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Inhibiting cancer cell hallmark features through nuclear export
inhibition
Qingxiang Sun1,2, Xueqin Chen2, Qiao Zhou2, Ezra Burstein3,4, Shengyong Yang1 and Da Jia1,5

Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application.
Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of
numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the
broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I–III) on both
advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1
inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that
nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.
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INTRODUCTION
Nuclear export, mainly mediated by the nuclear export factor
exportin-1 (better known as chromosomal region maintenance 1,
CRM1), is an essential function in all eukaryote that transport
nuclear export signal (NES) containing cargoes from the nucleus to
the cytoplasm.1 Upregulation of this process is a common
characteristic for a broad spectrum of cancers; inhibition of
nuclear export kills cancer cells effectively, although its anti-cancer
mechanism is not conclusive thus far.2,3 In addition, CRM1 has
been shown to mediate drug resistance.4,5 Among dozens of
CRM1 inhibitors discovered, a few were clinically tested or are
undergoing clinical trials, including the first generation of CRM1
inhibitor, leptomycin B (LMB), and the second-generation CRM1
inhibitor SINE (specific inhibitor of nuclear export).6 In this review,
we first present the background of nuclear–cytoplasmic transport,
the nuclear export factor CRM1 and the cancer hallmark pathways
affected by CRM1 inhibition. We then discuss the details of LMB
and SINE, with both being covalent CRM1 inhibitors. Finally, we
propose non-covalent CRM1 inhibitors as the next generation of
anti-cancer drugs, and discuss their advantage over covalent
inhibitors.

NUCLEOCYTOPLASMIC TRANSPORT
Eukaryotes are characterized by the presence of the cell nucleus,
which is enclosed by a nuclear envelope and separated from the
rest of the cell. The nuclear pore complex (NPC) is the sole
gateway on the nuclear envelope that governs protein and nucleic
acid exchange between the nucleus and cytosol.7 Although small
molecules are freely permeable across the NPC, permeability is
increasingly restricted as the molecular size approaches 30 kDa.8

Movement of bigger molecules or more efficient passage of
smaller molecules in and out of the nucleus is mediated by active
transport of soluble transport factors called karyopherin

proteins.9,10 The human genome encodes ~ 20 different karyo-
pherin proteins, functioning as importin (for nuclear import),
exportin (for nuclear export) or transportin (both import and
export), each being responsible for transporting a set of cargoes
(protein or RNA) containing specific sequences/motifs known as
nuclear localization signal (NLS) or NES or both.11–15 Karyopherin
directly binds to exposed NLS or NES, and determine whether the
cargo should go to the cytoplasm or nucleus. Diverse mechanisms,
such as post-translational modifications (phosphorylation, acetyla-
tion, sumoylation, ubiquitination and so on), protein binding
masking/unmasking and disease-related NES mutations, regulate
cargo’s NES/NLS accessibility and thus its cellular localization.16–21

For nuclear import, a cargo with accessible NLS and an importin
form a complex, which is imported into the nucleus together
through the NPC (Figure 1).22,23 The small GTPase RanGTP in the
nucleus then dissociates the cargo from the importin through
direct or indirect competition.24,25 The RanGTP–importin complex
is then recycled to the cytoplasm. After GTP hydrolysis by RanGAP
and concomitant RanGDP dissociation, importin is ready for
another cycle of nuclear import.26,27 For a cargo to exit the
nucleus, it must display an NES, which cooperatively forms a tight
trimeric complex with an exportin and RanGTP.28–30 The complex
translocates together into the cytoplasm, where RanGTP is
hydrolyzed to RanGDP by RanGAP. This weakens the affinity
between NES and exportin, causing dissociation of cargoes.31

Bidirectional karyopherins bind to NLS cargoes in the cytoplasm
and bind to NES cargoes when exiting nucleus, with similar cargo
association/dissociation mechanism to importins and exportins
discussed above.32,33

NUCLEAR EXPORT FACTOR CRM1
Of the known exportins, CRM1 is an essential and most often used
exportin in cells, which exports numerous cargoes including both
proteins and RNAs.1,34–36 More than 1050 cargoes have been
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identified in human cells through proteomic approaches, among
which 4200 cargoes have been verified through different
techniques.37–40 CRM1-mediated nuclear export is implicated in
various diseases, including cancer, wound healing, inflammation
and viral infection. This review will focus on its role in cancer.6,41,42

CRM1 is overexpressed in a large variety of tumors including lung
cancer,43 osteosarcoma,44 glioma,45 pancreatic cancer,46 ovarian
cancer,47,48 cervical carcinoma,49 renal cell carcinoma,50 esopha-
geal carcinoma,51 gastric carcinoma,52 hepatocellular carcinoma,53

acute myeloid/lymphoid leukemia,54,55 chronic myeloid/lymphoid
leukemia,56 mantle cell lymphoma,57,58 plasma cell leukemia59 and
multiple myeloma.59,60 In addition, CRM1 upregulation is asso-
ciated with drug resistance and stands out as a poor prognosis
factor in many malignancies.44–46,52,54,61–67

CRM1 exports a long list of tumor suppressors or oncogenes,
such as p53, FOXOs, p27, nucleophosmin, BCR–ABL, eIF4E and
survivin, and these proteins are mislocalized to the cytoplasm in
many cancer cell types (Figure 2).6,68–71 Furthermore, acting
through a variety of mechanisms, CRM1 activates or upregulates
the expression of several oncogenic proteins that may not be the
direct cargo of CRM1, such as vascular endothelial growth factor,
epidermal growth factor receptor, Cox-2, c-Myc and HIF-1
(Figure 2).63,72,73 Thus, inhibition of CRM1-dependent nuclear
export may affect multiple aspects of carcinogenesis.

DOWNREGULATING CANCER HALLMARKS THROUGH CRM1
INHIBITION
During the multistep development of cancer, cells acquire unique
biological properties that enable them to become neoplastic
and eventually malignant.74 These properties include genomic
instability, sustained proliferation, resistance to cell death,
reprogramming of cellular energetics and so on, which are

summarized as the hallmarks of cancer by Hanahan and
Weinberg.75 Intriguingly, many CRM1 cargoes are found to be
critical for at least nine hallmark features of cancer (Figure 2). Next,
we will briefly discuss how the altered cellular distribution of
CRM1 cargoes contributes to a particular cancer hallmark, and
how CRM1 inhibition may reverse these processes, hopefully
bringing some insights into CRM1 inhibitors’ broad-spectrum anti-
cancer activity.

Sustained proliferation
The most remarkable trait that cancer cells acquire is their ability
to perpetually divide, resulting in uncontrolled proliferation.76

Many tumor-specific mechanisms are involved in this particular
cancer cell trait. For instance, the proto oncogene BCR–ABL is
formed by a fusion of the ABL1 (Abelson murine leukemia viral
oncogene homolog 1) and the BCR (breakpoint cluster region)
genes, resulting in a BCR–ABL chimeric protein, which constantly
stimulates proliferation of myeloid cells.77,78 BCR–ABL is exported
to the cytoplasm of cancer cells where it activates the PI3K/Akt
pathway.77,79 CRM1 inhibition traps BCR–ABL in the nucleus, re-
sensitizes leukemia cells to the BCR–ABL inhibitor imatinib,
resulting in strong reduction of tumor cell proliferative potential
with limited toxicity to normal myeloid precursors.80,81 In addition,
the expression level of several master growth regulators, such as
c-Myc, c-Met and epidermal growth factor receptor, is reduced by
CRM1 inhibition through different mechanisms, which might
be crucial for the reduced rate of tumor proliferation
observed.53,59,60,82,83

Evading growth suppressors
Tumors evade powerful negative regulation of cell proliferation
imposed by different growth suppressors such as retinoblastoma

Figure 1. An overview of nucleocytoplasmic transport. Nucleocytoplasmic transport requires cargo with accessible NES or NLS, and its
corresponding transport factor exportin or importin. For simplicity, bidirectional keryopherin-mediated transport is omitted. GAP, GTPase-
activating protein; NEI, nuclear export inhibitor; NES, nuclear export signal; NLS, nuclear import signal; NPC, nuclear pore complex; RanGDP
and RanGTP, GDP- and GTP-bound form of the small GTPase protein Ran.
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protein, p21 and p27.75 These cell cycle inhibitors function in the
nucleus in normal cells, but are mislocalized to the cytoplasm by
CRM1 in various cancers.84–86 For example, p27 is a tumor
suppressor that functions in the nucleus to inhibit G1 progression
in normal cells.87 In tumor cells it is rarely mutated, but rather
aberrantly exported to the cytoplasm by CRM1, where it is
degraded by the proteasome or functions as an oncogene by
promoting cell migration.88–90 CRM1 inhibition significantly
increases nuclear p27 levels and decreases the cytoplasmic
oncogenic pool of this protein (Ser10 phosphorylated p27) in
tumor cells.53,90,91

Genome instability and mutation
In cancer cells, the DNA maintenance machinery is often mutated
or mislocalized, thereby facilitating alterations of the genome and
the acquisition of multiple hallmarks subsequently.75 p53 is a well-
known genome guardian, which has pivotal roles in sensing and
repairing DNA damage.92 Besides p53 mutations, cancer cells can
evade p53 survillience through CRM1-mediated p53 nuclear
export.93,94 Treatment with CRM1 inhibitors results in increased
nuclear p53 level, triggering p53-mediated transcription and
apoptosis.58,95 Similarly, several other proteins critical for genome
stability are exported to the cytoplasm in different types of cancer
cells, including HSP90, nucleophosmin and PTEN.96–98

Resisting cell death
In addition to the sustained proliferation ability, cancer cells must
bypass programmed cell death by apoptosis.75 Survivin, a member
of the inhibitor of apoptosis family, is localized in both the nucleus
and the cytoplasm of tumor cells, and it is the cytosolic fraction
that exerts the cancer-promoting activity.99,100 Inhibition of
nuclear export by survivin NES antibodies promotes the nuclear
accumulation and degradation of survivin, which abolishes its
cytoprotective function.101,102 In another study, nuclear accumula-
tion of pro-apoptotic protein Bok (Bcl-2-related ovarian killer) by
mutation of its NES or CRM1 inhibition causes apoptosis in breast
cancer cells.103 Another example pertains to FOXO family proteins,

which are important transcription factors controlling the expres-
sion of apoptosis-related genes.104 Through phosphorylation
events, their NESs are exposed, leading to FOXO’s cytoplasmic
localization and loss of pro-apoptotic activity in cancer cells.18

Enabling replicative immortality
Maintenance of telomeres by telomerase is important for
chromosome stabilization and cell immortalization.105 As such,
telomerase is activated in germ cells and most cancers.106

Telomerase RNA subunit TLC1 must be exported into the
cytoplasm to recruit the protein subunits for complete assembly
of the enzyme, which is then imported into the nucleus to extend
telomeres.107 Nuclear export of TLC1 requires both CRM1 and the
messenger RNA export machinery.108 It is reported that nuclear
export of TLC1 is an essential step for the formation of the
functional RNA containing enzyme, and blocking TLC1 export
prevents its cytoplasmic maturation and leads to telomere
shortening.108

Inducing angiogenesis
Tumor growth requires new blood vessels formation to supply
nutrients for increasing mass of tumor cells.109 The well-known
prototype of angiogenesis inducer is vascular endothelial growth
factor.110 CRM1 inhibition causes nuclear retention of the NES-
containing cargo Fbw7, a subunit of a ubiquitin ligase that
promotes the degradation of nuclear Notch-1 and further leads to
decreased vascular endothelial growth factor level.66 Copper
metabolism MURR1 domain 1 (COMMD1) protein, an inhibitor of
HIF-1, is actively exported to the cytoplasm by CRM1 under low
oxygen concentrations.111 Disruption of the NESs or CRM1
inhibition results in nuclear accumulation of COMMD1, enhancing
the repression of transcriptional activity of HIF-1 by COMMD1.111

Activating invasion and metastasis
The transcription factor Snail has important roles in epithelial–
mesenchymal transition, tumor invasion and metastasis.112 CRM1

Figure 2. CRM1-mediated nuclear export and cancer hallmarks. CRM1 contributes to the different aspects of cancer hallmarks and CRM1
inhibition may downregulate 9 out of 10 cancer hallmark processes simultaneously. Proteins in black are direct cargoes of CRM1, which are
mislocalized to the cytoplasm in various cancer cells. Proteins in red may not be direct cargoes of CRM1, but are shown to be suppressed by
nuclear export inhibition through different mechanisms.
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inhibition leads to nuclear accumulation of FBXL5 (F-Box and
leucine-rich repeat protein 5), which is a negative regulator of
Snail.113 Silencing CRM1 or Snail results in nuclear accumulation of
FBXL5 and inhibition of epithelial–mesenchymal transition.113

Similarly, APC (adenomatous polyposis coli) protein, a negative
regulator of nuclear β-catenin, is mislocalized to the cytoplasm
by CRM1 in cancer cells, resulting in uncontrolled β-catenin
transactivation of metastasis-related proteins.40,114 Further, cyto-
plasmic promyelocytic leukemia (cPML) promotes a mesenchymal
phenotype and increases the invasiveness of prostate cancer cells
through transforming growth factor-β signaling.115 cPML nuclear
export is mediated by CRM1, co-expression of which with cPML
correlates with reduced disease-specific survival in patients.115

Deregulating cellular energetics
Cancer cells usually display upregulated energetic metabolism to
adapt to their high rate of proliferation.75 The ribosome is an
effective cancer drug target because ribosome inhibition limits
cellular energetics by affecting global protein synthesis.116,117

CRM1-mediated nuclear export is essential for nuclear export of
pre-mature ribosome subunits and inhibition of CRM1 causes
immature 40S and 60S ribosome production.118–120 In addition to
ribosome biogenesis, hyperactive translation via eukaryotic
translation initiation factor eIF4E is common in the majority of
cancers.121 eIF4E is abnormally exported to the cytoplasm by
CRM1 in cancer cells, together with several proliferative messen-
ger RNAs.122 eIF4E cytoplasmic localization in leukemia patients
strongly correlates with eIF4E inhibitor treatment outcome.123

Tumor-promoting inflammation
The importance of inflammation in tumor development has been
increasingly recognized.124 Cox-2 and NF-κB are the key cellular
mediators of inflammation that are often upregulated in cancer
cells.125,126 It is shown that CRM1 inhibitor downregulates Cox-2
level by limiting its messenger RNA export.72 Treatment of ovarian

cancer cells with a CRM1 inhibitor revealed a reduction in COX-2
expression and concomitant reduction of cell proliferation and
increased apoptosis.47 NF-κB inhibitor IκBα is also a cargo of
CRM1.127 IκBα is rapidly locked in the nucleus by CRM1 inhibition
and forms a transcriptional inactive complex with NF-κB.128,129

Although it is impossible to summarize all proteins involved in
nuclear export and cancer, the above examples clearly illustrate
the strong link between CRM1 inhibition and reversion of cancer
hallmarks. Many mechanism-based cancer drugs only target one
particular aspect of cancer. For instance, epidermal growth factor
receptor inhibitors reduce cancer proliferation, CDK inhibitors stop
cell cycle and BH3 mimetics promote cell death.130–132 In response
to such single-target therapy, cancer cells may reduce their
reliance on a particular protein and develop more dependence on
another.75,133 Importantly, CRM1-mediated nuclear export is a
significant contributing factor in the development of drug
resistance.70,134,135 As CRM1 inhibition could downregulate 9 out
of 10 cancer features simultaneously, it probably would be more
effective than targeting a single pathway. Indeed, it has been
observed that CRM1 inhibitors have broad-spectrum anti-cancer
potency in pre-clinical and clinical studies.

DIFFERENT CLASSES OF NUCLEAR EXPORT INHIBITORS
Over the past two decades, plenty of nuclear export inhibitors
(NEIs) have been discovered or developed, tested against diseases
such as cancer, virus infection and neuronal degeneration.2,41,134

By their origins, these inhibitors can be classified into four groups
as follows: bacterial products, herbal ingredients, fungal or animal
NEIs, and synthetic NEIs (Figure 3). (1) Bacterial NEIs include
leptomycin A/B, ratjadone A/C and anguinomycin A/B/C/D, which
all have a long polyketide chain with a lactone ring.136–138 In
general, they are very potent against cancer cells (half-maximal
inhibitory concentration below 10 nM), but too toxic and profiling
very narrow therapeutic window.136–138 (2) Several plant NEIs were
discovered from South/Southeast Asia herbs and food additives in

Figure 3. Four classes of nuclear export inhibitors (NEIs). Two representative NEIs from each class is drawn, including (a) bacterial products
leptomycin B and ratjadone A; (b) plant ingredients goniothalamin and plumbagin; (c) wortmannin from fungus and 15d-PGJ2 from animals;
(d) synthetic NEIs CBS9106 and KPT-330. Asterisk (*) denotes possible covalent binding sites to Cys528 on CRM1.
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recent years, including valtrate, oridonin, acetoxychavicol acetate,
curcumin, gonionthalamin, piperlongumine and plumbagin.62,139–144

Plant NEIs generally bind/inhibit CRM1 poorly and display mild
anti-tumor activity.62,139–144 (3) Wortmannin and cyclopentenone
prostaglandin (15d-PGJ2) were known for other functions before
they were discovered as CRM1 inhibitors.145,146 Fungal steroid
metabolite wortmannin is a well-known PI3K inhibitor.147 The
cyclopentenone prostaglandin 15d-PGJ2 is an anti-inflammatory
compound produced in the body.148 They both have low
micromolar NES inhibition potency, which may explain their
anti-proliferative and anti-inflammatory properties known
earlier.145,149 (4) Realizing the significance of NEI in the treatment
of cancers and other diseases, scientists have discovered a variety
of synthetic inhibitors, including PKF050-638, 5219668, SINEs,
compound3/4, CBS9106 and S109.6,48,145,150–153 CBS9106 has anti-
tumor effect as a single agent in 60 different human cancer cell
lines at sub-micromolar concentrations.154 SINEs are currently
undergoing over 40 clinical trials, for human hematologic
malignances and solid tumors (https://clinicaltrial.gov/).
It should be noted that all these inhibitors form a covalent bond

with Cys528 of human CRM1 protein, through a Michael addition
reaction. Cys528 lies in the NES-binding groove of CRM1
(Figures 4a and b). Thus, these inhibitors directly inhibit NES
binding to CRM1 (Figures 4c and d). Mutation of Cys528 disables
the anti-tumor action of these compounds.48,62,70,113,151,152,155

Next, we will focus on two classes of the most characterized NEIs:
LMB and SINEs.

FIRST-GENERATION NEI: LMB
The first and most well-known inhibitor of CRM1 is LMB.156 LMB is
a natural product produced by bacteria Streptomyces.157 It was first
identified as an anti-fungal agent.158 Later on, it is discovered that
LMB potently kills cancer cells.159 Scientists had proved that CRM1
is the cellular target of LMB as early as 1998; however, the LMB–
CRM1 complex structure was not solved until recently.160,161

LMB is a long polyketide molecule with an α,β-unsaturated
lactone warhead (Figure 3). In complex with CRM1, its long
polyketide chain aligns with the hydrophobic NES-binding groove,
forming extensive hydrophobic interactions (Figure 4c). The α,β-
unsaturated lactone warhead links to a Cys528 equivalent residue
of yeast CRM1 at α-position (Figure 4e). Unexpectedly, the lactone

ring of LMB is hydrolyzed, forming an opened up structure of
hydroxy acid (Figure 4e). The same hydrolysis is also observed in
two other CRM1 inhibitors (anguinomycin A and ratjadone A) from
bacteria.161 After hydrolysis, LMB forms extra interactions with
CRM1, gaining one salt bridge and one hydrogen bond with
CRM1.161 The hydrolysis is caused by three basic residues
(in CRM1) adjacent to the LMB lactone ring, mutation of which
results in CRM1 mutant that does not hydrolyze LMB’s lactone ring.161

LMB lactone hydrolysis leads to an unexpected finding that the
covalent bond between LMB and CRM1 is reversible under certain
condition. Using dialysis and pull-down assay, it is shown that LMB
with lactone ring de-conjugates from CRM1 (slowly), whereas
the hydrolyzed LMB does not.161 Thus, hydrolysis prevents
de-conjugation of inhibitor and increases inhibitor potency.
A permanent CRM1 inhibitor could provide Streptomyces bacteria
more space to grow by killing fungi more efficiently, as CRM1-
mediated nuclear export pathway is essential for fungi.1 More
importantly, this finding could also explain the clinically strong
cytotoxicity of LMB. LMB entered clinical trial for the treatment of
cancers in 1996.136 However, strong dosage-limiting toxicities
produced barely any clinical benefits and the mechanism of
toxicity was unknown at the time.136 Indeed, recent studies also
show that LMB-treated cells have permanently blocked nuclear
export, which is lethal not only for cancer cells, but also for normal
cells.1,48,155

SECOND-GENERATION NEI: SINE
Although the early clinical failure of LMB spelled doom for CRM1-
targeted drug development, it did not stop the endeavor of
academic and pharmaceutical researchers, who discovered NEIs
with improved pharmacological properties through library
screens, of which PKF050-638 was found as an anti-viral hit.150

Its N-azolylacrylate scaffold is later on adopted by SINEs.2

Like LMB, SINEs also form covalent bond with Cys528 of CRM1.
However, SINEs differ from LMB in several aspects (Table 1).162

First, SINEs are much more compact when compared with LMB.
Whereas LMB occupies almost the entire NES groove, smaller
SINEs occupies o50% of the space (Figure 4d). Second, in
contrast to LMB, KPT-185 (one of the SINEs) is not hydrolyzed after
binding to CRM1 and does not form salt bridge with CRM1
(Figure 4f).56,163,164 As such, its covalent bond to CRM1 is found to

Figure 4. Binding of CRM1 by different molecules. CRM1’s NES-binding grove in the empty (a), NES-bound (b), leptomycin B-bound (c) and
KPT-185-bound (d) states is shown in green surface representation. The pdb codes are 4HB2, 3GB8, 4HAT and 4GMX respectively. Cys528 is
highlighted in purple. NES, LMB and KPT-185 are colored yellow, tint and brown respectively. Three aligned residues are colored cyan to
illustrate the orientation of NES groove. (e) Mechanism of LMB conjugation. R resembles the long polyketide chain. (f) Mechanism of KPT-185
conjugation.
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be slowly reversible.161 Third, SINEs but not LMB treatment
induces CRM1 degradation, followed by CRM1 re-synthesis after
drug removal.59,165 Therefore, through bond reversibility and
re-synthesis, nuclear export inhibition by SINE treatment is not
permanent, but rather transient. It is found that nuclear export in
KPT-treated mouse at 10 mg kg− 1 reversed to ~ 20% after 1 day
and 50% after 3 days.155 These observations altogether could
explain the fact that SINE is significantly less toxic than LMB
observed in clinical trials.
Reported SINEs include KPT-185, KPT-249, KPT-251, KPT-276,

KPT-330 and KPT-335. Their half-maximal effective concentration
for cancer cells lies between 10 nM to 1 μM, and 5–20 μM for non-
neoplastic cells.133 KPT-185 is the most studied compound, with
limited bioavailability in murine and monkey pharmacokinetic
studies.95 KPT-276 has been shown to block inflammation and
nerve cell damage in mouse models of inflammatory
demyelination.164 KPT-335 has received a Minor Use/Minor
Species designation from the Center for Veterinary Medicine of
the Food and Drug Administration for the treatment of
lymphomas in canines.
Of all the SINEs, KPT-330 (Selinexor) is the most promising

compound and is undergoing numerous human hematologic and
solid tumor clinical trials. Before KPT-330’s clinical trial, many
expected that inhibiting nuclear export will generate profound
side effects, as CRM1 is essential for viability and maintaining
the proper localizations of its target cargoes required for
normal functions of the cell.1,166,167 However, side effects
of SINE observed are much milder and controllable, including
nausea, vomiting, anorexia, diarrhea, fatigue, weight loss and
hepatotoxicity, by no means comparable to chemotherapy
treatment.133,168,169 The efficacy and toxicity of SINE compounds
were reviewed elsewhere recently.6,63,69,170

FUTURE PERSPECTIVE: NON-COVALENT NEIS
To our best knowledge, all known NEIs are covalent CRM1
inhibitors and rely on the conserved Cys528 residue on CRM1 to
exert its therapeutic effects. Mutation of Cys528 renders current
CRM1 inhibitors inactive.62,113,155,171,172 Interestingly, Cys528
mutation has been found in a huge number of fungal CRM1,
which provides resistance to the anti-fungal agent LMB.17 Here we
would like to propose a different class of NEI: non-covalent NEI.
Non-covalent NEIs can be used in various cancers like their
covalent counterparts by exerting transient inhibition, yet being
insensitive to Cys528 mutation. In addition, they may possess
intrinsically lower toxicity and higher efficacy.
The majority of drugs in clinical use are non-covalent in

nature.173 Generally, covalent inhibitors are more prone to non-
specific conjugation and causing undesirable off-target effects.174,175

All the current NEIs have a Michael acceptor, which is mild reactive
and could bind to various targets.148,161,176 Side effects of SINE are

mainly gastrointestinal and liver related.168,177,178 As SINE com-
pounds are taken orally, its higher gastrointestinal concentration
may result in more local off-target covalent binding, possibly
accounting for the observed side effects.
In addition, SINE resistance can occur in tumor cells expressing

very high level of CRM1, and in cells that tumor suppressor
proteins are relocalized to cytoplasm after SINE treatment.155,178,179

With reduced side effects, non-covalent NEI could be used
at higher dosage to achieve tighter transient inhibition, to
increase its anti-tumor activity and to improve response rate in
patients.

CONCLUSION
Cancer is not a single disease, as many different pathways are
activated in different cancer cells. Nuclear export factor CRM1
exports/regulates many tumor suppressors and oncoproteins.
Notably, CRM1 inhibition can attenuate many cancer hallmarks
simultaneously, likely explaining the broad-spectrum anti-cancer
potencies observed. The first-generation NEI LMB failed in phase I
clinical trial due to high cytotoxicity. Second-generation inhibitors
display much reduced cytotoxicity, owing to its reversible inhibition
of nuclear export. It should be emphasized that ‘broad-spectrum’
anti-cancer does not imply ‘all-spectrum’, in other words—effective
against all cancers. Although KPT-330 clinical trials have been very
encouraging, non-covalent NEIs remain an interesting alternative for
its possibly low-toxicity and broad-spectrum action as a CRM1-
targeted anti-cancer therapy.
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