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ABSTRACT

Background and Aims While there are considerable benefits to Ecological Momentary Assessment (EMA), poor com-
pliance with assessment protocols has been identified as a limitation, particularly in substance users. Our aim was to iden-
tify the pooled compliance rate of EMA studies in substance users and examine variables that may influence compliance
with EMAprotocols, such as the length and frequencyof assessments.Design Ameta-analysis andmeta-regression of all
possible studies (randomized controlled trials and longitudinal) which incorporated EMA protocols, examining substance
use. Setting Studies took place from1998 to 2017, in numerous countries world-wide. Participants One hundred and
twenty-six studies were identified, contributing a total of 19 431 participants (52.32% male, mean age = 28.86).

Measurements Compliance data, the proportion of responses to the study protocol, were extracted from each study
alongside prompt frequency, total length of assessment period, substance use population and device used to administer
EMA prompts. Findings The pooled compliance rate across all studies was 75.06% [95% confidence interval
(CI) = 72.37%, 77.65%]. There was no evidence that compliance rates were significantly associated with prompt fre-
quency [Q(3) = 7.35, P = 0.061], length of assessment period [Q(2) = 2.40, P = 0.301], substance type [Q(3) = 6.30,
P = 0.098] or device administration [Q(4) = 4.28, P = 0.369]. However, dependent samples (69.80%) had lower compli-
ance rates than non-dependent samples [76.02%;Q(1) = 4.13, P= 0.042]. Conclusions The pooled compliance rate for
Ecological Momentary Assessment studies in substance-using populations from 1998 to 2017was lower than the recom-
mended rate of 80%, and was not associated with frequency or duration of assessments.
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INTRODUCTION

Ecological Momentary Assessment (EMA) refers to a vari-
ety of research techniques that allow for ‘in the moment’
data capture, which often takes place in naturalistic rather
than standard laboratory settings [1]. EMA methods pro-
vide patterns of rich data which can model relationships
between variables over time in a way that cross-sectional
assessment cannot. The popularity of EMAmethods has in-
creased rapidly in recent years [2], owing in part to the de-
velopment of mobile technology and software packages
that enable sophisticated data analyses [3,4]. A typical
EMA study may send participants a number of signalled
prompts on a portable device. When these prompts are re-
ceived, participants are required to recall their current

thoughts, behaviours and feelings; more recent studies
have introduced cognitive and behavioural tasks [5,6].
These prompts may occur randomly throughout the
course of the day or during a fixed epoch (known as
signal-contingent responding). Participants may also be
asked to initiate assessments in response to specific events
(known as event-contingent responding), such as aware-
ness of intrusive cravings, temptations to use drugs [6] or
soon after having smoked a cigarette [7].

EMA has numerous benefits over laboratory-based
assessments, particularly when investigating substance
use [8]. Substance use is a discrete episodic behaviour,
influenced by immediate environmental factors (e.g.
substance-related cues [9]) and internal factors such as
stress [10,11] and craving [12,13], which can be difficult
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(both practically and ethically) to model in the laboratory.
Furthermore, the assessment of substance use and its cor-
relates in the laboratory often relies on retrospective recall
which can be biased, particularly when measured follow-
ing periods of drug/alcohol intoxication. For example,
Monk et al. [14] demonstrated that a greater number of al-
coholic drinks were reported in real time using EMA than
when assessed retrospectively (see also [15]). Similarly, in-
dividuals’ substance use may be suppressed in contexts
that are not typically associated with substance use; for ex-
ample, Monk et al. [16] demonstrated increased alcohol
consumption during an experiment conducted in a pub
compared to a library. In relation to this, participants’ ex-
pectations of drug effects may be suppressed in the labora-
tory, with self-reported alcohol outcome expectancies
differing between typical drinking (pub) and atypical con-
texts (laboratory [17,18]). Finally, reliable self-report as-
sessment of illegal drug use can be difficult to obtain due
to biases in retrospective recall [19,20]. However, EMA de-
signs allow for repeated, proximal assessments which im-
prove accuracy [21]. While EMA has various
methodological advantages over laboratory-based research
it can also present significant challenges. Outside the labo-
ratory the experimenter relinquishes their control of vari-
ables which might be of interest [22]. There is also the
complexity of everyday life (e.g. distractions) and compet-
ing priorities, which may negatively impact participant
compliance and increasemissing data. For example, partic-
ipantsmay be unable or unwilling to complete assessments
when at work, studying or when out with friends [23].
These issues may be magnified in substance users who
have ‘unstable’ life-styles [24].

Missing data through non-compliance can have a sig-
nificant effect on statistical power, but also conclusions
that can be drawn through statistical inference [25], par-
ticularly when data are missing systematically (i.e. not at
random), because this introduced bias. For example, partic-
ipants may regularly miss specific assessments (e.g. if they
are working during the hours that a prompt is due), rather
than randomly missing a prompt due to being in an un-
scheduled meeting or driving. Researchers have suggested
that the majority of non-compliance in EMA research is
systematic [26]. Therefore, the challenge is to design
EMA testing protocols that facilitate high rates of compli-
ance. However, it is entirely possible that experimental pro-
tocols for EMA studies might contribute to systematic bias
in missing data through non-compliance. There are many
theoretical and practical decisions an experimenter needs
to make when designing an EMA study, such as the quan-
tity and frequency of prompts, length of assessment periods
and whether to reimburse participants for compliance, etc.
[27]. Despite their importance, few individual studies have
directly examined the effect of these procedural variables
on compliance.

Sokolovsky et al. [28] examined factors in a single
study that predicted poor compliance to an EMA protocol
among adolescent smokers. They demonstrated that
longer inter-prompt intervals decreased compliance,
which the authors hypothesized was due to participant
disengagement. Furthermore, numerous studies have
examined compliance as a function of total assessment
period (i.e. duration of study), and demonstrated that
compliance declines as the study progresses [29–31].
However, others have failed to replicate these observa-
tions [7] [32]. One study of alcohol consumption
demonstrated that morning assessments (between 8 a.
m. and 11 a.m.) had poorer compliance [33] than assess-
ments prompted later in the day, and finally compliance is
often improved through financial incentives [34,35].

Alongside procedural variables, individual differences
may also influence non-compliance. Messiah et al. [36]
demonstrated that males, polysubstance users and those
with a diagnosis of substance use disorder during the
previous 12 months were less likely to respond to EMA
prompts. Turner et al. [37] examined factors which
influenced discontinuation in responding to daily EMA
prompts in substance-using men who have sex with
men, and demonstrated better compliance in younger
participants and those who were educated to college-
level. Smokers who relapsed (versus those who did not)
following a quit attempt also had higher rates of
non-compliance [38], as did alcoholics [24]. Finally, one
study with problem drinkers reported the perhaps
counterintuitive finding that individual differences in
social desirability were unrelated to compliance in
problem drinkers [39], although this issue has not been
comprehensively investigated.

Despite its importance, there has been no comprehen-
sive and systematic investigation of compliance rates in
the substance use EMA literature. In a narrative review,
Shiffman et al. [8] reported compliance rates ranging from
50 to 90%, but stated: ‘it is unclear what caused this sub-
stantial variation’. In a related field, Liao et al. [40] reported
an average compliance rate of 71.3% (range 43.8–95.9%)
in 13 studies of diet and physical activity; however, many of
these studies utilized paper-and-pencil diary methods,
where the veracity of compliance could not be tested. A re-
cent meta-analysis examining compliance in EMA studies
assessing behaviours, subjective experiences and contex-
tual information in children and adolescents reported an
overall compliance rate of 78.3% [41], with no difference
between clinical and non-clinical samples. However, when
analysing the samples separately there was a decrease in
compliance, with increased frequency of daily responding
in non-samples, but this relationship was reversed in clini-
cal samples.

Although there is no reported ‘gold standard’ of compli-
ance, several studies recommend compliance rates of at
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least 80% [26,37,42].1 Therefore, the current meta-
analysis had two primary aims: (1) we aimed to obtain a
comprehensive pooled estimate of compliance rates taken
from substance-using samples and compare this to the rec-
ommendation of 80%; and (2) we aimed to test the role of
our identified moderators that may influence compliance
in EMAprotocols, including prompt frequency, total assess-
ment duration, assessment length, clinical diagnosis, type
of substance and device administration. Investigation of
these moderators were included a priori, as (i) individual
studies have reported a relationship with compliance and
(ii) the majority of studies included this procedural infor-
mation. We also conducted further exploratory modera-
tion analyses on whether participants were trained in the
protocol, the type of reimbursement offered and the pres-
ence of event-contingent assessments.

METHODS

Information sources and search strategy

We searched three comprehensive academic literature da-
tabases (Pubmed, PsycInfo and Scopus) from inception to
December 2017. The search terms included terms related
to EMA (ecological momentary* OR experience sampling
OR event sampling OR daily diary) and substance use (Ad-
diction OR substance use OR dependence OR drugs OR al-
cohol OR cannabi* or marijuana OR smoking OR tobacco
OR cigarette OR cocaine OR heroin OR ecstasy OR
MDMA). Results were limited to articles written in English.
The search strategy and eligibility criteria, analyses plan
and hypotheses were pre-registered on Open Science
Framework prior to commencement of the searches
(https://osf.io/thmgy/). The completed PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses) checklist for this study can be found in the
Supporting information, Table S1).

Eligibility criteria

In order to be included in the meta-analyses, articles were
required to (i) employ EMAmethodologies (i.e. not repeated
laboratory-based assessments), (ii) utilize mobile technolo-
gies for EMA data collection that did not require face-to-face
contact with researchers (PDAs, smartphones, internet), (iii)
assess the use of substances of abuse (alcohol, nicotine, can-
nabis, etc.) either as a study outcome or predictor of a study
outcome and (iv) include ‘signal-contingent’ assessments.

Studies were excluded if (i) data were collected in the
presence of an experimenter in the laboratory, (ii) data
were collected less than once per day (to ensure consis-
tency with previous analyses), (iii) only ‘event-contingent’

assessments were used or (iv) EMAwas implemented using
paper-and-pencil diary methods. We excluded EMA studies
which only examined event-contingent assessments, as it is
not possible to report compliance to self-initiated reports
[3]. Paper-and-pencil methods were excluded, as they are
subject to bias through backfilling or hoarding, and
time/date of completed entries cannot be independently
verified [24,43]. Studies were also excluded if the (re)anal-
ysis of the same data or a subset of these data occurred (for
example, numerous publications have arisen from the data
set reported in [44] to ensure that all data in the meta-
analysis were independent. The majority of studies contrib-
uted one effect size for all participants recruited. Three
studies provided compliance rates separately for subgroups
(e.g. males and females) [45–47]. We used the mean com-
pliance rate across subgroups adjusted for sample size in
these cases.

Extraction and coding

The outcome variable (‘compliance’) was the percentage of
signal contingent assessments that were responded to in
line with the experimental protocol. The majority of the
studies included these data. Where studies did not include
these data, but included the number of daily assessments,
length of assessment period, number of participants and to-
tal number of completed assessments, we were able to cal-
culate the mean compliance rate throughout the whole
sample. We also extracted the following variables to exam-
ine our a priori hypotheses: the number of prompts (signals)
per day, total length of assessment period, duration of indi-
vidual assessments, type of substance use (alcohol, tobacco,
marijuana, opioids/cocaine, mixed), whether assessments
were prompted (e.g. a text signalling a prompt needed to
be completed within a given time-frame) or scheduled dur-
ing fixed time intervals (e.g. 2 p.m. to 7 p.m.), whether fi-
nancial or other incentives were offered for completion of
the study or in proportion to compliance and whether the
sample had a clinical diagnosis of substance use. For explor-
atory analyses (not originally pre-registered) we extracted
whether participants were also requested to make event-
contingent assessments (coded as yes or no), whether arti-
cles explicitly stated if training for the EMA protocol was
provided to participants (coded as yes or not reported),
whether participants were receiving/had received treat-
ment for their substance use (present, absent), whether
participants had self-reported motivation to quit/cut down
(present, absent) and year of publication. We conducted
moderator analyses on each of these variables separately.
Finally, we also extracted the proportion of individuals in
each study who were excluded due to poor compliance

1To our knowledge. there is no clear justification in the literature for 80% as a benchmark for recommended compliance although it is, in our opinion, ap-
propriate, because although we would expect participants to be compliant the majority of the time, it is not practical or realistic to expect close to perfect
compliance.
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(see Supporting information). Therewas high agreement in
the coding of extracted data (> 97%), and any disagree-
ments were resolved through discussion.

We examined our confirmatory hypotheses, using the
same moderator coding as Wen et al. [41] and as outlined
in our pre-registration. Specifically, we grouped number
of prompt frequency (number of prompts per day) as one
prompt, two to three prompts, four to five prompts and
six or more prompts. Some studies provided a range of
prompts per day (e.g. five to seven); in these cases we took
the average number of prompts if reported (e.g. five, six)
and if not we took the median number (e.g. six). We coded
total length of assessment as ≤ 1 week, > 1 week but
≤ 2 weeks and > 2 weeks using categories attenuated for
non-normally distributed data, when clustered around
common time-frames for studies (e.g. 1 week). We also
used the study-level data (e.g. exact prompt frequency
and total length of assessment) and included these as co-
variates in a separate meta-regression model (Supporting
information). A number of effect sizes (k = 43; 34.1%)
had corresponding information on individual assessment
duration (in minutes), therefore we analysed this in isola-
tion in order to preserve statistical power. If a range was
given (e.g. 5–10 minutes, see [48]) we used the middle
value (7.5 minutes in this case). For purposes of adminis-
tration, we separated devices into personal digital assis-
tants (PDAs), smartphone-owned, smartphone-loaned,
internet-based or interactive voice responding. Some stud-
ies loaned participants a smartphone, regardless of
whether or not they owned their own, and as such were
coded as smartphone loaned. Other studies (e.g. [49])
allowed participants to use their own phone or loan a
phone if they did not own one; we coded these as
‘smartphone-owned’ due to the large number of individ-
uals who now own their own smartphones (however, no
individual-level data on number of loaned phones were
presented in these studies). Interactive voice responding re-
quires individuals to call a number and answer questions,
and as such the EMA protocol is not administered directly
on a device. To code whether participants were trained
on the EMA protocol we examined whether there was
any mention of training or familiarization sessions (e.g. ‘re-
search assistants… provided a brief training on how to
download and navigate the mobile app’ [50], p. 1249).

Statistical analyses

Random-effects restricted maximum likelihood estimator
meta-analyses were conducted. Random-effects models
were used due to considerable heterogeneity, and we used
restricted maximum likelihood as they are more conserva-
tive than maximum likelihood models [51] and perform
better than other random-effects models [52]. To compute
effect sizes we transformed proportion of completed

assessments by the square root of their arcsine. Square-root
arcsine transformations were used rather than raw propor-
tions to reduce variance instability and preclude confidence
intervals falling outside the range of 0.0–1.0 [53]. The
transformed compliance was normally distributed [skew-
ness statistic�0.329, standard error (SE) = 0.216]. We es-
timated the SE using the equation √{(1/np) + [1/n(1–p)]},
where ‘n’ was the sample size and ‘p’ was the proportion.
As compliance rates are clustered within participants we
adjusted the sample size by the within- and between-study
variance (intraclass correlation coefficient), similar to the
method described by Wen et al. [41]). Twenty-two
(17.2%) compliance rates had accompanying information
for individual variation [standard deviation (SD)]. We took
the median of the available SDs and imputed this for all
studies that did not report this, and we also conducted sen-
sitivity analyses by computing the SEs using the 25th and
75th percentiles of available SDs. To present interpretable
data, we inverse logit-transformed the proportions and
then converted these back to a percentage following our
analyses. The I2 statistic was used to quantify heterogene-
ity across the effect sizes, and theQ statistic was included as
a test of heterogeneity reduction through the inclusion of
moderators. All analyses were conducted in JASP (2017),
which implements the metafor package from R [54].

Some studies separated samples by substance use, gen-
der or pre–post intervention; these cases contributed a sin-
gle effect size [45–47]. No outliers were detected using our
pre-registered methods of examining extreme values in the
distribution (Z> 3.30) or effect sizes with confidence inter-
vals (CIs) which did not overlap any other individual CIs or
the pooled estimate. Four cases were identified by Cook’s
Distance to be influential [30,55–57], therefore we
analysed all data with these data points included and ex-
cluded. Data are reportedwith the data points included un-
less exclusion significantly influenced the results.

RESULTS

Articles identified

The initial searches included 4758 articles after removal of
duplicates. Title and abstracts were screened and cross-
checked by A.J., D.R. and I.V., and 4298 were removed.
The remaining articles were full-text screened, and after re-
moval of those that did not meet our eligibility criteria, 125
articles published between 1998 to 2017 remained
reporting data on a total of 19 431 individuals (see Fig. 1
for more information and Open Science Framework for list
of articles).

Study characteristics

Distributions of participant demographic and moderator
variables are summarized in Table 1. There were negative
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associations between individual assessment duration and
prompt frequency (r = � 0.52, P < 0.001) and length of
assessment period and prompt frequency (r = � 0.18,
P = 0.035). There was no significant association between
length of assessment period and individual assessment du-
ration (r = 0.11, P = 0.49). The large SD in length of as-
sessment period was due to eight outliers which had
assessment periods greater than 84 days; removal of these
outliers did not substantially influence the results reported
below.

Neither participant age (coefficient = < 0.00,
SE = < 0.01, Z = 0.15, 95% CI < �0.01; > 0.01,
P = 0.885) nor gender distribution (coefficient =<�0.00,
SE = < 0.01, Z = �0.44, 95% CI < �0.01; > 0.01,
P = 0.659) were reliably related to compliance rates.

Overall compliance rate

Across k = 126 effect sizes the overall compliance rate was
75.06% (95% CI = 72.37%, 77.65%). The confidence

intervals did not include 80%, suggesting that overall com-
pliance was significantly different from 80% (P < 0.05).
There was considerable heterogeneity among compliance
rates (I2 = 44.76%). Removal of the influential cases did
not substantially influence the pooled compliance rate or
CIs (75.70%; 95% CI = 73.49%, 77.84%), but reduced
heterogeneity estimates (I2 = 16.04). One hundred and
thirteen compliance rates (89.7%) had an upper-bound
CI which overlapped 80%, suggesting that compliance
was adequate in these cases. The distribution of study-level
compliance rates can be seen in Fig. 2. Our sensitivity anal-
yses (using estimated SDs, data not shown) did not sub-
stantially influence compliance estimates.

Pre-registered analyses

Prompt frequency, total length of assessment and individual
assessment duration (see table 2)

There were no significant differences in compliance as a re-
sult of prompt frequency or assessment duration; see

Table 1 Participant demographic and moderator variable summaries.

Mean SD Range

Age 28.86 10.21 12.50–52.00
Gender (% male) 52.32 22.61% 0–100
Number of participants 154.21 214.80 10–1054
Number of daily prompts 3.63 2.03 1–9
Length of assessment period (days)a 30.29 68.51 3–730
Length of individual assessment (mins) 3.94 2.40 1–10

Total
Number of studies 126

aMean = 18.89, standard deviation (SD) = 11.52, range = 3–60, after removal of eight outliers.

Figure 1 Flow-chart of the search procedure and studies included in the analyses. *One article [70] contained two ecological momentary assess-
ment (EMA) studies
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Table 1. Individual assessment duration was not a signifi-
cant predictor of compliance (coefficient = �0.04,
SE = 0.01, 95% CI = –0.027, 0.194, Z = 0.33,
P = 0.740). We report interactions between prompt fre-
quency and total length of assessment in the Supporting
information.

Measured substance use and clinical diagnosis

There was evidence that individuals with a clinical diagno-
sis of substance use disorder had reduced compliance com-
pared to community-based samples. There was no
evidence that substance of assessment was associated with
compliance rates.

Device administration

Three studies (2.3%) did not provide clear information on
the device used to administer EMA prompts. There were
no significant differences in compliance between the type
of device used.

Exploratory analyses

Treatment and motivation

There were no significant differences in compliance rates
between studies when individuals were receiving treat-
ment or not; furthermore, whether participants weremoti-
vated to reduce their substance use or not was not
associated with compliance rates.

Event-related assessments, training and reimbursement

There was no significant difference in compliance rates be-
tween studies that included event-contingent assessments
compared to those that did not. There was also no signifi-
cant different in compliance rates between studies with
and without explicit mention of participant training on

the EMAprotocol Similarly, therewas no difference in com-
pliance rates when structured financial incentives com-
pared to non-structured incentives were provided.2

Finally, there was no significant association between com-
pliance rates and year of publication (coefficient =�0.007,
SE = 0.004 (95% CI = –0.015–< 0.001) Z = 1.92,
P = 0.055).

Trim-and-fill analysis

We conducted a trim-and-fill analysis [58] on our observed
compliance rates to examine symmetry around the pooled-
estimate (see Supporting information, Fig. S2). The analy-
ses identified 37 ‘missing’ effects which would have had
lower rates of compliance (ranging from 28.21 to
55.45%). A revised estimate of overall compliance after in-
clusion of these studies was 70.81% (95% CI = 68.04–
73.50%).

Proportion of individuals not meeting minimum
requirements for compliance

Thirty-seven studies (k = 41 effect sizes) reported either ex-
cluding participants from the study due to inadequate
compliance or the number of participants who did not
meet minimum requirements for responding. On average,
6.20% (95% CI = 4.65–8.21%) of participants were ex-
cluded or did not meet the requirements across studies.
We report exploratory analyses examining whether pro-
posed moderators influenced exclusion/failure to meet
minimum compliance rates in the Supporting information.
To summarize, the number of prompts per day was nega-
tively associated and length of assessment period was
(weakly) positively associated with exclusion/failure to
meet minimum requirements: participants were less likely
to be excluded in studies with greater prompt frequency,
and more likely to be excluded in studies of a longer dura-
tion. We urge caution in interpreting these findings due
to the small number of valid effect sizes in the analyses.

DISCUSSION

The results from this meta-analysis suggest that the pooled
compliance rate for responding to signal-contingent
prompts in published EMA studies of substance use was
outside the bounds of what is deemed acceptable [26], de-
spite a large number of individual studies reporting accept-
able levels. In line with previous observations [8] there was
a large degree of heterogeneity in compliance rates. Our
meta-regressions identified that the presence of event re-
lated assessments increased compliance, and that partici-
pants with a diagnosis of substance use disorder had
lower compliance rates.

232 studies provided no information on participant reimbursement.

Figure 2 Distribution of compliance rates across studies in
meta-analyses/regression (solid black vertical line represents pooled
compliance rate of 75.06%)
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The primary aim of this meta-analysis was to provide a
pooled estimate of compliance for EMA studies into sub-
stance use to provide a reference point for future research.
The pooled compliance estimate was similar to those ob-
tained from similar syntheses of EMA studies in other fields
(children and adolescents [41]), and higher than those in
others (physical activity and dietary behaviours [40].
However, it is worth considering that Liao et al. [41] also in-
cluded paper-and-pencil assessments, which have been
demonstrated to have substantially lower compliance than
electronic assessments [59]. Our analyses do not fully cor-
roborate reports that individuals who use substances of

abuse can adhere to intensive real-time data collection in
ambulatory settings [8,60], as the pooled rate was lower
than deemed acceptable and samples with a diagnosis of
substance use disorder reported lower rates of compliance.

Our investigation into potential study-level correlates of
compliance rates limited evidence for our confirmatory hy-
potheses. We demonstrated no evidence that the number
of prompt frequency influenced compliance rates, which
contradicts recommendations by Burke et al. [3], who sug-
gest that random prompts should be limited to a maximum
of five per day in order to reduce participant burden. We
also found no evidence that individual assessment

Table 2 Compliance rates (95% CIs) for pre-registered and exploratory analyses.

Pre-registered analyses n Pooled compliance (95% CI) Q (d.f.) P

Overall compliance rate 126 75.06 (72.37, 77.65)
Prompt frequency 7.35 (3) 0.061
1 per day 32 76.77 (70.43–82.64)
2–3 per day 26 69.80 (62.82–76.44)
4–5 per day 47 76.44 (73.41–79.34)
> 6 per day 21 76.18 (70.44–81.48)

Assessment duration 2.40 (2) 0.301
≤ 1 week 28 77.45 (71.71–82.56)
> 1 but < 2 weeks 33 69.89 (65.12–74.46)
≥ 2 weeks 65 76.10 (72.43–79.50)

Clinical diagnosis 4.13 (1) 0.042
Absent 111 76.02 (73.32–78.61)
Present 15 69.80 (60.97–77.95)

Substance of interest 6.30 (3) 0.098
Tobacco 44 77.79 (73.76–82.64)
Alcohol 44 76.36 (72.34–80.06)
Marijuana 8 66.16 (57.88–74.02)
Mixed 29 72.25 (66.26–77.87)

Device 4.28 (4) 0.369
PDA 63 74.37 (70.53–78.12)
Internet 19 71.80 (63.68–79.26)
Smartphone (own) 15 71.26 (64.07–77.95)
Smartphone (loaned) 16 80.78 (76.10–85.14)
IVR 9 76.36 (65.50–85.70)

Exploratory analyses
Event assessments 3.92 (1) 0.048
Absent 68 72.79 (68.69–76.69)
Present 58 77.61 (75.59–80.07)

Training 0.67 (1) 0.413
Absent 39 73.32 (68.32–78.17)
Present 87 75.76 (72.52–78.77)

Financial incentive < 0.001 0.984
Non-structured 21 75.07 (68.04–81.04)
Structured 76 75.24 (71.80–78.52)

Treatment 0.92 (1) 0.337
Yes 35 73.41 (68.32–78.53)
No 91 75.84 (72.70–78.28)

Motivation 1.37 (1) 0.242
Absent 80 76.18 (72.87–79.43)
Present 46 73.33 (68.89–77.54)

CI = confidence interval; d.f. = degrees of freedom; IVR = interactive voice responding.
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duration, the device used to administer protocols or reim-
bursement influenced compliance, similar to previous find-
ings [7,32,41]. We demonstrated that the presence of
event-related assessments increased compliance, which
may suggest an important role for participant engagement.
Collectively, the present findings suggest that participants
may comply with prompts in the real world, irrespective
of assessment-burden (within the limitations of our sam-
ple). However, care should be taken when interpreting
these findings, as they refer to aggregate effects at the study
level rather than at the individual participant level. As
technology improves, future research should investigate
how the design and acceptability of EMA software influ-
ences participant compliance.

Overall, the present study suggests that within the
range limits reported in Table 1 the EMA assessment bur-
den does not have an influence on the compliance rates.
It is important for EMA researchers to take this message
into account when designing EMA studies among sub-
stance users. Study protocols may have previously been in-
formed by experience with EMA methods or pilot studies
and focused on reduced participant burden. However, it
may be possible to develop more intensive protocols to in-
crease the amount of data collected without negatively
influencing compliance. Apotential caveat is that although
participants may provide data, these data may not be of
sufficient quality, and future research should investigate
whether data quality is influenced by proposed moderators
[61]. An interesting example of this was demonstrated by
Freedman et al. [62], who demonstrated reasonable com-
pliance to a demanding telephone-based EMA protocol in
homeless crack cocaine addicts. However, qualitative anal-
yses demonstrated addicts reported the protocol hard to
tolerate, began to answer questions frommemory and stra-
tegically answered questions (in this case reporting no
craving) in an attempt to prevent follow-up questions and
shorten the testing session. This may be the case when re-
imbursement is structured around compliance rates.

There are limitations to our analyses. It is likely that
the overall compliance rate was inflated, because some
studies excluded individual participants who did not
reach a specific rate of compliance (our Supporting infor-
mation analyses demonstrated that approximately 6% of
participants were excluded from studies due to poor com-
pliance). There was considerable variability in these re-
quirements, and it was often unclear if these decisions
were made a priori. For example, some studies excluded
participants who did not respond to at least 50% of
signal-contingent prompts [63,64], showed less than
20% compliance [65] or excluded participants due to
poor compliance without stating any criterion [66].

Indeed, it is possible that studies aim for the acceptable
rate of compliance (80%), as Fig. 2 demonstrates that
the greatest frequency of compliance rates is between
80 and 85%. Furthermore, our funnel plots were asym-
metrical, and a trim-and-fill analysis (see Supporting in-
formation) demonstrated a number of hypothetical
missing effect sizes with lower rates of compliance. Sec-
ondly, we identified numerous studies that we could not
include in our analyses due to an absence of compliance
data reported. However, given the large number of effect
sizes we identified, we still had considerable statistical
power [67].3 Finally, it is possible that our coding for
some of our moderators such as training and reimburse-
ment was not sensitive, i.e. participants may have been
reimbursed or trained, but this was not explicitly stated
in the articles. For example, the amount of training pro-
vided to participants is difficult to quantify based on infor-
mation provided in the Methods section. ‘Training’ might
involve 10 minutes of training through familiarization or
hours of intensive training with a researcher, and every-
thing in between.

These limitations also point to a wider issue for EMA
research regarding how missing data are reported and
handled. Previous studies have attempted to provide
guidelines for the reporting of EMA studies [26,40], in
particular the need for increased transparency when
reporting compliance data. For example, minimum re-
quirements might include a rationale for compliance de-
cisions, the reporting of compliance by monitoring days
and waves and reporting whether EMA compliance is re-
lated to procedural and individual factors. Future studies
using EMA methodology should report data in line with
these guidelines. In addition to improving reporting qual-
ity, future research should systematically examine vari-
ables which might improve compliance including
‘booster’ phone calls from researchers [68], interim com-
pliance checks [69], coaching participants [27] and con-
veying the importance of good-quality data [42]. These
strategies may be important, given that our exploratory
analyses demonstrated that compliance rates were
weakly negatively associated with year of study, which
may suggest that EMA protocols may be becoming less
acceptable for participants over time.

CONCLUSIONS

To our knowledge, we present the first quantitative analy-
ses of compliance to signal-contingent assessments in
EMA studies of substance use. Overall, we demonstrated
compliance rates similar to those reported in other fields,
although the average was slightly below the recommended

3Assuming detection of a small effect (d = 0.10) with an average of 154 participants per group and 126 effect sizes demonstrates that we have 1-β = 0.99
(99% power), assuming high heterogeneity.
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rate of 80%. There was limited evidence that procedural
variables or participant characteristics were robustly asso-
ciated with compliance rates. A future challenge for the
field is to identify methods to enhance compliance and also
to improve reporting of missing data in line with published
recommendations.
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