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With the rapid accumulation of gene expression data from various technologies, e.g., microarray, RNA-
sequencing (RNA-seq), and single-cell RNA-seq, it is necessary to carry out dimensional reduction and feature
(signature genes) selection in support of making sense out of such high dimensional data. These computational
methods significantly facilitate further data analysis and interpretation, such as gene function enrichment
analysis, cancer biomarker detection, and drug targeting identification in precision medicine. Although numer-
ous methods have been developed for feature selection in bioinformatics, it is still a challenge to choose the
appropriate methods for a specific problem and seek for the most reasonable ranking features. Meanwhile, the
paired gene expression data under matched case-control design (MCCD) is becoming increasingly popular,
which has often been used in multi-omics integration studies and may increase feature selection efficiency by
offsetting similar distributions of confounding features. The appropriate feature selection methods specifically
designed for the paired data, which is named as matched-pairs feature selection (MPFS), however, have not
been maturely developed in parallel. In this review, we compare the performance of 10 feature-selection
methods (eight MPFS methods and two traditional unpaired methods) on two real datasets by applied
three classification methods, and analyze the algorithm complexity of these methods through the running
of their programs. This review aims to induce and comprehensively present the MPFS in such a way that
readers can easily understand its characteristics and get a clue in selecting the appropriate methods for their
analyses.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

During the last two decades, feature selection techniques have
become an active and fruitful research field in machine learning [1–4],
pattern recognition [5,6], and bioinformatics [7–9]. Feature selection,
a.k.a. Variable selection or gene selection (in bioinformatics), is the
process of selecting a subset of relevant features for model construction
or interpretation of results. It improves model predictive accuracy and
reduces model complexity by eliminating irrelevant and redundant
features and provides a better understanding of the underlying pro-
cesses [10]. Many novel methods have been proposed recently, such
as the minimum-Redundancy-Maximum-Relevancy (mRMR) method
proposed by Peng et al. which selects features usingmutual information
as a proxy for computing relevance and redundancy among features
[11], and theMax-Relevance-Max-Distance (MRMD)method proposed
by Zou et al. that selects features with strong correlation with labeled
and lowest redundancy features subset [12]. With the rapid expansion
of gene expression data, higher gene dimensionality has been generated
in limited samples. The feature selection techniques are playing more
and more pivotal roles in high-dimensional data analyses, especially in
gene function enrichment analysis, cancer biomarker detection, and
drug targeting identification in precision medicine. Recently, Zou et al.
proposed a new method to predict TATA-binding proteins with feature
selection and dimensionality reduction strategy [13]. Tang et al.
proposed novel selection strategies to identify highly tissue-specific
CpG sites and then constructed classifiers to predict primary sites of
tumors [14].

However, it is still a challenge to choose the appropriatemethods for
specific problems and retrieve the most reasonable ranking features in
gene expression data analysis. Nowadays, using the existing next-
generation sequencing techniques, such as microarray and RNA-seq,
developed for gene expression profiling, the paired gene expression
data under matched case-control design (MCCD) is becoming increas-
ingly popular. Such data has frequently been used in multi-omics
studies and may increase the feature selection efficiency by offsetting
similar distributions of confounding features [15]. Nevertheless, the
appropriate feature selection methods specifically designed for paired
data accounting on MCCD, which is so-called matched-pairs feature
selection (MPFS), have not been maturely developed in parallel.

There are many popular MPFS methods and strategies for bioinfor-
matics research. Several studies have been managed to account for
paired data in their algorithms, which can be categorized into three
groups. First, the test statistic uses original and modified paired t-test
to rank relevant features by evaluating significant levels which is often
followed by a classification approach to improve model predictive
accuracy. Such kind of methods is comparatively time-consuming and
may return a preliminary feature selection results. Second, the condi-
tional logistic regression (CLR) [16] is a modeling approach widely be
used in MCCD studies to identify features significantly associated with
case-control status. CLR has considerations of the interaction between
features andmake a better selection results when potential correlations
exist. Third, the boosting strategy addresses classification problems
with matched case-control responses. In machine learning, boosting is
usually combined with many weak classifiers to build a powerful
committee. Since Friedman et al. [17] described boosting as a method
for the additive model using an exponential loss criterion, researchers
employed boosting to identify significant features with paired data
within a classifier task [18]. The boosting strategy is more powerful
and time-consuming, which always need to be wrapped with a
classifier, e.g., support vector machines (SVM) [19].
This review provides a survey of existing MPFS methods and
applications for paired gene expression data under MCCD. Two real
gene expression datasets from The Cancer Gene Atlas database (TCGA)
[20] and Gene Expression Omnibus database (GEO) [21] were selected
to evaluate the performance of MPFS methods and traditional unpaired
feature selectionmethods. The rest of the paper is organized as follows:
Section 2 introduces the feature selection techniques in general and
presents overall classification strategies according to different data
properties. In Section 3, the MPFS problem is defined and then the
existing MPFS methods are summarized according to the above three
feature selection groups. In Section 4, we compare the performance of
ten methods, including eight MPFS methods and two traditional
unpaired methods on the two real datasets and three classification
methods, i.e., SVM, Gaussian Naïve Bayesian (GNB) [22], and Logistic
Regression [23]. The running times of these methods are also recorded
simultaneously as another vital criterion to help readers select the
appropriate method for different environments. We further discuss
several challenges for the development of the MPFS techniques
and their further applications in many other bioinformatics research
fields in Section 5. Finally, the conclusions are clearly drawn in the last
section.

2. Feature Selection Techniques

Themost acceptable benefit of feature selection is to help improving
accuracy and reducing model complexity, as it can remove redundant
and irrelevant features to reduce the input dimensionality and help
biologists identify the underlying mechanism that connects gene
expression with diseases or interested phenotype.

Feature selection techniques have been successfully applied inmany
real-world applications, such as large-scale biological data analysis
[24–26], text classification [27], information retrieval [28], near-
infrared spectroscopy [29], mass spectroscopy data analysis [30], drug
design [31,32], and especially the quantitative structure-activity
relationship (QSAR) modeling [33,34]. In cancer research community,
feature selection has also been widely applied in different omics data
analyses: mRNA data [9,35], miRNA data [36,37], whole exome
sequencing data [38], DNA-methylation data [39,40], and proteomics
data [41,42]. Recently, some researchers have applied feature selection
techniques on integrative analysis of multi-omics data. Chen et al.
reviewed multivariate dimension reduction approaches which can be
applied to the integrative exploratory analysis of multi-omics data
[43]; Mallik et al. developed a new feature selection framework for
identifying statistically significant epigenetic biomarkers using
maximal-relevance and minimal-redundancy criterion based on
multi-omics dataset [44]; and Liu et al. [45] developed two methods
based on the proportional hazards regression [46], named SKI-Cox and
wLASSO-Cox approaches, to perform feature selection on different
multi-omics datasets.

2.1. Unpaired Feature Selection Methods

It is not trivial to choose the appropriate feature selectionmethod for
a given scenario, hence, several classification strategies of unpaired
feature selection techniques have been approached. The most widely-
used classification strategy classified the methods into the filter,
wrapper and embedded, based on the integrated classifiers [7,10,47].
The filter approach separates feature selection from classifier construc-
tion and assesses the relevance of features only relying on the intrinsic
properties of data [48,49], which have frequently been used in
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high dimensional data analysis (e.g., microarray data). The wrapper ap-
proach evaluates classification performance of selected features and
keeps searching/optimizing until certain accuracy criterion is satisfied
[50,51]. The embedded approach embeds feature selection within
classifier constructions to perform less computationally intensive than
wrapper methods [52,53] and has the advantage to interact with the
classification models [47]. Except for utilizing each feature selection
method individually, the ensemble feature selection has come up
by integrating multiple methods into one algorithm. It has the most
prominent advantageous ability to handle stability issues which are
usually poor in the existing feature selection methods, under the
assumption that the output of multi-model is better than any individual
model [54].

Besides, various taxonomies for feature selection are also developed.
Depending on whether the original features are transformed into new
features, the terminology “feature extraction” is specifically defined
from the feature selection technologies [55]. Furthermore, feature selec-
tion can also be divided into univariate andmultivariate types, based on
feature independence [8].With the search optimal feature perspectives,
Wang et al. formulated feature selection as a combinatorial optimization
or search problem, and categorized themethods into exhaustive search,
heuristic search, and hybrid method [56].
2.2. A Different Perspective of Feature Selection By Data Properties

Recently, some researchers began to consider the data properties in
developing or choosing appropriate feature selection methods. Ang
et al. observed the gene expression data can be fully labeled, unlabeled,
or partially labeled [57]. With such a fact, they correspondingly
separated feature selection methods into three categories: supervised,
unsupervised and semi-supervised. Tan et al. found the popular MCCD
inmicroarray experiments lacked appropriate feature selectionmethod.
To solve the problem, they proposed a method based on modified
t-statistic in their study [58]. From then on, many researchers began to
develop new feature selection methods for paired data under MCCD
[18,59–65]. Additionally, the paired gene expression data under MCCD
is often referred to obtain two gene expression profiles from case tissues
and control tissues, respectively. In cancer research study, case tissue
often relates to tumor tissue and control tissue is the corresponding ad-
jacent non-tumor tissue.
Fig. 1. Matched-pairs feature selection problem description. Paired data with matched p cas
3. Matched-pairs Feature Selection

3.1. Problem Description

Before we survey the feature selection methods on paired data, it
is worthwhile to give descriptions of MPFS problems and the corre-
sponding goals.

Considering n Npaired data samples for X = {xi| i = 1,2,…,n}
under 1 : m MCCD. p and q are used to represent the number of case
experiments and control experiments, respectively, where q=mp. For
each paired data i, there is Xi = {xij| j=1,2,…,p+ q}, and let Zi denotes
the case-control status of Xi with Zi = {zij| j = 1,2,…,p + q}, such
that Zij=1 for case and 0 for control. Given each sample K features, as
L= (lk|k=1,2,…,K), we denote Xij=(xijk|k=1,2,…,K); as the vector
data with K features of the ith paired data under the jth paired element.
The aim of MPFS method is to find out the optimal subset features
from all K features, account on the 1 :m MCCD.

Recently, almost all algorithms were developed under 1:1 MCCD, as
data are paired and easy analysis, where m = 1 so that p = q, Xi =
(Xi1,…,Xip,Xip+1,…,Xip+q) and Zi = (Zi1,…,Zip,Zip+1,…,Zip+q). In
paired gene expression data, p and q often equal to 1, so that Xi =
(Xi1,Xi2). In Fig. 1, we illustrate the matched-pairs features problem
with matched p cases and q controls.

3.2. Methods Survey

As mentioned, depending on the underlying methods, MPFS
approaches can be divided into three categories: test statistic, CLR, and
boosting strategy (Table 1). Here we surveyed most of the MPFS
methods from literature and discussed each one in detail.

3.2.1. Test Statistic for MPFS
Test statistic methods are widely used in testing if two groups data

obey one distribution, which has a low computational complexity and
is easy to carry out. Paired t-test methods are suite for paired data,
especially in gene expression analysis [66,67]. Modified paired t-test
method and fold-change paired t-test method are more adapted to
MCCD settings.

3.2.1.1. Paired t-Test. The original statistic method of paired t-test [66,67]
has been widely used in paired data analysis, especially in identifying
es and q controls as input for the MPFS method and getting selected features as output.



Table 1
Matched-pairs feature selection survey. This table lists the matched-pairs feature selection methods in this article with its method name (second column), software (third column) and
literature (fourth column) through three groups: test statistic, CLR, and boosting strategy.

Method Softwarea Literature

Test statistic Paired t-test R package “PairedData” Hsu et al. [66]
Modified paired t-test – Tan et al. [58]
Fold-change paired t-test – Cao et al. [62]

Conditional logistic regression RP-CLR R package “RPCLR” Balasubramanian et al. [64]
PCU-CLR R package “penalized” Qian et al. [15]
BVS-CLR R package “coda” Asafu-Adjei et al. [65]

Boosting strategy WL2Boost Source code in paper Adewale et al. [18]
1-step PQLBoost – Adewale et al. [18]

a Using “–” if no specific software found for the method.
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differential gene expression. Given 1:1 matched case-control setting,
where Z = (1,0), the difference between paired case and control X
with the kth feature is given

di;k ¼ Xi;1;k−Xi;2;k ð1Þ

For all n samples, The mean difference dk with the kth feature can

be given by dk ¼ ð1=nÞ∑n
i¼1di;k , and the standard error of d under the

kth feature is sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðdi;k−dkÞ
2
=ðn−1Þ

q
. Combining dk and sk, the

paired t-test statistic for the kth feature is defined as

ti ¼ di=si ð2Þ

With each feature's statistic and its corresponding p-value, we can
rank it and make the feature selection analysis.

3.2.1.2. Modified Paired t-Test. Tan et al. developed a modified paired
t-test statistic to identify a subset of relevant features that served as a
basis for classification via support vector machines (SVM) [58]. The
gene and feature selection were optimized by setting thresholds in a
leaving one-pair out cross-validation procedure using SVM [68].

In this method, the authors added a positive constant s0 to the
denominator of Eq. (2) to induce a modified paired t-test statistic,
denoted as tk' and shown as:

t
0
k ¼ dk= sk þ s0ð Þ ¼ tk 1= 1þ s0=skð Þð Þ ð3Þ

According to a study of Tibshirani et al. [69], s0 is the median of sk.
They also specified a threshold Δ for selecting features with the condi-
tion of |tk' |− Δ N 0, and obtained the optimal subset features through a
leaving one-pair out cross-validation.

3.2.1.3. Fold-change Paired t-Test. Cao et al. proposed another modified
version of paired t-test statistic using the fold-change value instead of
di, k between case and control samples in Eq. (1) [62]. They utilized
q-value in the False Discovery Rate method [70] to measure statistical
significance for each feature.

The author hypothesized that different paired data have different
experimental environments and conditions. It is believed that the
measurement of the difference between case and control in originally
paired t-test is unstable and lack of enough generalization ability
among different data sets. To address such problem, they used the
fold-change value between case and control to replace Eq. (1), which
is given by

di;k ¼ FCi;k−1 FCi;k ≥ 1
� �

1−1=FCi;k FCi;k b 1
� ��

ð4Þ

where the fold-change value FCi, k equals to Xi1, k/Xi2, k.
3.2.2. Conditional Logistic Regression for MPFS
In matched-pairs studies, the standard analytical approach uses CLR

to identify features significantly associated with case-control status
[71]. A CLR model is a specialized logistic regression that allows users
to consider stratification and matching, which are usually employed to
investigate the relationship between case and control data. However,
with dramatically increasing data dimension, CLR strategy becomes
computationally intensive, and model convergence problems are fore-
seeable [65]. So far, several new feature selection algorithms have
been developed to solve the issue and are presented as follows.

3.2.2.1. Random Penalized Conditional Logistic Regression (RP-CLR).
Balasubramanian et al. proposed an RP-CLR method to assess variable
importance associatedwithmatched case-control status in high dimen-
sional data setting [64]. The algorithm is based on penalized conditional
likelihood model for adjusting for the matched case-control design and
accounting the two-way interaction among features and incorporates
some attractive characteristics in the random forest to assess variable
importance. The method is proposed for 1:1 matched studies and can
be generalized to 1:m matched studies. Specifically, the algorithm con-
tains three steps: (i) bootstrap M paired datasets to form the original
paired data set; (ii) for each bootstrap paired data set, a random subset
of K features are selected to fit a conditional logistic model with penalty,
and the significance of each feature is assessed; and (iii) the average
variable significance score in overall M bootstrap is calculated for
users to achieve the goal of feature selection.

3.2.2.2. Penalized Conditional and Unconditional Logistic Regression (PCU-
CLR). Qian et al. presented a two-stage procedure, based on penalized
conditional and unconditional logistic regression approaches, to tackle
the dual goals of variable selection and prediction problems under
MCCD [15]. In the first stage, variable selection is carried out to estimate
regression coefficients β by using the penalized log-likelihood as

log lC βð Þð Þ−
Xp
i¼1

gλ1 βij jð Þ−
Xp
i¼1

Xp
jNi

gλ2 βij

�� ��� � ð5Þ

where log(lC(β)) is the log conditional likelihood function of β. gλ1(·)
and gλ2(·) are penalty functions for variables and two-way interactions,
respectively. To select the optimal penalty parameters, λ1 and λ2,
ten-fold cross-validation method is employed in the model [72].
At last, variable selection stage can be completed by maximizing the
likelihood function (Eq. (5)). In the second stage, estimated β can be
used to fit an unconditional logistic regression model with matched
case-control data for prediction.

3.2.2.3. Bayesian Variable Selection Conditional Logistic Regression (BVS-
CLR). Compared to penalized methods on a CLR model, the Bayesian
method has more advantages in feature selection, as it provides exact
inference and a natural way of combining prior information with data.
Penalized methods select features by determining coefficient estimates
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only in non-zero models, yet in Bayesian methods, more information is
provided by offering coefficient estimates and giving probability esti-
mates for each feature. Combining the key benefits of the Bayesian
method and CLR for feature selection technique, Asafu-Adjei et al.
proposed a new approach that formulated Bayesian variable selection
(BVS) in a CLR framework, called BVS-CLR [65]. Although this method
mainly focuses on 1:1 case-control matching, Asafu-Adjei claimed that
it could indeed handlemore general cases of 1 :mmatching. The simple
description of the approach is shown below.

Considering the 1:1 matched case-control setting, in the first
place, the likelihood function is specified based on a CLR model. The
conditional log-likelihood function is given by

lC βð Þ ¼ log
YN

i¼1
pZi1i1

� �
ð6Þ

where the coefficient vector β = (β1,…,βK) so that βk denotes the
coefficient for feature Lk. pi1 is the probability that the first member of
pair i is a case. Given (Xi1,Xi2) and Zi1 + Zi2 = 1, pi1 is defined as

pi1 ¼ P Zi1 ¼ 1jZi1 þ Zi2 ¼ 1;Xi1;Xi2ð Þ

¼ 1þ exp −∑
K

1
βk Xi1;k−Xi2;k

� �" #( )−1

ð7Þ

Next, by applying the Bayesian method, the posterior distribution of
γ and β can be obtained, where γ = (γ1,…,γK) is a binary vector to
denote whether the features are retained or not. Let γk equals 1 for
retained feature k, and 0 otherwise. Given the prior distribution of β
and γ as π(β|γ) and π(γ), respectively, the posterior distribution is
given by

p β;γjX; Zð Þ ∝ lC βð Þ � π βjγð Þ � π γð Þ ð8Þ

At last, Markov chain Monte Carlo (MCMC) [73] sampling via
the Metropolis-Hastings (MH) [74] algorithm is used to estimate the
posterior distribution of Eq. (8). After MCMC sampling and iterations,
the sequence {(β[1],γ[1]),…, (β[S],γ[S])} can be obtained from each
iteration. Employed with MH algorithms, they estimated the posterior
inclusion probabilities p(γk = 1|X,Z) and the coefficients βk, which
can be used to rank features and determine the optimal models.

3.2.3. Boosting Strategy for MPFS
Boosting is another successful strategy for high-dimensional feature

selection. Adewale et al. developed two modified boosting methods for
correlated binary response data [18].

3.2.3.1. Boosting Weighted L2 Loss (WL2Boost). The first method based on
the functional gradient decent boosting was dubbed “WL2Boost”
[75,76]. The loss function adopts to the L2 loss if the weights are taken
to be an identity matrix. The weight matrix represents the unknown
variance-covariance matrix of response. Compared to the standard
functional gradient descent approach, the loss function is modified by
updating the variance-covariance matrix as the boosting iteration
progresses.

3.2.3.2. 1-Step Penalized Quasi-Likelihood (1-Step PQLBoost). The
secondmethod is called 1-step PQLBoost, whichmodifies the likelihood
optimization boosting algorithm via a generalized linear mixed model-
ing approach, described by Friedman et al. [17] and Tutz et al. [77]. It is
similar to the penalized quasi-likelihood (PQL) approach, and its
numerical approximation of integrals can be achieved via fitting linear
mixed models (random intercept) to pseudo-responses. In the
implementation, the authors employed a one-step fitting instead of
iterative fitting of linear mixed models in PQL. Therefore, they dubbed
this method as one-step penalized quasi-likelihood boosting (1-step

PQLBoost). After the model classifier F̂MðXÞ is obtained from both
methods, the relative influence of each feature in the boosting proce-
dure can be calculated via the following influence measurement [75]:

Il ¼ E ∂F Xð Þ=∂xl½ � = var xlð Þð Þ1=2; l ¼ 1…p ð9Þ

Above all, we have described three groups MPFS methods: test
statistic, conditional logistic regression, and boosting strategy. The test
statistic methods use original and modified paired t-test to rank
relevant features and are often followed by a classification approach to
improve model predictive accuracy. The conditional logistic regression
methods are widely used in MCCD studies to identify features
significantly associated with case-control status and have taken the
interaction between features into consideration. The boosting strategy
addresses classification problemswithmatched case-control responses.

4. Experimental Validation

To compare the performance of the above-mentioned eight MPFS
methods and two traditional unpaired feature selection methods
(mRMR and MRMD [12]), two breast cancer gene expression datasets
were extracted from the TCGA [20] and GEO [21] databases and three
classification methods [23] were applied for the following experiments.

Both datasets contain gene information from tumor tissue and
matched-pair normal tissue. The TCGA-BRCA dataset, downloaded
from TCGA, contains 113 samples of case-control patients, and the
GSE70947 dataset, downloaded from GEO, contains 143 samples of
case-control patients. The experiments include three main steps:
(i) data pre-processing and normalization, (ii) generalization of gene
significance ranking list for each method, and (iii) comparison of the
performance of all ten methods by applying three classification
methods based on the generated ranking lists.

The two datasets have been pre-analyzed by the following pro-
cesses: (i) Merging different probes of the same gene by selecting the
maximum value to present the gene expression level; (ii) Substitution
of missing value is performed using the mean of the expression values,
once only b1% missing data exists. Otherwise, such a gene will be
discarded; (iii) Normalizing the two datasets by scaling to 0–1; and
(iv) Filtering genes by p-value b 0.005 (t-test), variance N0.1, and the
absolute fold-change N0.5 between case and control data.

After the above pre-processing steps for the case and control data
matrix, the ten feature selection methods are implemented to both
datasets to obtain gene ranking lists. The lists were then integrated
into a classifier to obtain the accuracy curves by ten-fold cross-
validation [72], which compares the performance of each feature
selection method to assess their effectiveness and stability. Here we
used three classifiers to validate the performance of ten methods:
SVM, Gaussian Naive Bayesian, and Logistic Regression.

The accuracy curves of the top 1500 genes in each method are
shown in Fig. 2. The results showed that WL2Boot method has the
highest accuracy and most stable performance among all the ten
methods and two gene lists; and PQLBoost was also competitive but
showed less satisfied accuracy compare to WL2Boot. Meanwhile, the
three types of t-test methods, pttest, mpttest and fcpttest performed
less satisfied as they only identify differential genes when the case
data and control data are obeying to the same distribution without
additional feature information. The performances of the three condi-
tional logistic regression methods, PCU-CLR, RP-CLU and BVS-CLR, and
one classic unpaired method, MRMD, were shown moderate for both
small gene counts (100) and large gene counts (1500), while mRMR
was only better than the t-test methods. All the ten methods showed
great accuracy higher than 0.85 with gene counts grew, except for
SVM-GEO. Additionally, in both datasets, the ten methods showed
unsatisfied or slow-growing accuracy for SVM classifier at the lower
gene counts. As a result, under the matched-pairs data setting, most
MPFS methods, except the modified t-test methods, are the better



Fig. 2. Performances of the ten methods on two datasets. Fig. (A1–A3) are the classification performance of each method with top 1500 ranked gene list on TCGA dataset, and Fig. (B1–B3) are on GEO dataset. Fig. A1–B1, A2–B2, and A3–B3 are the
comparison of SVM, GNB and Logistic Regression (LR)methods for both datasets, respectively. Eachfigure includes performance comparing the result of top 1500 ranked gene list, and a zoomed-in figure indicating the detail the of the top 100 ranked
gene list. The accuracy data of PQLBoost and BVS-CLR methods are omitted after 1000 gene counts due to the need of enormous running time (exceeding 48 h).
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choices for feature selection tasks than traditional unpaired feature
selection methods.

On the other hand, running time is also a crucial indicator to evaluate
the performance of methods. Here, we only record the running times of
generation of gene list with specific gene counts, 10, 50, 100, 1000 and
1500 (Fig. 3), as the executing time for accuracy validation is almost
the same among three classification methods. In both datasets, more
time was required for 1-Step PQLBoost, BVS-CLR, and WL2Boost
methods compared with the other seven. Moreover, more running
timewas needed for higher gene counts for all tenmethods. Combining
with the accuracy results, we concluded that (i) WL2Boost method is
the optimized method with high accuracy and low running time when
the gene count is low; (ii) PCU-CLR and RP-CLR show higher tradeoff
for higher gene counts, with acceptable running time and high accuracy
compared to the other methods; (iii) Though BVS-CLR and PQLBoost
also show satisfied accuracy performances, their running times are
unacceptable, and are not recommended for normal feature selection;
and (iv) the three modified t-test methods are suitable for high gene
counts analysis, since their accuracy have no significant difference and
required the least running time compared to other methods.
5. Discussion

This paper presented a review of current matched-pairs feature
selection (MPFS) methods for paired gene expression data. With a
description of feature selection application and MPFS problem, we
reviewed the current approaches of MPFS through three categories,
i.e., test statistic, CLR, and boosting strategy. Differ from the commonly
categorized feature selection approaches (filter, wrapper, and embed-
ded), we dealt feature selection with gene expression data as unpaired
and MPFS methods by considering MCCD or not.

The paired data can be divided into pure-paired data and mixed-
paired data under MCCD, and the mixed-paired data is regarded as
pure-paired to reduce the model complexity and minimize the mixing
effect. However, the unpaired data, which contains mixture case data
without matched data, is usually obtained when matched data is
missing or MCCD experiment is not performed. In Fig. 4, we illustrate
the differences among the three pair types. In the sequencing
transcriptomic data, such as microarray and RNA-seq, the formation of
tumor tissue is a mixture of more tumor cells (cases) and few non-
tumor cells (controls), while the adjacent non-tumor tissue contains
more non-tumor cells (controls) and few tumor cells (cases). In this
case, we denote the paired data as mixed-paired data. To address the
mixing degree, TCGA project [78] uses the property of normal cells per-
centage based on the tumor tissue image. However, with the up-to-date
RNA-seq technique, we can get gene expression profile for every single
Fig. 3. Comparison of running time. It should be noted that the running time is the time for prod
dataset, and right figure is on GEO dataset.
tumor or normal cell on cell resolution level, described as pure-paired
data whose case and control data are not mixed at all.

The originally paired t-test is most commonly used in practical
paired gene expression data analysis, as it is easy to implement and
very efficient. The modifications of paired t-test methods have higher
sensitivity and specificity than the original. However, they only involve
univariate tests, which do not control the effects of other features and
can lead to the fallacious identification of relevant features. The CLR
model is a standard and effective analytical approach to significantly
identify features associated with case-control status yet with higher
computational intensity and convergence problems. To solve the issue,
Balasubramanian et al. designed the RPCLR algorithm [64], and Qian
et al. designed a two-stage procedure based on penalized conditional
and unconditional logistic regression approaches [15]. Moreover,
Asafu-Adjei et al. proposed the BVS-CLR method [65] to provide more
information by offering coefficient estimates and giving probability
estimates for each feature, while it may remain problemswith selection
accuracy when the correlation between features increases. Boosting
strategy feature selection approaches successfully dealt high-
dimensional data, as it can combine with many weak classifiers to
build a powerful committee. Adewale et al.'s two variant versions of
boosting algorithm [18] focused on high-dimensional data with
correlated binary outcomes, but may also have troubles in identifying
interactions when dealing with different features or small sample
sizes data.

MPFS can be widely applied in bioinformatics, e.g., gene function
enrichment analyses, cancer biomarker detection, drug targeting identi-
fication, etc. To be specific, here are several examples: (i) Identifying
important CpG sites. CpG site refers to a double-stranded sequence
where cytosine and guanine are separated by only one phosphate, and
gene expression can be altered by cytosine methylation on that
site. Sun et al. [60] selected important methylated CpG sites between
ovarian cancer cases and healthy controls using DNA methylation
data. (ii) Identifying clinical risk features for diseases. Scott et al. [79]
used matched case-control study to clinical exam features for utility
optimization to identify the risks of early transition from depression to
bipolar disorders in youth; and Giuliano et al. [80] studied the effect of
age, sex and clinical features on the volume of Corpus Callosum in
preschoolers with Autism Spectrum Disorder using case-control study.
(iii) Biomarker discovery. Xu et al. [81], Anglim et al. [82] and Tsou
et al. [83] have reported the results of cancer biomarker discovery
using MCCS; and Zak et al. [84] discovered a blood RNA signature
related to tuberculosis disease by comparing data from participants
who developed active tuberculosis disease (progresses) and those
who remained healthy (matched controls). (iv) Image biomarkers
discovery. Kloppel et al. [85] described an investigation involving a
matched design to discover imaging biomarkers for Alzheimer's disease.
ucing the gene lists for eachmethod. Left figure is the comparison of tenmethods on TCGA



Fig. 4. Paired and unpaired data diagram. Three data types for feature selection: (a) pure-paired data type, which has pure case and control data; (b) mixed-paired data type, which has
differentmixing degree ofmixture case and control data, (c) unpaired data type,which containsmixture case datawithoutmatched control data. It is noteworthy that themixing degree is
referred to the ratio between control part (blue) and case part (red) on one case sample, and vice versa on a control sample.
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(v) Identifying drug targets. Gronich et al. [86] evaluated the association
between tyrosine kinase-targeting drugs and the risk of new-onset
heart failure, using nested case-control analysis. (vi) Clinical supple-
mentary diagnosis. By comparing several predicted models, Holsbø
et al. [87] proposed a biologically motivated variable selection scheme
for predicting breast cancer metastasis based on the assumption that
gene expression intensity, as a function of time, should be diverged
between cases and controls.

Although numbers of researchers have explored MPFS with numer-
ous methods, challenges are still ahead of us. First of all, as discussed in
Section 2, the paired data can be divided into either mixed-paired data
or pure-paired data. To our best knowledge, insufficient studies have
been developed for such differentiation in gene expression data analy-
sis. Meanwhile, the mix-paired data from RNA-seq and microarray is
always regarded as pure-paired data. Considering the involvement of
mixing the degree of paired data in MPFS, it may be a direction with
quite a developmental potentiality in the future. Furthermore, no
study has been carried out to purpose feature selection methods for
pure Single-Cell paired data. Another promising direction for MPFS is
to develop hybrid and ensemble frameworks to enhance the robustness
of selected feature subsets. Beatriz et al. reviewed [88] the evolutional
computation on feature selection and suggested that more attentions
should be given to the issue of robustness of the feature selection
methods.

Besides that, the stability of gene selection is also extremely impor-
tant in bioinformatics [89–91]. To this end, the research of stability of
feature selection can be split into two categories: stability testing &
measurement andmethod devisal for stability improvement. For testing
and measurement, a lot of merits have already been developed, such as
cross-validation [92], bootstrapping [93], andfixed overlap partitioning.
To improve the stability, the most popular idea is using the ensemble
method. However, the method for stability improvement of MPFS
under MCCD is still needed.

The last challenge, as another interesting future direction, is
to integrate two or more omics data using MPFS in cancer research.
Chen et al. reviewed multivariate dimensional reduction approaches
that can be applied to the integrative exploratory analysis of multi-
omics data [43].Mallik et al. developed a new framework for identifying
statistically significant epigenetic biomarkers using the maximal-
relevance and minimal-redundancy criterion based feature selection
for multi-omics dataset [44]. Liu et al. developed two methods
based on the proportional hazards regression, named SKI-Cox and
wLASSO-Cox, to perform feature selection on different omics datasets
[45].

Besides the challenges discussed above, other issues on
feature selection methods still exist, as the same as MPFS approaches,
such as the problem of small sample size in big dimensional data
sets, data class imbalance, computational complexity, especially
for the conditional logistical regression model, and the assessment of
MPFS.
6. Conclusion

In this review, we recalled the concepts of feature selection tech-
niques and focused onMPFSmethods for gene expression data analysis.
We classified the existing algorithms into three groups: test statistic,
CLR, and boosting strategy, and evaluated the performance using two
breast cancer datasets. From the experimental results of 10 methods
on two datasets with three classifiers, we concluded that (1) WL2Boost
method may get the best performance when the feature list is not too
big, and the users do not care about the running time; and (2) RP-CLR
and PCU-CLR methods may get a better tradeoff between high
dimensional features and time consuming. At last, we discussed some
challenges and exciting directions for the development of MPFS. It is
worth noting that, most of algorithms have been proposed in recent
years were dedicating to address the feature selection problem associ-
atedwith the paired data. Based on the development of gene expression
profiling technique and the extensive use of MCCD, MPFS approach is a
promising technique in the bioinformatics and machine learning cross-
field in future.
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