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Identification of anticancer 
drug target genes using 
an outside competitive dynamics 
model on cancer signaling 
networks
Tien‑Dzung Tran1,2* & Duc‑Tinh Pham1,3

Each cancer type has its own molecular signaling network. Analyzing the dynamics of molecular 
signaling networks can provide useful information for identifying drug target genes. In the present 
study, we consider an on‑network dynamics model—the outside competitive dynamics model—
wherein an inside leader and an opponent competitor outside the system have fixed and different 
states, and each normal agent adjusts its state according to a distributed consensus protocol. If any 
normal agent links to the external competitor, the state of each normal agent will converge to a stable 
value, indicating support to the leader against the impact of the competitor. We determined the total 
support of normal agents to each leader in various networks and observed that the total support 
correlates with hierarchical closeness, which identifies biomarker genes in a cancer signaling network. 
Of note, by experimenting on 17 cancer signaling networks from the KEGG database, we observed 
that 82% of the genes among the top 3 agents with the highest total support are anticancer drug 
target genes. This result outperforms those of four previous prediction methods of common cancer 
drug targets. Our study indicates that driver agents with high support from the other agents against 
the impact of the external opponent agent are most likely to be anticancer drug target genes.

Drugs bind to their target proteins/genes, which regulate downstream effectors and ultimately perturb the tran-
scriptome of a cancer cell. Identification of novel drug target genes is a significant challenge in anticancer drug 
 development1–3. In recent studies, the phenotypic effects and chemical structures of drugs have been used to 
infer drug–gene pairs. The phenotypic effect-based approaches exploit the various phenotypic responses, such 
as expression profiles and side effects, to external anticancer  compounds4–7. On the assumption that structurally 
similar drugs tend to bind to similar genes, chemical structure-based approaches have been implemented and 
have shown promising  results8–10. Although substantial progress has been made in this field, numerous challenges 
remain to be addressed. In phenotypic effect-based approaches, the drugs affecting different targets in the same 
pathway or in the same biological process may cause similar drug responses; in addition, gene expression patterns 
cannot distinguish target genes from downstream-regulated genes. Moreover, reportedly, the gene expression of 
drug targets is typically insignificantly affected by drug perturbation. Therefore, autonomous gene expression 
changes following drug treatment are insufficient to identify drug  targets11. Chemical structure-based approaches 
often rely on a few  proteins12,13, such as those with known interacting  drugs14,15 or with known three dimensional 
(3D)  structures8,10. These approaches are insufficient for most proteins without such prior information.

In the past decade, anticancer drug target prediction has gained more interest with the availability of molecu-
lar biological network data, such as metabolic  networks16,17, protein–protein interaction networks, gene regula-
tory  networks18, heterogeneous  network19–22, and cancer signaling  networks23. Description and analysis of the 
network data provide a systematic understanding of drug action and disease complexity as well as help improve 
the efficiency of anticancer drug  design24. Therefore, network-based methods have been developed to analyze 
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the structure and dynamics of molecular biological networks for improving several stages of drug discovery, 
particularly to predict drug target genes and designate new  therapies25–29. Among cancer-related networks, 
cancer signaling networks are a heterogeneous network type and provide the most informative data for dynam-
ics analysis because they contain both directed and undirected interaction types, rather than containing only 
one interaction type as observed with the other network  types30,31. Additionally, if no additional data (such as 
gene expression data) are integrated into the analysis, computation on these networks often yield more precise 
prediction results compared with that on the  others23. Structural analysis revealed that cancer biomarker genes, 
which lead to cancer via mutations, often reside at high hierarchical closeness positions in the innermost core of 
the cancer signaling  networks25. Particularly, in dynamics analysis, the backbone driver nodes found in cancer 
signaling networks can drive the network into a cancer phenotype as well as steer it into a healthy phenotype. 
This means that backbone driver genes could be cancer biomarkers as well as cancer therapeutic  targets32. Unfor-
tunately, determining optimal driver nodes for drug targets in actual biological networks remains a  challenge33, 
and a dynamic model for anticancer drug target identification requires further studies.

Recently, Zhao et al.34 introduced a dynamic model that involved competition among two competitors for 
obtaining a maximum number of votes from other agents in a social network, where the two competitors within 
the same network have fixed and different states and each normal agent adjusts its state according to a distributed 
consensus protocol. The model can predict the bias of each normal agent and thus predict the competitor that 
will win. They found that the competition result completely depended on the network structure and positions 
of competitors in the network. Furthermore, it was observed the competitor with higher PageRank in a directed 
network or higher Katz Centrality in an undirected network has the highest likelihood to be the winner. Although 
these findings are extremely interesting, the research did not consider the case that one competitor is inside the 
network whereas the other is outside. This case is an extremely common phenomenon that often occurs in the 
field of social network and in the field of molecular biological network. In a social network, leaders inside the 
network often must counter the influence of competitors outside the  system35,36. Similarly, in a molecular biologi-
cal network, an environmental agent, such as UV radiation, drugs, chemicals, and viruses, can be considered the 
external competitor that causes perturbation against the signals of driver agents within the  network37. Therefore, 
the external competition between two competitors can be considered a competition between an internal leader 
and an external opponent competitor in the social network or between a driver agent and an environmental agent 
in the cancer signaling network for obtaining maximum support from other agents in the network.

Here, we propose a dynamical network model called an outside competitive dynamics model in which an 
inside leader (driver agent, e.g., a drug target gene) and an opponent competitor outside the system (environ-
mental agent, e.g., a drug) have fixed and different states. If any normal agent links to the external environmental 
competitor, the state of each normal agent will converge to a stable value, indicating support to (or impact from) 
the leader against the impact of the competitor. We showed an illustrative example of the working of the model 
in a disease network, which is formed by the integration of pathways related to a human disease such as a cancer, 
and the influence of adjacency weights on the outside competition results. We calculated the total support of 
normal agents to each leader in various networks (i.e., 17 actual and 100 random networks) and observed that 
the total support positively correlates with hierarchical closeness, the highest rankings of which were used to 
identify biomarker genes, which have been reported as therapeutic cancer targets in a cancer signaling  network32. 
To reinforce the result observed, we gave an illustrative example to show that hierarchical closeness outperforms 
other popular centralities in the prediction for total support of a node. Interestingly, by experimenting on 17 
cancer signaling networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG), we found 
that 82% of the genes among the top 3 agents with the highest total support are anticancer drug target genes. This 
result implies that genes with high support from the other genes against the impact of the external opponent 
agent are most likely to be anticancer drug target genes in a cancer signaling network. In other words, the top 
three agents with the highest total support may play driver nodes in a complex network. Finally, we used predic-
tion results on common cancer drug targets of four previous network-based methods to validate our results. As 
a result, our top 1 prediction shared the highest consistency with the previous predictions. Overall, the outside 
competitive dynamics model contributes to the identification of both anticancer drug targets and driver agents 
in the cancer signaling network.

Material and methods
Overview of the process for identifying anticancer drug target genes. The process to identify 
anticancer drug target genes using the outside competitive dynamics model is presented in Fig. 1. In the view-
point of our study, a drug target gene should be a driver node of a disease  network32. Therefore, this process 
factually detects the driver nodes of a disease network. First, a disease network is used as the input data of the 
process. In this study, each of 17 cancer signaling networks downloaded from the KEGG database was used as 
the input data in turn. Second, the network is pre-processed by replacing each group node (if any) with single 
nodes interacting with each other to form a heterogeneous network that includes two types of undirected and 
directed links. Third, the outside competitive model is applied to the network to identify driver nodes. To deploy 
the model on a network, each normal node is randomly assigned a state between -1 and 1, but the inside leader 
node, e.g., a driver gene, and the outside opponent competitor, e.g., a drug, that links to the normal node are 
fixed by opposition states. A random walk process is then simulated to determine whole network steady states, 
where can thereby compute the total steady-state, called total support, of every normal node to the leader. The 
algorithm of total support computation considers each node as a trial leader in competition with the outside 
competitor, and the trial leader node with the highest total support is eventually selected as the driver node. 
Because identification of driver nodes may be approximate due to noise from network construction, we selected 
driver nodes from the top three highest total support, and they are also candidate anticancer drug target genes. 
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Finally, these candidate anticancer drug target genes are matched with available evidence to identify real drug 
target genes and promising ones. Besides cancer, this process can be applied widely for cardiovascular, neurode-
generative, or other diseases with pathways available in open databases such as KEGG and BioCarta.

Cancer signaling networks. We downloaded 17 cancer pathways from the KEGG database (www. 
genome. jp/ kegg)38–40 for conducting network analysis. Other pathway databases, such as BioCyc (biocyc.org)41, 
Reactome (www. reactome. org)42, and BioGRID (thebiogrid.org)43, were not considered for analysis because 
they do not include pathways corresponding to a specific cancer site. Each cancer pathway was represented by 
a heterogeneous network, wherein a node and a link correspond to a protein and a protein–protein interac-
tion, respectively. In the network, undirected links represent protein–protein interactions including binding/
association and dissociation whereas directed links represent activation, inhibition, expression, indirect effect, 
interaction via compound, missing interaction, and phosphorylation. Cytoscape plugin  KEGGParser44 was used 
to correct the pathways after they were downloaded from KEGG pathway database because the original KGML 
(KEGG Markup Language) files were inconsistent to the static pathway map image. In addition, an interaction 
from a protein A to a group of proteins {B1, B2,…, Bk} in the original KEGG pathways was transformed into k 
different interactions of A → B1, A → B2,…, and A → Bk in the signaling  network45.

Computation of centrality measures. Considering a heterogeneous network G(V, E), we briefly intro-
duce two well-known structural centrality measures as follows.

Closeness centrality: The closeness  centrality46 of a node u is defined as follows:

where d(u,v) is the shortest distance from node u to node ν. This measure has previously been used to prioritize 
disease genes in a protein–protein interaction  network47,48. However, the definition of Cclo(u) is not proper in 
cases where there is a node v that is not reachable from u because Cclo(u) eventually becomes zero. Therefore, we 
used another version of  closeness49 as follows:

Hierarchical closeness: Hierarchical  closeness29 of a node u is Chc(u) and is determined by combining reach-
ability and closeness measures as follows:

where NR(u) ∈ [0,|V|−1] is the reachability of a node u defined by NR(u) =|{v ∈ V|∃ a path from u to v}|. Hierarchi-
cal closeness measure was successfully used to identify biomarker  genes25 and disease  genes29 on heterogene-
ous biological networks such as cancer signaling networks. In the present study, we used the finding regarding 
hierarchical closeness as evidence to support our results.

Results
A dynamic model for external competition. We consider a disease network G(V,E) with N agents and 
M links. The agent (node/gene) set is denoted as V = {1, 2,…, N}, and the topology of the network is described by 
an adjacency matrix S =  (suv)NxN. If agent u is directly influenced by agent ν, then there is a link from agent u to 
agent ν and Suv ∈ (0, 1] indicating the weight of the link; otherwise, Suv = 0. For example, Suv ∈ {0, 1} indicating the 
existence of links in biological  networks50, and Suv ∈ (0, 1] indicating the strength of ties in weighted biological 

(1)Cclo(u) =
1

∑

v∈V\{u} d(u, v)
,

(2)Cclo−v(u) =
1

|V | − 1

∑

v∈V\{u}

1

d(u, v)

(3)Chc(u) = NR(u)+ Cclo−u(u)

Figure 1.  Process to identify anticancer drug target genes using an outside competitive dynamics model. 
From an input network, the process uses an algorithm based on the proposed model to compute the total 
support score of nodes in the network to each node for selecting the top three highest-ranking nodes, which are 
considered drug target genes as the output.

http://www.genome.jp/kegg)
http://www.genome.jp/kegg)
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 network51. We assumed that node α ∈ V is a leader agent (a driver agent, e.g., a drug target gene) and node β ∉ V 
is an outside opponent competitor (an environmental agent, e.g., a drug), where the state of the leader agent and 
the opponent agent have fixed and different states as follows:

There is an unknown link that may connect from β to any node in the network for causing perturbation 
against α. Biologically, this link represents the transmission of the effect of drug β on any node against the impact 
of the driver agent α. Therefore, it was assumed that an undirected link was temporarily added between node β 
and any node γ ∈ V, whenever γ adjusts its state. Every agent (called a normal node) denoted as u ∈ V/{α, β} has 
a random initial state and updates its state as follows:

where xu(t) is the state of agent u at time t; the parameter 0 < ε <W−1
max captures the level of neighbors’ influence, 

with Wmax being the largest total weights of out-links of nodes in the network; and Nu = {v ∈ V|Suv ∈ (0, 1]} is the set 
of neighboring nodes of node u that can directly influence node u. Equation (5) represents distributed consensus 
protocols proposed in the classical model of  DeGroot52. The existence of competitors in the network disallows 
global consensus. Equation (5) biologically implies that expression state of a gene u for next period denoted by 
yu(t + 1) ∈ [0, 1] can be predicted by its current state yu(t) plus an error term, where yu(t) = (xu(t) + 1)/2, xu(t) ∈ [-1, 
1]. With t → ∞, the state of each normal node u converges to a steady value x̄u , which is a convex combination 
of the opponent states and independent of the initial states of nodes. The sign of the steady state of each normal 
node: x̄u > 0 ( ̄xu < 0) implies that node u will finally support or impacted by leader node α (opponent node β), 
and |x̄u| corresponds to the degree of support or impact. x̄u = 0 if node u is a neutral node. In other words, this 
result means that if the random walk  process53 in Eq. (5) converges, it will determine whether the expression 
state of each normal gene is eventually more affected by drug β or by driver agent α.

Theorem 1 Given is a set Xnorm ∈ RN−2, which represents the state vector of all normal nodes in the network G(V,E) 
above.

where D̄, S̄,
[

cα cβ
]

 can all be derived from the network adjacency matrix S. If xu(0) ∈ [− 1, + 1], ∀u ∈ V/{α, β}, 
then xu(t) ∈ [− 1, + 1], ∀t > 0.

Proof of Theorem 1 We can rewrite Eq. (4 + 5) in the following matrix form:

where IN is an identity matrix; L = D-S is the Laplacian matrix, D is the diagonal matrix where Duu = 
∑

v

Suv ; H is 
an indicative diagonal matrix with H(i, i) = 0 if agent i is a competitor and H(i, i) = 1 otherwise. Indeed, the sum 
of each row of matrix T equals 1 because the sum of each row of matrix L always equals 0; therefore, the sum of 
each row of the matrix ε.H.L equals 0. For convenience, we reordered the agents to ensure that the two competi-
tors come last. Accordingly, we have the following:

where dα and dβ denote the total weights of out-links of competitor α and β, respectively; vectors cα, cβ, rα, and rβ 
contain the corresponding elements in the reordered adjacency matrix. Hence, Eq. (7) can be rewritten as follows:

where Xnorm ∈ RN−2 represents the state vector of all normal agents; Q = IN−2 − ε
(

D̄ − S̄
)

and B = ε
[

cα cβ
]

.Thus,

If each normal agent has a path connecting to at least one competitor, then D̄ − S̄ ∈ RN−2 is invertible. 
Because 0 < ε <W−1

max , from the Gersgorin disk theorem, it can be demonstrated that the spectral radius of Q is 
less than 1. Thus, as t → ∞ , we have the following:

(4)xα(t) = +1,∀t ≥ 0; xβ(t) = −1, ∀t ≥ 0

(5)xu(t + 1) = xu(t)+ ε

Nu
∑

v

Suv(xv(t)− xu(t))

(6)Xnorm
t→∞

(t) → X̄ � (D̄ − S̄)−1
[

cαcβ
]

[

+1

−1

]

,

(7)X(t + 1) = (IN − εH .L)X(t) = TX(t)

(8)D =





D 0 0

0 dα 0

0 0 dβ



 and S =





S cα cβ
rα 0 ∗
rβ ∗ 0





(9)

�

Xnorm(t + 1)

xα(t + 1)

xβ(t + 1)

�

=





Q B

0 1 0

0 0 1





�

Xnorm(t)

xα(t)

xβ(t)

�

,

(10)Xnorm(t) = QXnorm(t − 1)+ B

[

xα(t − 1)

xβ(t − 1)

]

= QtXnorm(0)+

t−1
∑

u=0

QuB

[

xα(0)

xβ(0)

]

(11)

Xnorm(t)→(IN−2−Q)−1B

[

xα(0)
xβ(0)

]

= (IN−2−IN−2+D̄−S̄)−1
[

cα cβ
]

[

xα(0)
xβ(0)

]

= (D̄−S̄)−1
[

cα cβ
]

[

+1

−1

]
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According to Lemma  454, each entry of (D-S)−1[cα cβ] is nonnegative and each row sum of (D-S)−1[cα cβ] is 
equal to 1. Therefore, the steady state of each normal agent is a convex combination of + 1 and − 1.

Further, we propose the measure of total support of normal nodes to node α (hereafter referred to as total 
support/impact of α) against perturbation from β as follows:

where x̄γ is the steady value of node γ if an undirected link is added between node β and γ . Total support of 
α—ToS(α)—is computed by Algorithm S1 (see in Supplementary file). Driver agent of the network is identified 
by C = max

α∈V
ToS(α) . Driver agents may include a few nodes with the same total support, whose value may be 

only approximately computed because of network noise from the issues of measurement techniques and inherent 
natural  variation51. Therefore, we selected driver agents from the top three nodes with the highest total support, 
which are also considered drug target genes in a disease  network32.

An illustration example. Figure 2 shows outside competitive dynamics on two disease networks that have 
the same number of genes but different adjacency structures. We have considered a driver gene (node 1) and a 
drug (node 0) as two competitors in each network with fixed states x1 =  + 1 and x0 =  − 1. To model the interac-
tion between the drug and each normal gene, an undirected link was temporarily added between the drug and 
the normal gene, whenever this gene adjusts its state. We then computed the support of each gene to the driver 
gene against opposition impact from the drug. Stable states of normal genes were computed according to Eq. (6). 
A red (green) node represented a gene with a positive (negative) state. The darker the color, the larger was the 
absolute value of the state. White color nodes represented neutral agents. For network (A), the weights were 
maintained at the default value of 1 for all links. The result showed that most genes in the network, except 10 and 
11, were impacted by the driver gene. For network (B), a handful of links were changed in weight. Most genes in 
the network converted to support the opponent drug outside the network. We observed that adjacency weights 
influenced the outside competition results, demonstrating the presence of large fluctuations in the network. In 
the following section, we will consider unweighted networks by considering that the weight of every link in a 
network is 1.

Relationship between total support and hierarchical closeness. Closeness is one of the most well-
known structural centrality  measures46 wherein a node is defined as the inverse of the total sum of the shortest 
distance to the remaining nodes in an undirected network, and its effectiveness for disease gene prediction has 
frequently been reported for undirected biological  networks47,48,55,56. Moreover, the closeness definition can be 

(12)ToS(α) =
∑

γ∈V\{α}

x̄γ

1
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Figure 2.  An illustrative example of how network structure influences the competitive impact results between 
driver gene and drug. A disease network with 12 genes and 19 interactions is given. Node 1 (red) is a driver 
gene whose state is fixed by 1. Node 0 (green) is a drug whose state is fixed by −1. An undirected interaction is 
temporarily added between the drug and each normal gene for computing support of the normal gene to the 
driver gene against impact from the drug. The state of each gene converges to a steady value which is a convex 
combination of the competitors’ states, and does not depend on the initial states of genes. The color gradient 
represents support bias to two competitors. (A) The weights are kept at the default value of 1 for all links. The 
result shows that most genes in the network impacted by the driver gene, except 10 and 11 (B) A handful of 
links are changed in weight. Interestingly, there are large fluctuations in the network. Most genes in the network 
turn to impacted by the drug.
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slightly modified to be properly used in a directed  network49. In another study, Tran (2014) proposed an exten-
sive closeness centrality called hierarchical closeness, which is a generalized measure of closeness centrality 
because it provides ranking results similar to that of closeness on an undirected network as well as functions effi-
ciently on a directed or unconnected  network29. The study found that hierarchical closeness outperforms other 
structural centrality measures in disease gene prediction. Moreover, the study showed that genes with a high 
level of hierarchical closeness were able to encode proteins in the extracellular matrix and receptor proteins in a 
human signal network. Particularly, hierarchical closeness was used to identify biomarker genes 25, which have 
also been reported as cancer therapeutic targets in cancer signaling  networks32. Both findings suggest that hier-
archical closeness denotes both biomarker genes and drug target genes in cancer signaling networks. Consider-
ing the above results, we examined the relationship between hierarchical closeness of a node and total support 
of the node. To this end, the Barabasi–Albert network growth  model57 was used to generate random directed 
networks with the scale-free property inducing a few hub nodes and several non-hub nodes, as observed in 
real signaling networks. Investigation on the random networks generated by the model could statistically prove 
a network property in a generalized case. Experiment on 17 molecular signaling networks of cancers and 100 
random directed networks generated with |V|= 50 and 49 ≤|E|≤ 100 showed that total support of each node posi-
tively correlates with both closeness and hierarchical closeness of the node (Fig. 3) because the correlation coef-
ficients between total support and closeness (hierarchical closeness) on random networks was 0.866 (P < 0.05). 
To illustrate the performance of hierarchical closeness on the prediction of total support, we demonstrated that 
the closeness centrality of an existing node is a significantly better predictor of total support of the node than 
the degree/betweenness centrality (Fig. 4). This result further provided an important basis to suggest that total 
support can be predicted by hierarchical closeness which indicates the closeness of a node to all other nodes. 
To clarify the role of total support in the identification of cancer therapeutic targets, we conducted an extensive 
experiment, the findings from which are detailed in the following section.

Identification of anticancer drug target genes by total support. Recent research on cancer signal-
ing networks has shown that genes with high hierarchical closeness values were considered cancer  biomarkers25, 
which also are often cancer therapeutic  targets32. In the previous section, it was demonstrated that the hierarchi-
cal closeness of a node correlates with the total support of the node. These findings suggest that total support can 
accurately predict biomarker genes as well as drug target genes in a cancer signaling network. Considering these 
findings, we examined three genes with the highest total support of 17 cancer cell signaling networks (Table 1). 
Interestingly, 42 out of 51 genes (82%) were previously identified as anticancer drug target genes. For example, 
the three genes GRB2, FLT3, and PML, which were found in the acute myeloid leukemia (AML) signaling net-
work, were considered key drug target genes. FLT3 is a common therapeutic target because it is frequently over-
expressed or mutated, and its mutations indicate poor prognosis in AML. The development of FLT3 inhibitors 
leads to the recent approval of two drugs: Midostaurin (PKC412) and Gilteritinib (ASP2215) for the treatment of 
FLT3 mutant  AML58. AML has a subtype called Acute promyelocytic leukemia (APL). The treatment of APL has 
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Figure 3.  Correlation coefficient between total support and closeness, hierarchical closeness. Blue columns 
indicate the results on 17 cancer signaling networks and the red represents those on 100 random directed 
networks generated with |V| = 50 and 49 ≤ |E|≤ 100. Dark red represents the value of hierarchical closeness 
(R = 0.866; P = 0.0001) whereas light red is the value of closeness (R = 0.866; P = 0.0001) (see Table S1 for details).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14095  | https://doi.org/10.1038/s41598-021-93336-z

www.nature.com/scientificreports/

dramatically been improved with the introduction of two synergism drugs of all-trans retinoic acid (ATRA) and 
arsenic trioxide (ATO) related to the targeting of genes  PML59. The effect of GRB2 in AML treatment is under 
clinical trial with a phase II study of BP1001 that is a liposome-incorporated GRB2 antisense oligonucleotide for 
inhibition of GRB2  expression60. For another example, among the three genes HGF, MET, and EGLN2 identified 
in the renal cell carcinoma signaling network,  HGF61 and  MET62,63 have been known as potential and approved 
drug target genes, respectively; the third gene EGLN2 may be a promising anticancer drug target gene. A recent 
study demonstrated that the efficiency of cancer treatment may be significantly enhanced by combining drugs 
against multiple tumor specific drivers  genes64. Taken together, 42 of the 51 genes (82%) that were reported as 
therapeutic targets confirmed that the top three genes with the highest total support score have the highest likeli-
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Figure 4.  An illustrative example of the comparison between hierarchical closeness and other popular 
centralities for the prediction of total support. (A) Comparison with degree centrality. The highest closeness 
centrality outperforms the highest degree centrality in total support from the other nodes. (B) Comparison 
with betweenness centrality. The highest closeness centrality outperforms the highest betweenness centrality in 
total support from the remaining nodes. The color gradient represents the total support of a node ranging from 
−(n − 1) to + (n − 1), where n is the number of nodes. Note that hierarchical closeness and closeness exhibit the 
same ranking result in these two networks.

Table 1.  Anticancer drug target genes are identified by total support ranking. In the table, C1, C2, and C3 
denote NCBI gene symbols of the top three genes with the highest total support. The underlined and bold 
genes (42 out of 51) were previously reported as anticancer drug target genes (see Table S2), in which genes in 
bold are approved for drug manufacture whereas the remaining ones are clinical trial/potential. The remaining 
neither underlined nor bold genes in the top three highest-ranking genes that have not yet been fully 
investigated may be promising anticancer drug target genes.

Cancer site

Network properties
Candidate anticancer drug target 
genes by Totalsupport

The number of nodes The number of links Cl C2 C3

Acute myeloid leukemia 66 183 GRB2 FLT3 PML

Basal cell carcinoma 59 550 SUFU SMO GLI3

Bladder cancer 29 58 RASSF1 FGFR3 HRAS

Breast cancer 144 773 LRP6 LRP5 WNT1

Chronic myeloid leukemia 76 182 CRK CRKL GAB2

Colorectal cancer 74 195 EGFR GRB2 KRAS

Endometrial cancer 51 117 EGF EGFR AXIN1

Gastric cancer 148 682 LRP6 LRP5 WNT7A

Glioma 74 310 CALM1 CALML5 CALM2

Hepatocellular carcinoma 167 769 LRP6 WNT3A WNT7A

Melanoma 69 580 FGF2 FGF1 HGF

Non-small-cell lung cancer 65 157 ALK EML4 KRAS

Pancreatic cancer 75 163 KRAS AKT2 AKT1

Prostate cancer 84 375 IGF-1 INS PDGFB

Renal cell carcinoma 56 154 HGF MET EGLN2

Small cell lung cancer 91 356 ITGB1 COL4A1 LAMB3

Thyroid cancer 37 84 NTRK1 TPR TPM3



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14095  | https://doi.org/10.1038/s41598-021-93336-z

www.nature.com/scientificreports/

hood to be anticancer drug target genes; the 8 remaining genes that have not yet been completely investigated 
may be promising anticancer drug target genes. Although the predicted top three target genes of 8 networks 
don’t have approved target genes, these predicted rank lists are also meaningful for further reference.

Comparison with other methods. We compared our method with four previous ones, namely: Liu’s 
 prediction65, Wang’s  prediction66, Emig’s  prediction67, and Li’s  prediction68. These methods are network-based 
approaches to predict drug targets of common cancers. Liu’s prediction suggested 27 potential anticancer drug 
targets by a network-based screening of gene pairs on human cancer signaling network. Wang’s prediction iden-
tified 25 candidate cancer drug targets by network score from genes sensitive with p53 mutation, which occurs 
in more than half of all human cancer cases. Emig’s prediction found 17 cancer drug target genes by a combina-
tion of four network methods, namely: Neighborhood Scoring, Interconnectivity, Network Propagation, and 
Random Walks on a molecular interaction network associated with microarray experiment data. Li’s prediction 
proposed 16 candidate anticancer drug targets using Random Walks on heterogeneous networks integrated 
from multi-source data. To compare with the above methods, we used our top 1 prediction (C1 in Table 1) 
including a list of 15 unique elements for common cancers. Note that the number of elements in our list was the 
smallest among the five predictions. We used top 1 prediction rather than top 3 prediction to guarantee that the 
comparison is not biased towards us because the size of our list is greater than those of the other lists. The Venn 
diagram in Fig. 5 showed that our’s prediction and Liu’s prediction had the same biggest number of intersection 
elements, i.e., 5 genes. Our intersection genes were composed of HGF, FGF2, ITGB1, EGFR, and GRB2, which 
most relates to growth factor. Especially, with the smallest number of elements, our prediction shared consist-
ency with three different methods whereas Liu’s prediction agreed with only two methods (see Table S3). This 
implies that our prediction outperforms the others, for it shared overlap with most of the remaining predictions 
whereas the number of elements was the smallest. All these methods have been used separately for predicting 
anticancer drug targets, and we believed using them together will provide better results.

Discussion
Knowledge discovery of anticancer drug target genes is key to the research and development of successful drugs 
for cancer treatment. In the present study, an outside competitive dynamics model was used on the complex 
network to identify the drug target genes by calculating the total support of each agent in the cancer signaling 
network. First, we proposed a novel dynamic model for outside competition in a complex network and defined 
the total support of a node in the model. Total support of a leader node indicates the support degree of the other 
nodes to the leader as well as, conversely, represents the impact of the leader on the remaining nodes against 
the outside impact. Therefore, nodes with the highest total support score act as driver nodes that easily navigate 
the state of the other nodes in the network via signaling to the neighbors from the drivers. Second, we showed 
an illustrative example of the working of the model in a disease network and the influence of adjacency weights 
on the outside competition results. This example demonstrates that the number of links as well as the qual-
ity of links decides the impact of a leader on other nodes. Third, by experimenting on 17 molecular signaling 

Figure 5.  Comparison with other prediction results. The Venn diagram was drawn based on the intersection 
of the predicted anticancer drug target genes in four previous reports and our top 1 prediction. Our top 1 
prediction shares consistency with the most predictions of different methods, i.e., 3 out of 4 predictions. The 
figure was drawn with the online tool http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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networks of cancers and 100 random directed networks, we showed that the total support of each node positively 
correlates with closeness and hierarchical closeness of the node. This finding indicates that the closer a node 
is to the remaining nodes, the more it receives support from them and the better it influences them. Note that 
a node with the highest closeness ranking is unnecessarily a network hub. Therefore, it suggests that a driver 
node often is at the central position of a disease network, where it may have only a few interactions to control 
the remaining nodes. Recent studies have reported that driver nodes often have the highest  betweenness69 or 
the highest  degree70 in some network types. We compared the prediction of total support between hierarchical 
closeness and degree/betweenness to demonstrate that a node with the highest closeness may be a better driver 
node than the others (Fig. 4). This finding was relatively different from that of the previous  reports69,70. Note that 
we do not refute the previous findings because the closeness centrality used in the present study is a new ver-
sion that was different from that used previously. Fourth, considering a finding that the top highest hierarchical 
closeness-ranking nodes often play biomarker  genes25 and a report that backbone driver nodes often act as both 
biomarkers and drug target genes in the cancer signaling  network32, we conducted an extensive investigation 
on the performance of total support in the identification of drug target genes. Of note, when we examined the 
top 3 genes with the highest total support, 82% of the genes were previously found to be anticancer drug target 
genes and the remaining genes that have not yet been completely investigated may be promising anticancer 
drug target genes. This result is consistent with that of a previous  report32 and is evidence that genes with high 
support from the other genes in a cancer signaling network are most likely to be anticancer drug target genes 
and act as driver nodes in the network. Although the predicted top three target genes of 8 networks don’t have 
approved target genes, these predicted rank lists are also meaningful for further reference. Finally, we validated 
our cancer drug target prediction by comparison with four previous network-based methods. As a result, our 
top 1 prediction shared the highest consistency among predictions by different methods. Overall, the outside 
competitive dynamics model contributes to the identification of both anticancer drug targets and driver agents 
in the cancer signaling network.

Our study showed that total support is a novel dynamic centrality measure for effective identification of 
anticancer drug target genes on cancer signaling networks. Although we only applied the outside competitive 
dynamics model on cancer signaling networks to identify anticancer drug target genes, the model can also be 
generalized to identify driver agents in a complex network. The positive relationship between total support 
and hierarchical closeness suggests that a driver agent in a network might use techniques such as hierarchical 
closeness optimization to adjust the network structure for winning the competition to the outside opponent 
competitor in various network types. However, obtaining valid evidence to demonstrate that the model functions 
satisfactorily in such a network type remains a key challenge. In addition, the algorithm to compute the total 
support presented in this study is limited by the long-running time required, particularly for large networks. All 
these issues will be considered in future studies.
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