estimates were larger near the edges, suggesting 
that volatility was smoother in these regions. Similar patterns of vari
ability, with the exception of large edge effects, were observed in the 
resting state data extracted from the ventricles. Thus, seems that rapidly 
oscillating, spatially non-constant heteroscedastic noise is present in 
vivo noise as well. Taken together the present findings further challenge 
the assumption that fMRI scanner noise has constant volatility and 
highlight the need for further research to investigate how to effectively 
model the heteroscedasticity during time series analysis. 
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Appendix A. Artificial neural networks 

In this appendix we repeat the introduction given by Stone [31, Section 2.1, p382] for the reader’s convenience. An artificial neural network is a 
biologically inspired system of interconnected processing units, where each processing unit is called a layer. Inputs to each layer, apart from the first 
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layer, are outputs from previous layers. A layer is composed of a number of nodes, and each node in a given layer is connected to the nodes in a 
subsequent layer, thus forming a network; each edge in this network has a weight associated to it. The first processing unit is called the input layer, and 
the final processing unit is the output layer. The processing unit or units between the input layer and output layer are referred to as hidden layers; 
typically artificial neural networks have more than one hidden layer.

Convolutional neural networks (CNNs) are a class of artificial neural networks, where the hidden layers can be grouped into different classes 
according to their purpose; one such class of hidden layer is the eponymous convolutional layer. Below we describe the classes of hidden layers used in 
our CNN. Of course, this list is not exhaustive, and there exist many classes of hidden layers that we omit for means of brevity. Note also that we 
describe a CNN in the context of the problem we are trying to solve, where the input data are one dimensional vectors. CNNs can of course also be used 
on higher dimensional input data, but the fundamental structure and different roles of the hidden layers do not change.  

• Convolutional Layer: In deep learning, the convolution operation is a method used to assign relative value to entries of input data, in our case one 
dimensional vectors of time series data, while simultaneously preserving spatial relationships between individual entries of input data. For a given 
kernel size k and an input vector of length m, the convolution operation takes entries 1, …, k of the input vector and multiplies by the kernel 
element-wise, whose length is k. The sum of the entries of the resulting vector are then the first entry of the feature map. This operation is iterated 
m + 1 − k times, thus incorporating every entry in the input data vector into the convolution operation. The output of the convolutional layer is the 
feature map. 

For example, let (1,2,1,0,0,3) be our input vector, and (1,0,1) be our kernel; here the kernel size is 3. The first iteration of the convolution operation 
involves taking the element-wise multiple of (1,2,1) and (1,0,1): (1,0,1) is produced and the sum, equal to 2, is computed. This is the first entry of the 
feature map. The resulting feature map in this example is then (2,2,1,3). 

Clearly, the centre of each kernel cannot overlap with the first and final entry of the input vector. Zero-padding, sometimes referred to as same- 
padding, preserves the dimensions of input vectors and allows more layers to be applied in the CNN: zero-padding is simply the extension of the input 
vector and the setting of the first and final entries as 0, while leaving the other entries unchanged. In our example, the input vector becomes 
(0,1,2,1,0,0,3,0) after zero padding.  

• Activation Layer: The activation layer is a non-linear function σ that is applied to the output of the convolutional layer i.e. the feature map; the 
purpose of the activation layer is indeed to introduce non-linearity into the CNN. Examples of activation functions include the sigmoid function and 
the hyperbolic tangent function. In our CNN we use the ‘LeakyReLU’ activation function, defined as 

fα(x) :=
(

x, ifx > 0,
αx, otherwise.

The LeakyReLU activation function allows a small positive gradient when the unit is inactive.  

• Max Pooling Layer: For a given pooling size p, the max pooling layer returns a vector whose entries are the maximum among the neighbouring p 
entries in the feature map. For example, for feature map (1,3,8,2,1,0,0,4,6,1) and p = 3 the max pooling output is (8,8,8,8,8,2,4,6,6,6). 

Other pooling techniques apply the same idea, but use different functions to evaluate the neighbouring p entries in the feature map. Examples 
include average pooling, and L2-norm pooling, which in fact uses the Euclidean norm in mathematical nomenclature.  

• Dropout Layer: Dropout is a well-known technique incorporated into CNNs in order to prevent overfitting. Without the addition of a dropout 
layer, each node in a given layer is connected to each node in the subsequent layer; dropout temporarily removes nodes from different layers in the 
network. The removal of nodes is random and determined by the dropout rate d, which gives the proportion of nodes to be temporarily dropped. 
Note that dropout is only implemented during training; during testing the weights of each node are multiplied by the dropout rate d.  

• Dense Layer: Also referred to as the fully connected layer, each node in the input layer is connected to each node in the output layer as the name 
suggests. After being processed by the convolutional, activation, pooling, and dropout layers, the extracted features are then mapped to the final 
outputs via a subset of the dense layer, an activation function is then applied subsequently. This activation function is chosen specifically for the 
task that the CNN is required to execute, i.e. binary/multi-class classification, or regression to output a continuous value. The final output from the 
dense layer has the same number of nodes as the number of classes in the output data. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2021.02.009. 
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