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Abstract: A new method for fabricating conjugated polymer films was developed using electrochem-
ical polymerization in liquid crystals and magnetic orientation. A uniaxial main chain orientation
and a crosslinked network structure were achieved with this method. By employing eight types of
monomers, the influence of the crosslinking for the film was investigated. The crosslinking was found
to improve the solvent resistance of the conjugated polymer films. This new method is expected to
be useful in various applications, such as high-powered organic electronic devices with durability.

Keywords: orientation; crosslink; conjugated polymers; electrochemical polymerization; liquid crystal

1. Introduction

Due to their unique chemical structure, conjugated polymers can demonstrate inor-
ganic semiconductor-like properties and are thus regarded as a promising material for
applications. Many researchers have contributed toward the development of organic elec-
tronic devices having conjugated polymers, such as organic field-effect transistors [1–3],
organic photovoltaic devices [4,5], and organic light-emitting diodes [6–8]. Compared
with inorganic semiconductor materials, conjugated polymers usually have a linear form,
which provides anisotropy at the molecular level. The optical absorption, emission prop-
erties, and electrical conductivity highly depend on the molecular arrangement [9–12].
Although conjugated polymers can form a well-organized structural arrangement through
self-assembly, polymer films generally form poly-domains or a random arrangement. As a
result, the electronic devices based on the polymers do not exhibit anisotropic optical or
electrical performances. To address this concern, many groups have developed technolo-
gies to control the arrangement of conjugated polymers [13–16]. These methods include the
synthesis of liquid crystalline polymers [17–20] using mechanical force [21], and oriented
substrates to fabricate conjugated polymer films with uniaxial alignment [22,23].

The durability of conjugated polymer films is important for applications in organic
electronic devices [24,25]. A possible solution to this issue is to construct a network structure
of conjugated polymers by crosslinking; this can help in stabilizing the morphology of the
conjugated polymer film [26,27]. However, molecular orientation is somewhat difficult to
achieve for polymers with a network structure. A photochemical reaction or a coordination
reaction allows the polymers to have both well-organized and crosslinked forms [28,29].
However, there remains a significant technical challenge to apply this technology to other
conjugated polymers.

Electrochemical polymerization is a convenient method to synthesize conjugated
polymer films. After polymerization, the conjugated polymers usually separate from the
electrolyte solution and are then directly deposited on the electrode substrate to form
films. Many groups have investigated electrochemical polymerization in terms of its
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mechanism [30–33] and applications, including chemical sensors [34,35], electrochromic
materials [36], electroluminescent materials [37,38], and organic photovoltaic devices [39].
Our group developed a new electrochemical polymerization in a liquid crystal (LC) elec-
trolyte solution. In contrast to traditional isotropic solvents, when LC solvents are used as
the reaction medium for electrochemical polymerization, the resultant conjugated polymers
tend to align along the director of the liquid crystals (LCs). The polymer films prepared
in the LC have a molecular order, which is similar to that of the LCs. When smectic A
LCs were employed, polarized optical microscopy (POM) observations indicated that the
resulting conjugated polymer films showed a fan-shaped birefringence texture, which is
the typical optical texture of smectic A LCs [40]. When cholesteric LCs were employed for
the polymerization, the resulting films had an intermolecular helical order and showed
a fingerprint texture similar to that of cholesteric LCs with circular dichroism optical ab-
sorption [41–44]. The most significant aspect of this preparation method is the alignment
of the conjugated polymers, which can be modified by adjusting the orientation of the host
LC molecules. Conjugated polymer films having a unidirectionally oriented molecular
alignment were fabricated using a magnetic field [45]. We found a new way to fabricate
conjugated polymer films whose molecular orientation can be controlled with a magnetic
field in the polymerization process.

In this study, using electrochemical polymerization in LCs, a new method was devel-
oped to fabricate conjugated polymer films having a uniaxial molecular orientation and a
crosslinked network structure. Both the uniaxial molecular orientation and preparation of
crosslinked network structures allow the conjugated polymer films to show anisotropic
optical properties and durability, which may endow organic electronic devices with high
performance. To investigate the influence of crosslinking, eight types of monomers were
employed in the synthesis for the production of crosslinked and uncrosslinked polymers.
Electrochemical polymerization was conducted in a 12 T magnetic field generated by a
superconducting magnet to ensure occurrence of the polymerization in an LC reaction
medium with orientation. The resulting conjugated polymer films were characterized
by POM observations and linear dichroism (LD) UV–vis spectroscopy to investigate the
following issues: (1) uniaxial orientation, (2) orientation degree of the polymers, and (3)
optical properties of the films.

2. Experimental
2.1. Materials

Eight types of monomer were used, including 2,2′-bithiophene (BT), 1,6-di(2,2′-bithiophen-
3-yl)hexane (d(BT)), 9-butyl-2,7-di(thiophen-2-yl)-9H-carbazole (DTC), 1,6-bis(2,7-di(thiophen-
2-yl)-9H-carbazol-9-yl)hexane (bis(DTC)), 1,4-dimethoxy-2,5-di(thiophen-2-yl)benzene (DTB),
1,6-bis(4-methoxy-2,5-di(thiophen-2-yl)phenoxy)hexane (bis(DTB)), 1-ethoxy-4-methoxy-2,5-
di(thiophen-2-yl)benzene (DTB2), and 1-butoxy-4-methoxy-2,5-di(thiophen-2-yl)benzene
(DTB4), and they are shown in Scheme 1. In addition, the matrix LC 4-cyano-4′-hexylbiphenyl
(6CB) and the supporting salt tetrabutylammonium perchlorate (TBAP) are shown in
Scheme 1. The syntheses of the monomers d(BT), bis(DTC), DTB, bis(DTB), DTB2, and
DTB4 are illustrated in Scheme 2. The synthesis of DTC was reported in our previ-
ous work [46]. The monomer BT and the supporting salt TBAP were purchased from
Tokyo Chemical Industry (TCI). The LC 6CB was purchased from Merck. All other
necessary chemicals were purchased from TCI, Wako Pure Chemical, Nacalai Tesque,
and Sigma-Aldrich.

2.2. Synthesis
2.2.1. Trimethyl(thiophen-2-yl)stannane (1)

First, 2-bromothiophene (1.63 g, 10 mmol) was dissolved in dry tetrahydrofuran
(THF, 35 mL) and cooled to −78 ◦C. A solution of n-butyllithium in hexane (6.88 mL,
11 mmol) was added dropwise to the mixture and stirred for 1.5 h at −78 ◦C. Then,
trimethyltinchloride (2.39 g, 12 mmol) was added to the solution at−78 ◦C and the mixture
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was allowed to slowly warm to room temperature followed by stirring for 24 h. Then,
dichloromethane (DCM) was used to extract the product. The combined organic extracts
were dried using Na2SO4, followed by filtration and evaporation to yield 1 as a yellow
liquid (2.16 g, 8.75 mmol, 87.5%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 0.376 (s, 9H), 7.223–7.273 (m, 2H), 7.649 (d,
1H, J = 5.6 Hz). 13C NMR (100 MHz; CDCl3; TMS) δ (ppm) 127.895, 130.716, 134.948 137.064.

2.2.2. 4,4,5,5-Tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (2)

2-Bromothiophene (1.63 g, 10 mmol) was dissolved in dry THF (35 mL) and cooled
down to −78 ◦C. A solution of n-butyllithium in hexanes (6.56 mL, 10.5 mmol) was added
dropwise, and the mixture was stirred for 2 h at −78 ◦C. 2-Isopropoxy-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (2.05 g, 11 mmol) was subsequently added at −78 ◦C, and the mixture
was allowed to slowly warm up to room temperature and stirred for 22 h. After the
reaction, the mixture was extracted with DCM. The combined organic extracts were dried
by MgSO4, followed by filtration, and was purified by silica gel column chromatography
(eluent: hexane/ethyl acetate = 9/1) to yield a yellow liquid (1.04 g, 4.96 mmol, Y = 49.6%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 1.278 (s, 12H), 7.108–7.128 (dd, 1H, J = 3.2,
4.4 Hz), 7.552–7.576 (dd, 1H, J = 1.2, 8.8 Hz), 7.566–7.581 (d, 1H, J = 6.0 Hz). 13C NMR
(100 MHz; CDCl3; TMS) δ (ppm) 24.828, 84.081, 115.905, 128.210, 132.356, 137.140.
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Scheme 1. Monomers employed for the electrochemical polymerization in liquid crystals, and molecular structures of 
liquid crystal 4-cyano-4′-hexylbiphenyl (6CB) and the supporting salt tetrabutylammonium perchlorate (TBAP). 
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Scheme 1. Monomers employed for the electrochemical polymerization in liquid crystals, and molecular structures of
liquid crystal 4-cyano-4′-hexylbiphenyl (6CB) and the supporting salt tetrabutylammonium perchlorate (TBAP).
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Scheme 2. Synthesis for monomers d(BT), bis(DTC), DTB, bis(DTB), DTB2, and DTB4. 

2.2.2. 4,4,5,5-Tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (2) 
2-Bromothiophene (1.63 g, 10 mmol) was dissolved in dry THF (35 mL) and cooled 

down to −78 °C. A solution of n-butyllithium in hexanes (6.56 mL, 10.5 mmol) was added 
dropwise, and the mixture was stirred for 2 h at −78 °C. 2-Isopropoxy-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (2.05 g, 11 mmol) was subsequently added at −78 °C, and the mixture 
was allowed to slowly warm up to room temperature and stirred for 22 h. After the reac-
tion, the mixture was extracted with DCM. The combined organic extracts were dried by 

Scheme 2. Synthesis for monomers d(BT), bis(DTC), DTB, bis(DTB), DTB2, and DTB4.

2.2.3. 1,6-Di(thiophen-3-yl)hexane (3)

1,6-Bromohexane (2.44 g, 10 mmol) was slowly added to a suspension of magnesium
turnings (0.583 g, 24 mmol) in 25 mL of anhydrous THF and a spot of iodine followed by re-
flux for 3 h. 3-Bromothiophene (3.42 g, 21 mmol) and dichloro[1,3-bis(diphenylphosphino)
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propane]nickel (0.054 g, 0.1 mmol) was dissolved in 20 mL of THF. Then the Grignard
solution was transferred via injection syringe and added dropwise to this solution at 0 ◦C.
The resulting mixture was stirred at room temperature for 15 h, hydrolyzed with 1 M of
HCl (14 mL) at 0 ◦C, followed by extraction with DCM. The combined organic extracts
were dried over MgSO4 and purified by silica gel column chromatography (eluent: hexane),
followed by drying, to give a colorless liquid (2.5 g, 10 mmol, Y = 100%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 1.342 (quint, 4H, J = 3.8 Hz), 1.583 (quint,
4H, J = 7.5 Hz), 2.595 (t, 4H, J = 7.6), 6.927–6.896 (m, 4H), 7.215–7.236 (dd, 2H, J = 3.2,
5.2 Hz). 13C NMR (100 MHz; CDCl3; TMS) δ (ppm) 29.069, 30.241, 30.479, 119.784, 125.017,
128.229, 143.088.

2.2.4. 1,6-Bis(2-bromothiophen-3-yl)hexane (4)

To a solution of 1,6-di(thiophen-3-yl)hexane (2.50 g, 10 mmol) in dimethylformamide
(DMF) (20 mL), N-bromosuccinimide (4.9 g, 23 mmol) was slowly added at room temper-
ature. The mixture was stirred at room temperature for 2 days. After the reaction, the
mixture was extracted with ether and dried over MgSO4, followed by purification by silica
gel column chromatography (eluent: hexane) to yield 4 as a yellow oil (1.274 g, 3.12 mmol,
Y = 31.2%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 1.341 (quint, 4H, J = 3.7 Hz), 1.538
(quint, 4H, J = 7.3 Hz), 2.536 (t, 4H, J = 7.6 Hz), 6.768 (d, 2H, J = 5.2 Hz), 7.166 (d, 2H,
J = 6.0 Hz). 13C NMR (100 MHz; CDCl3; TMS) δ (ppm) 28.907, 29.345, 29.641, 108.862,
125.179, 128.191, 141.782.

2.2.5. 1,6-Di(2,2′-bithiophen-3-yl)hexane (d(BT))

Under an argon atmosphere, 1,6-bis(2-bromothiphen-3-yl)hexane (0.163 g, 0.4 mmol)
and trimethyl(thiophen-2-yl)stannane (0.247, 1 mmol) were weighed into a two-neck
flask and dissolved in 2 mL of DMF, followed by degassing for 10 min. Then, tetrakis
(triphenylphosphine)palladium(0) (0.034 g, 0.03 mmol) was added. After stirring at 90 ◦C
for 22 h, followed by cooling down, the solution was extracted with chloroform and dried
over MgSO4. The product was purified by silica gel column chromatography (eluent:
hexane/ethyl acetate = 47/3) to yield d(BT) as a green oil (0.122 g, 0.29 mmol, Y = 73%).

1H NMR (400Hz; DMSO; TMS) δ (ppm) 1.345 (quint, 4H, J = 3.5 Hz), 1.576 (quint, 4H,
J = 7.3 Hz), 2.701 (t, 4H, J = 8.0 Hz), 6.897 (d, 2H, J = 5.6 Hz), 7.030 (m, 2H), 7.080 (d, 2H,
J = 3.6 Hz), 7.149 (d, 2H, J = 5.6 Hz), 7.272 (d, 2H, J = 5.2 Hz). 13C NMR (100Hz; DMSO;
TMS) δ (ppm) 29.021, 30.327, 34.235, 123.730, 125.274, 125.493, 125.999, 127.285, 129.840,
136.140, 139.504.

2.2.6. 4,4′-Dibromo-2-nitro-biphenyl (5)

Under an argon atmosphere, 4,4′-dibromobiphenyl (3.12 g, 10 mmol) was weighed
into a two-neck flask and dissolved in 10 mL of DCM and 30 mL of acetic anhydride. Then,
5 mL of acetic acid and 9.3 mL of nitric acid were added dropwise with an ice bath. After
addition, the mixture was allowed to warm up to room temperature. After stirring for 3 h,
the solution was extracted with DCM and dried over MgSO4. The solvent was removed on
a rotary evaporator, and the residue was purified by silica gel column chromatography,
(eluent: hexane/ethyl acetate = 4/1), followed by evaporation, to yield 5 as a yellow solid
(1.84 g, 5.15 mmol, Y = 51%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 7.142–7.160 (d, 2H, J = 7.2 Hz), 7.272–7.293
(d, 1H, J = 8.4 Hz), 7.547–7.568 (d, 2H, J = 8.4 Hz), 7.736–7.763 (dd, 1H, J = 8.0, 2.8 Hz),
8.022–8.027 (d, 1H, J = 2.0 Hz). 13C NMR (100Hz; CDCl3; TMS) δ (ppm) 100.179, 121.862,
123.006, 127.323, 129.439, 131.994, 132.966, 134.205, 135.434, 163.817,172,624.

2.2.7. 2,7-Dibromo-9H-carbazole (6)

Under an argon atmosphere, 4,4′-dibromo-2-nitro-biphenyl (1.84 g, 5.15 mmol) and
triphenylphosphine (4.05 g, 15.5 mmol) were weighed into a two-neck flask and dissolved
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with 15 mL of o-dichlorobenzene. The mixture was heated to 180 ◦C. After stirring for 19 h,
the solvent was removed with a rotary evaporator, and the residue was purified by silica
gel (eluent: hexane/chloroform = 3/1) followed by evaporation to yield 6 as a brown solid
(1.29 g, 3,97 mmol, Y = 77%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 7.336–7.360 (dd, 2H, J = 8.0, 1.2 Hz), 7.563–7.568
(d, 2H, J = 2.0 Hz), 7.856–7.877 (d, 2H, J = 8.4 Hz), 8.056 (s, 1H). 13C NMR (100Hz; CDCl3;
TMS) δ (ppm) 113.789, 119.708, 121.443, 121.738, 123.263, 140.228.

2.2.8. 1,6-Bis(2,7-dibromo-9H-carbazol-9yl)hexane (7)

Under an argon atmosphere, 2,7-dibromo-9H-carbazole (0.325 g, 1 mmol), 1,6-
dibromohexane (0.122 g, 0.5 mmol), sodium hydroxide (0.08 g, 2 mmol), and tetrabuty-
lammonium perchlorate (0.014 g, 0.04 mmol) were weighed into a two-neck flask and
dissolved in 3 mL of 2-butanone. The mixture was heated to 70 ◦C. After stirring for 39 h,
the organic layer was extracted with chloroform, and then dried by MgSO4 followed by
filtration. After evaporation, the residue was collected by recrystallization in chloroform to
yield 7 as a brown solid (0.292 g, 0.4 mmol, Y = 80%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 1.429 (m, 4H), 1.825 (m, 4H), 4.144–4.179 (t,
4H, J = 7.0 Hz), 7.304–7.325 (d, 4H, J = 8.4 Hz), 7.468 (s, 4H), 7.841–7.863 (d, 4H, J = 8.8 Hz).

2.2.9. 1,6-Bis(2,7-di(thiophen-2-yl)-9H-carbazol-9-yl)hexane (bis(DTC))

Under an argon atmosphere, 1,6-bis(2,7-dibromo-9H-carbazol-9-yl)hexane (0.146 g,
0.2 mmol) and trimethyl(thiophen-2-yl)stannane (0.247, 1 mmol) were weighed into a two-
neck flask and dissolved in 2 mL of toluene and 2 mL of THF, followed by degassing for
10 min. Then, tetrakis(triphenylphosphine)palladium(0) (0.034 g, 0.03 mmol) was added.
After stirring at 90 ◦C for 4 days, followed by cooling down, the solution was extracted
with chloroform and dried over MgSO4. The product was purified by recrystallization
in chloroform/methanol, and column chromatography (hexane/chloroform = 2/1) was
conducted to yield bis(DTC) as a green solid (0.032 g, 0.045 mmol, Y = 22.5%).

1H NMR (400Hz; DMSO; TMS) δ (ppm) 1.514 (m, 4H), 1.904 (m, 4H), 4.367–4.401 (t,
4H, J = 6.8 Hz), 7.078–7.098 (m, 4H), 7.306–7.319 (d, 4H, J = 5.2 Hz), 7.420–7.458 (m, 8H),
7.607 (s, 4H), 8.001–8.022 (d, 4H, J = 8.4 Hz).

2.2.10. 1,4-Dibromo-2,5-bis-methoxybenzene (8)

2,5-Dibromohydroquinone (2.679 g, 10 mmol), tetrabutylammonium perchlorate
(0.171 g, 0.5 mmol), and potassium carbonate (4.15 g, 30 mmol) were mixed in acetone
(30 mL). Iodomethane (4.26 g, 30 mmol) was added to the solution. Then, the mixture was
stirred at room temperature for 24 h. The mixture was extracted with DCM twice, and the
organic layer was dried over MgSO4. Purification with silica gel column chromatography
(eluent: chloroform) gave 8 as a white solid (0.949 g, 34 mmol, Y = 34%).

1H NMR (600 MHz; CDCl3; TMS) δ (ppm) 3.851 (s, 6H), 7.105 (s, 2H).

2.2.11. 1,4-Dimethoxy-2,5-di(thiophen-2-yl)benzene (DTB)

Under an argon atmosphere, 1,4-dibromo-2,5-dimethoxybenzene (0.296 g, 1 mmol) and
trimethyl(thiophen-2-yl)stannane (0.519, 2 mmol) were weighed into a two-neck flask and
dissolved in 5 mL of DMF, followed by degassing for 10 min. Then, bis(triphenylphosphine)
palladium(II)dichloride (0.048 g, 0.12 mmol) was added. After stirring at 80 ◦C for 24 h,
followed by cooling down, the solution was extracted with DCM and dried over MgSO4.
The solvent was removed with a rotary evaporator and the residue was purified by silica
gel column chromatography (eluent: hexane/chloroform = 2.5/1), followed by evaporation,
to yield DTB as a green solid (0.121 g, 0.4 mmol, Y = 40%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 3.941 (s, 6H), 7.089–7.111 (dd, 2H, J = 5.2,
3.2 Hz), 7.247 (s, 2H), 7.333–7.348 (dd, 2H, J = 5.2, 1.6 Hz), 7.520–7.532 (dd, 2H, J = 3.6,
2.4 Hz). 13C NMR (100Hz; CDCl3; TMS) δ (ppm) 56.442, 112.331, 122.987, 125.474, 125.694,
126.904, 139.037, 149.831.
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2.2.12. 2,5-Dibromo-4-methoxyphenol (9)

2,5-Dibromohydroquinone (2.14 g, 8 mmol), tetrabutylammonium perchlorate (0.034 g,
0.1 mmol), and potassium carbonate (1.38 g, 10 mmol) were mixed in dimethyl sulfoxide
(DMSO, 15 mL). Iodomethane (1.135 g, 8 mmol) was added to the solution dropwise.
Then, the mixture was stirred at room temperature for 16 h. The reaction mixture was
extracted with DCM and dried over magnesium sulfate. Purification by silica gel column
chromatography (eluent: hexane/ethyl acetate = 4/1) gave 9 as a white solid (0.784 g,
2.78 mmol, Y = 35%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 3.836 (s, 3H), 5.146 (s, 1H), 6.979 (s, 1H),
7.247 (s, 1H). 13C NMR (100 MHz; CDCl3; TMS) δ (ppm) 57.128, 108.376, 111.817, 115.181,
120.413, 146.824, 150.341.

2.2.13. 1,6-Bis(2,5-dibromo-4-methoxyphenoxy)hexane (10)

2,5-Dibromo-4-methoxyphenol (0.564 g, 2 mmol), tetrabutylammonium perchlorate
(0.0085 g, 0.025 mmol), and potassium carbonate (0.345 g, 2.5 mmol) were mixed in DMSO
(8 mL). 1,6-Dibromohexane (0.232 g, 0.95 mmol) was added to the solution dropwise. Then,
the mixture was stirred at room temperature for 3 days. The mixture was extracted with
DCM and dried over magnesium sulfate. Purification by silica gel column chromatography
(eluent: hexane/ethyl acetate = 9/1) gave 10 as a pink solid (0.414 g, 0.637 mmol, Y = 64%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 1.570 (quint, 4H, J = 3.6 Hz), 1.817 (quint,
4H, J = 6.5 Hz), 3.840 (s, 6H), 3.956 (t, 4H, J = 6.2 Hz), 7.076 (s, 2H), 7.088 (s, 2H). 13C NMR
(100 MHz; CDCl3; TMS) δ (ppm) 25.475, 28.964, 57.023, 69.976, 110.349, 111.187, 116.925,
118.517, 150.017, 150.426.

2.2.14. 1,6-Bis(4-methoxy-2,5-di(thiophen-2-yl)phenoxy)hexane (bis(DTB))

In an argon-flushed two-neck round-bottom flask, 4,4,5,5-tetramethyl-2-(thiophen-2-
yl)1,3,2-dioxaborolane (0.21 g, 1 mmol) and 1,6-bis(2,5-dibromo-4-methoxyphenoxy)hexane
(0.155 g, 0.24 mmol) were dissolved in THF (3 mL) and degassed for 10 min. Then,
tetrakis(triphenylphosphine)palladium (0.069 g, 0.06 mmol) and 2 mL of the degassed
Na2CO3 (0.318 g, 3 mmol)/water solution were added. The mixture was heated at 70 ◦C
and refluxed for 24 h. After cooling down, the organic layer was extracted with DCM and
dried over MgSO4. The solvent was removed with a rotary evaporator, and the residue was
purified by column chromatography (eluent: hexane/ethyl acetate/chloroform = 4/1/1.5)
to yield bis(DTB) as a yellow solid (0.111 g, 0.169 mmol, Y = 70%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 1.624 (quint, 4H, J = 3.8 Hz), 1.916 (quint, 4H,
J = 6.6 Hz), 3.935 (s, 6H), 4.081 (t, 4H, J = 6.4 Hz), 7.054 (t, 2H, J = 7.0 Hz), 7.063 (dd, 2H,
J = 1.2, 8.8 Hz), 7.222 (s, 2H), 7.248 (s, 2H), 7.286–7.335 (m, 4H), 7.498–7.528 (m, 4H). 13C
NMR (100Hz; CDCl3 TMS) δ (ppm) 25.990, 29.288, 56.423, 69.442, 112.064, 112.941, 122.901,
122.987, 125.150, 125.417, 125.636, 125.770, 126.685, 126.856, 139.085, 149.283, 149.788.

2.2.15. 1,4-Dibromo-2-ethoxy-5-methoxybenzene (11)

2,5-Dibromo-4-methoxyphenol (0.226 g, 0.8 mmol), tetrabutylammonium perchlorate
(0.01 g, 0.03 mmol), and potassium carbonate (0.138 g, 1 mmol) were mixed in DMSO
(3 mL). Bromoethane (0.075 mL, 1 mmol) was added dropwise. Then, the mixture was
stirred at room temperature for 24 h. The mixture was extracted with DCM and dried
over MgSO4. Purification by silica gel column chromatography (eluent: hexane/ethyl
acetate = 4/1) gave 11 as a white solid (0.25 g, 0.8 mmol, Y = 100%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 1.425–1.460 (t, 3H, J = 8.2 Hz), 3.844 (s, 3H),
4.010–4.062 (q, 2H, J = 6.9 Hz), 7.092 (s, 1H), 7.102 (s, 1H). 13C NMR (100 MHz; CDCl3;
TMS) δ (ppm) 14.763, 57.004, 66.011, 110.387, 111.321, 116.982, 118.812, 149.950, 150.541.

2.2.16. 2,2′-(2-Ethoxy-5-methoxy-1,4-phenylene)dithiophene (DTB2)

In an argon-flushed two-neck round-bottom flask, 4,4,5,5-tetramethyl-2-(thiophen-2-
yl)1,3,2-dioxaborolane (0.146 g, 0.7 mmol) and 1,4-dibromo-2-ethoxy-5-methoxybenzene
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(0.093 g, 0.3 mmol) were dissolved in THF (3 mL) and degassed for 10 min. Then
tetrakis(triphenylphosphine)palladium (0.048 g, 0.042 mmol) and 2 mL of the degassed
solution of Na2CO3 (0.223 g, 2.1 mmol) in water were added. The mixture was heated
at 70 ◦C and refluxed for 24 h. After cooling down, the organic layer was extracted with
DCM and dried over MgSO4. The solvent was removed with a rotary evaporator, and the
residue was purified by column chromatography (eluent: hexane/ethyl acetate = 4/1) to
yield DTB2 as a yellow solid (0.082 g, 0.26 mmol, Y = 88%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 1.504–1.539 (t, 3H, J = 7.0 Hz), 3.939 (s,
3H), 4.133–4.185 (q, 2H, J = 6.9 Hz), 7.085–7.106 (m, 2H), 7.241–7.261 (d, 2H, J = 8.0 Hz),
7.326–7.340 (dd, 2H, J = 4.0, 5.6 Hz), 7.504–7.515 (dd, 1H, J = 3.6, 4.4 Hz), 7.549–7.558 (d, 1H,
J = 3.6 Hz). 13C NMR (100Hz; CDCl3; TMS) δ (ppm) 15.020, 56.413, 65.420, 86.903, 112.017,
113.427, 122.920, 123.187, 125.198, 125.408, 125.627, 125.722, 126.742, 126.875, 139.066,
139.199, 149.178, 149.921.

2.2.17. 1,4-Dibromo-2-butoxy-5-methoxybenzene (12)

2,5-Dibromo-4-methoxyphenol (0.226 g, 0.8 mmol), tetrabutylammonium perchlorate
(0.01 g, 0.03 mmol), and potassium carbonate (0.138 g, 1 mmol) were mixed in DMSO
(3 mL). Bromobutane (0.108 mL, 1 mmol) was added dropwise. Then, the mixture was
stirred at room temperature for 24 h. The mixture was extracted with DCM and dried
over magnesium sulfate. Purification by silica gel column chromatography (eluent: hex-
ane/ethyl acetate = 4/1) gave 12 as a yellow oil (0.27 g, 0.8 mmol, Y = 100%).

1H NMR (400 MHz; CDCl3; TMS) δ (ppm) 0.964–1.001 (t, 3H, J = 7.4 Hz), 1.474–1.568
(sext, 2H, J = 7.5 Hz), 1.755–1.826 (quint, 2H, J = 7.1 Hz), 3.840 (s, 3H), 3.942–3.974 (t, 2H,
J = 6.4 Hz), 7.087 (s, 1H), 7.094 (s, 1H). 13C NMR (100 MHz; CDCl3; TMS) δ (ppm) 13.829,
19.233, 31.204, 57.023, 70.023, 110.368, 11.235, 118.603, 150.131, 150.436.

2.2.18. 1-Butoxy-4-methoxy-2,5-di(thiophen-2-yl)benzene (DTB4)

In an argon-flushed two-neck round-bottom flask, 4,4,5,5-tetramethyl-2-(thiophen-
2-yl)1,3,2-dioxaborolane (0.210 g, 1 mmol) and 1,4-dibromo-2-butoxy-5-methoxybenzene
(0.169 g, 0.5 mmol) were dissolved in THF (3 mL) and degassed for 10 min. Then,
tetrakis(triphenylphosphine)palladium (0.069 g, 0.06 mmol) and 2 mL of the degassed
solution of Na2CO3 (0.318 g, 3 mmol) in water solution were added. The mixture was
heated at 70 ◦C and refluxed for 24 h. After cooling down, the organic layer was extracted
with DCM and dried over MgSO4. The solvent was removed on a rotary evaporator, and
the residue was purified by column chromatography (eluent: hexane/ethyl acetate = 4/1)
to yield 12 as a yellow solid (0.129 g, 0.37 mmol, Y = 75%).

1H NMR (400Hz; CDCl3; TMS) δ (ppm) 0.981–1.018 (t, 3H, J = 7.4 Hz), 1.519–1.612
(sext, 2H, J = 7.4 Hz), 1.855–1.926 (quint, 2H, J = 7.1 Hz), 3.935 (s, 3H), 4.073–4.106 (t, 2H,
J = 6.6 Hz), 7.081–7.103 (dd, 2H, J = 3.6, 5.2 Hz), 7.232–7.263 (d, 2H, J = 12.4 Hz), 7.328–7.341
(m, 2H), 7.506–7.517 (dd, 1H, J = 3.6, 4.4 Hz), 7.532–7.545 (d, 1H, J = 1.6, 3.6 Hz). 13C
NMR (100Hz; CDCl3; TMS) δ (ppm) 13.943, 19.500, 31.480, 56.480, 69.385, 112.112, 112.989,
122.920, 123.006, 125.160, 125.389, 125.617, 125.722, 126.704, 126.866, 139.123, 139.189,
149.340, 149.778.

2.3. Electrochemical Polymerization in LCs

The monomers and the supporting salt (TBAP) were added to a nematic LC medium
and mixed thoroughly to obtain an LC electrolyte solution. An indium tin oxide (ITO)-
coated glass electrode was used as a substrate. For the electrochemical polymerization, the
reaction cells were constructed using two ITO glass electrodes and a polytetrafluoroethylene
spacer (0.20 mm thickness) to construct a sandwich structure. The LC electrolyte solution
was injected into the cell, heated to the isotropic phase, and gradually cooled to room
temperature. The reaction cells were placed in a magnetic field (12 T, superconducting
magnet) for 20 min in order to obtain the uniaxially oriented LC reaction medium. Then,
4.0 V of direct current was applied across the cell to initiate the polymerization at room
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temperature. After 15 min, the power source was disconnected and the reaction cell was
removed from the magnetic field. The resulting polymer film was washed with organic
solvents to remove residual LC, supporting salt, and monomers. All the primary polymer
films were reduced from an oxidized state to a neutral state with the treatment of hydrazine.
The concentration of each component and the electrochemical polymerization conditions
are summarized in Table 1.

Table 1. Concentration of each component of the electrolyte solution and the electrochemical poly-
merization conditions.

Component Liquid Crystal Supporting Salt Reaction Units

Molar concentration 99% 0.50% 0.50%
Reaction time 15 min
Voltage 4 V direct current
Magnetic field intensity 12 T
Temperature rt.
Electrode substrate ITO glass

2.4. Characterization Methods
1H NMR and 13C NMR spectra were recorded using a JNM-ECS spectrometer (JEOL,

400 MHz), the chemical shifts were recorded in parts per million, and the coupling constants
(J) were recorded in Hertz. POM observations were performed using a Nikon Eclipse LV100
POM with the crossed Nicol condition. LD UV–vis absorption spectroscopy was performed
using a JASCO V-630 UV–vis spectrophotometer equipped with a polarizer.

3. Results
3.1. Polymerization

BT, d(BT), DTC, bis(DTC), DTB, bis(DTB), DTB2, and DTB4 as monomers were
used in this study. BT, DTC, and DTB have one reactive unit (conjugated backbone)
with two reactive sites (α-position of the thiophene unit) in each molecule, while d(BT),
bis(DTC), and bis(DTB) have two independent reactive units with four reactive sites
(α-position of the thiophene units) in each molecule. These characteristics allow d(BT),
bis(DTC), and bis(DTB) to form a crosslinked polymer structure, and copolymerization
with BT, DTC, and DTB can tune the degree of crosslinking. Compared with DTB, DTB2
and DTB4 have the same conjugated backbone but different alkyl side chain lengths.
They were used for further investigation in the examination of molecular form influence.
Plausible uncrosslinked and crosslinked forms are described in the polymerization of BT
and d(BT), as an example (Figure 1).

BT is copolymerized with d(BT), DTC is copolymerized with dis(DTC), and DTB is
copolymerized with bis(DTB). Hence, we distributed these six monomers into three copoly-
merization groups: the BT/d(BT) group, the DTC/bis(DTC) group, and the DTB/bis(DTB)
group (Scheme 3). Given that the uncrosslinked monomer (uncrosslinkable) (BT, DTC, and
DTB) has one reactive unit, while the crosslink monomer (crosslinkable) (d(BT), bis(DTC),
and bis(DTB)) has two reactive units, the reactive unit concentration was used rather
than monomer concentration for calculation in this work. For each polymerization, the
total reactive unit concentration was kept at 0.5% molar. The ratio of crosslinked units
(RCU) was adjusted as 0%, 30%, 50%, 70%, and 100%, in order to examine different de-
grees of crosslink. Herein, RCU is employed to briefly describe the proportion of added
uncrosslinked units and crosslinked units, but it should be noted that it indicates no actual
degree of crosslinking in each sample.



Polymers 2021, 13, 2425 10 of 20
Polymers 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

S

S

BT

d(BT)

S

S

S

S

Electrochemical polymerization

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Main Chain

Electrochemical polymerization S

S

S

S

Linear form

Cross-linked

Poly(bithiophene)

Polymerization active sites

Polymerization active sites

Main Chain

(a)

(b)

One reactive unit for polymerization

Two reactive units 

Main Chain

Main Chain

Main Chain





 




 
Figure 1. Plausible forms of linearly propagated BT ((a), uncrosslinkable) and d(BT) ((b), crosslinkable). 
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the proportion of uncrosslinked units and crosslinked units is changed according to 10:0, 7:3, 5:5, 3:7,
and 0:10 (in molar).
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3.2. POM Observation

Confirmation of birefringence is a convenient method to examine anisotropic materials.
An anisotropic material possesses an optical axis. When linearly polarized light is applied
to an anisotropic material, the electric vector of the light can be resolved into two vector
components: one is parallel to the optical axis and the other is perpendicular to the optical
axis. These two vector components of the light indicate the different propagation velocities
in the material. Therefore, when these two vector components exit from the material, a
phase difference between the optical waves is generated. Consequently, the electric vector
of the new resulting polarized light can be differentiated from the original polarized light.
This phenomenon can be described using the following equation:

∆ϕ = 2π|ne − no|/λ (1)

where ∆ϕ is the phase difference, d is the thickness of the sample, λ is the wavelength of
the incident light, ne is the refractive index of the polarized light, where the electric vector
is parallel to the optical axis, and no is the refractive index of the polarized light, where
the electric vector is perpendicular to the optical axis. When ∆ϕ = (2n + 1)π, the direction
of the electric vector of the emergent light is rotated 90◦ from the incident light; when
∆ϕ = 2nπ, the direction of the electric vector does not change; when 2nπ < ∆ϕ < (2n + 1)π,
the emergent light becomes circularly polarized light or elliptically polarized light.

LC materials with no orientation usually show a characteristic optical texture, such as
the Schlieren texture of nematic LCs (Figure 2A) and fan-shaped texture of smectic LCs
(Figure 2B). These photographs show LC textures as examples.
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texture of smectic LC (B).

Figure 3 shows the POM images of the polymer films obtained from the BT/d(BT)
group, DTC/bis(DTC) group, and DTB/bis(DTB) group with varying RCU. The polymers
were prepared in LC solution with electrochemical polymerization under the magnetic
field. All samples displayed different colors and brightness levels between the left side
and the right side of their pictures. When the LC orientation was parallel to the analyzer,
dark pictures were observed, but when the LC orientation was not parallel to the analyzer
and polarizer, significantly brighter pictures were observed. This difference was easily
observed even at 100% RCU. Overall, this phenomenon indicates that all the samples were
optically anisotropic, and their optical axes were parallel to the polarizer or analyzer. The
conjugated polymers were uniaxially oriented even at 100% RCU.
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Figure 3. POM images of polymer films obtained from the BT/d(BT) group, DTC/bis(DTC) group, and DTB/bis(DTB)
group with different RCUs. For comparison, a photograph was first taken of a sample (left side), and then the sample was
rotated 45◦ and a second photograph was taken (right side). Blue arrows indicate the orientation direction. RCU: Ratio of
crosslinked units.

According to Equation (1), a low orientation degree will result in a small absolute
value of (ne− no), which then results in a small phase difference ∆ϕ. Therefore, it would be
difficult to observe the emergent light using an analyzer, and changes in color or brightness
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between the left side and the right side of the POM image would also be imperceptible. In
addition, the thickness of a sample d can also affect ∆ϕ. Therefore, the orientation degree
of a polymer film cannot be evaluated only with the POM observation.

3.3. LD UV–Vis Absorption Spectra Measurement

In linearly conjugated polymers, the transition dipole moment is along the main
chain. The electronic transition probability is along the direction proportional to the inner
product between the dipolar transition moment and the electric vector of the incident
light. If the polarization direction of the incident light is parallel to the main chain of a
conjugated polymer, the maximum absorption intensity can be observed. Therefore, the
main chain orientation of conjugated polymers can be defined using linear dichroism (LD)
UV–vis absorption spectroscopy. The LD measurement for every sample was carried out
two times in different orientations using a polarizer. One orientation was parallel to the
LC orientation and the other was perpendicular to the LC orientation. If one of the two
orientations shows a higher absorption intensity than the other, it indicates the main chain
orientation of the polymers. Figure 4 shows the LD UV–vis spectra of all the samples. In
each spectrum, the solid line represents the absorption intensity for an orientation that is
parallel to the LC orientation, and the dashed line indicates the absorption intensity for
an orientation that is perpendicular to the LC orientation. In the spectra of the BT/d(BT)
group and the DTC/bis(DTC) group, higher intensities were observed for the solid lines,
indicating that the main chain orientation was parallel to the LC orientation. This is the
parallel orientation. With an increase in the RCU, the intensity difference between the
solid line and the dashed line decreased. This indicates that the increased proportion of
crosslinked monomers resulted in a decrease in the orientation degree in this case.

In the LD spectra of the DTB/bis(DTB) group, when the RCU was 0%, the dashed line
showed a higher intensity, which indicates that the main chain orientation was perpendicu-
lar to the LC orientation. This is the perpendicular orientation. When the RCU was in the
range of 30–70%, the solid line and the dashed line had roughly the same intensity, which
suggests that the orientation degree of the polymers was low. When the RCU was 100%,
the solid line gave a higher intensity, which means that the polymers were in a parallel
orientation. For a better understanding of the effect of RCU on the orientation degree, a
linear dichroism ratio (LDR) was summarized for all samples to evaluate the orientation
degree. The LDR was calculated according to the following equation:

LDR = A///A⊥ (2)

where A// is the maximum absorption intensity of the solid line and A⊥ the maximum
absorption intensity of the dashed line. When the LDR is greater than 1, it indicates a
parallel orientation; when the LDR is smaller than 1, it indicates a perpendicular orientation;
and when LDR is close to 1, it indicates that the orientation degree decreased. The results
are shown in Figure 5. It is worth noting that the addition of a crosslinked monomer
changed both the orientation degree and the orientation direction of the polymers in the
DTB/bis(DTB) group. Given that 100% DTB resulted in a perpendicular orientation and
100% bis(DTB) resulted in a parallel orientation, it follows that the blending of these
two monomers would result in a neutralization of the parallel orientation effect and
the perpendicular orientation effect. However, it is not clear what causes the different
orientation directions of DTB and bis(DTB). It is likely that as DTB and bis(DTB) have
the same conjugated backbone, the orientation difference arises due to the alkyl side chain
and crosslinked structure. Therefore, the next step is to synthesize the monomers DTB2
(with an ethyl side chain) and DTB4 (with a butyl side chain), in order to investigate the
effect of different alkyl side chains.

Figure 6 shows the LD UV–vis absorption spectra of the polymer films formed using
the monomers DTB2 and DTB4. According to the spectra, DTB2 was in a perpendicular
orientation while DTB4 was in a parallel orientation. This indicates that the orientation
of conjugated polymers can be significantly affected with a slight change in the alkyl
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side chain length. It is clear that the addition of a crosslinked monomer dramatically
affects the orientation degree of the polymers. In the BT/d(BT) and DTC/bis(DTC) groups,
when the RCU increased to 30%, the orientation degree significantly decreased; when the
RCU was increased from 30% to 100%, the orientation degree gradually decreased. In
the DTB/bis(DTB) group, when the RCU was 0%, the polymers showed a perpendicular
orientation; when the RCU was 100%, the polymers showed a parallel orientation; when
the RCU was in the range of 30–70%, the orientation degree was too small to define the
orientation direction.
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Figure 5. LDR of polymer films obtained from the BT/d(BT) group, DTC/bis(DTC) group, and DTB/bis(DTB) group with
different RCUs. LDR: Linear dichroism ratio. RCU: Ratio of crosslinked units.
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Figure 6. LD UV–vis absorption spectra of polymer films obtained from monomers DTB2 and DTB4. In each spectrum, the
solid line indicates the absorption intensity along the direction parallel to the liquid crystal orientation; the dashed line
indicates the absorption intensity along the direction perpendicular to the liquid crystal orientation.

3.4. Optical Properties of Polymers

Crosslinking affects not only the molecular orientation degree of polymers, but also
their optical properties. The maximum absorption wavelength and the onset wavelength in
the absorption spectra are two important parameters for evaluating the optical properties
of a polymer. The maximum absorption wavelength and onset wavelength of the polymers
are summarized in Figure 7. With a change in the RCU, the BT/d(BT), DTC/bis(DTC),
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and DTB/bis(DTB) groups showed completely different tendencies, which indicates the
complexity of the crosslinking effect. For the BT/d(BT) group, an increased RCU resulted in
a decrease in the onset and maximum absorption wavelengths; in the DTC/bis(DTC) group,
the onset wavelength marginally changed while the maximum absorption wavelength
first increased and then decreased; in the DTB/bis(DTB) group, the onset wavelength
and maximum absorption wavelength changed in opposite directions. Given that the
polymers formed within the same group have the same conjugated backbone structure,
the change in the optical spectra may be due to three reasons: degree of polymerization,
coplanarity of the conjugated backbone, or intermolecular interaction. When crosslinked
monomers were added to the polymerization system at various concentrations, all three
factors changed. It is most likely that the crosslinking effect changed the optical properties
of the polymer films by affecting the molecular weight, coplanarity, and intermolecular
interaction, simultaneously.
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Figure 7. Maximum absorption wavelength and onset wavelength of polymer films synthesized from the BT/d(BT) group,
DTC/bis(DTC) group, and DTB/bis(DTB) group with different RCUs. The differences between the maximum absorption
wavelength and the onset wavelength are annotated in red letters.

Moreover, the difference between the two parameters was calculated. In general, the
absorption spectra reflect the electronic transitions between the different vibrational energy
levels of the ground and excited states. The onset wavelength corresponds to the 0–0
transition and the maximum absorption wavelength corresponds to the transition with
the highest transition probability. The difference between the onset wavelength and the
maximum absorption wavelength can be reflected from mechanical twisting of the main
chain in the excited state.
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3.5. Solvent Resistance

Most polymer films obtained via electrochemical polymerization in LCs are insoluble
in organic solvents both in their oxidized state and after reduction (dedoped). However,
the monomer DTB displays a unique property where the corresponding polymer film
has solubility in THF after reduction with hydrazine. This property enables a closer
examination of the effect of crosslinking on the solvent resistance. As shown in Figure 8,
the poly(DTB) film was partly dissolved in THF. Poly(DTB) in THF solution was yellow,
while poly(bis(DTB)) in THF solution was transparent, even though a small amount of
yellow precipitate appeared. This contrast demonstrates that the crosslinking effect can
improve the resistance to solvents in polymer films.
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4. Conclusions

In this research, a fabrication method for forming conjugated polymer films was
developed using electrochemical polymerization in LCs. By employing the monomers with
crosslink properties and magnetic orientation, the conjugated polymer films were fabricated
with both a crosslinked network structure and a uniaxial main chain orientation. Two types
of monomers, uncrosslinked monomers and crosslinked monomers, were employed for
the electrochemical polymerization in LCs, and a magnetic orientation was performed to
obtain a uniaxially oriented LC electrolyte solution for the polymerization. The resulting
polymer films showed a uniform optical axis. This result indicates that the conjugated
polymer network possesses a uniaxially oriented conjugated main chain. An increase in
the proportion of crosslinked monomers resulted in a decrease in the orientation degree
for the main chains in the polymer. Moreover, changes in the alkyl side chains length of
the monomers induced a significant change in the orientation direction of the main chains
in the resultant polymers. The crosslinking is beneficial in improving the durability for
conjugated polymers.

5. Instruments
1H NMR spectra were recorded on a JNM-ECS-400 NMR Spectrometer (JEOL, Tokyo,

Japan). All signals were recorded in ppm with the internal TMS (tetramethylsilane) at
0.00 ppm. FT-IR absorption spectra were obtained with an FT/IR-4600 (JASCO, Tokyo,
Japan) using the KBr method. All spectra were recorded between 400 and 4000 cm−1

with a resolution of 4 cm−1. POM observations were conducted with an Eclipse LV100
high-resolution polarizing microscope (Nikon, Tokyo, Japan). UV-vis absorption spectra
were recorded on a V-630 UV-vis spectrophotometer (JASCO, Tokyo, Japan).
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