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Nitric oxide production by tumour tissue: impact on the
response to photodynamic therapy

M Korbelik 1, CS Parkins 2, H Shibuya 1, I Cecic 1, MRL Stratford 2 and DJ Chaplin 2

1Cancer Imaging Department, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver BC, Canada; 2Gray Laboratory Cancer Research Trust,
Northwood, Middlesex, UK

Summary The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse
tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively).
The NO synthase inhibitors Nω-nitro-L-arginine (L-NNA) or Nω-nitro-L-arginine methyl ester (L-NAME), administered to mice immediately after
PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no
obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly
inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light
treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow
alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after
episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated
by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour
cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates
in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the
curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to
PDT. © 2000 Cancer Research Campaign

Keywords: photodynamic therapy; nitric oxide; ischaemia-reperfusion injury; mouse tumour models; tumour blood flow; nitric oxide
synthase inhibitors
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Nitric oxide (NO) has become recognized as a major effe
molecule in a diverse array of physiologic and patholo
processes (Bredt and Snyder, 1994; Schmidt and Walter, 199
has also become evident that this gas radical, produced by 
cells in the human body, not only controls important function
tumour progression, but may have a major influence on
outcome of cancer therapies, particularly those that are med
by increased generation of reactive oxygen species (oxid
stress) (Jenkins et al, 1995; Xie et al, 1995; Parkins et al, 1
Tozer and Everett, 1997a; Hirst and Flitney, 1997).

Photodynamic therapy (PDT), used for the treatment of var
types of cancer (Dougherty et al, 1998), induces a strong oxid
stress and triggers the vascular-mediated response with a m
neutrophil recruitment (Krosl et al, 1995; Gollnick et al, 199
and these events are prone to be highly sensitive to NO med
(Moilanen et al, 1993; Schmidt and Walter, 1994; Hirst 
Flitney, 1997). In tumours producing high levels of NO, the P
induced reduction in tumour blood flow, vascular occlusion 
consequent ischaemia may be diminished, while the inflamma
reaction triggered by PDT may be suppressed (Korbelik e
1998). This could result from the following effects of NO:
.

usly
imal

Received 27 July 1999
Revised 4 January 2000
Accepted 2 February 2000

Correspondence to: M Korbelik
r

. It
ny

e
ed
e
5;

s
ve
ive

,
on

-
d
ry
l,

• Acts as a potent vasodilator.
• Prevents platelet aggregation and adhesion to the endothe
• Suppresses the aggregation of accumulated inflammatory
neutrophils.

• Inhibits the expression of leukocyte adhesion molecules 
and hence the adhesion and extravasation of circulating
leukocytes.

• Averts mast cell degranulation (Schmidt and Walter, 1994
Vanhoutte, 1987; Kubes et al, 1991).

On the other hand, elevated NO levels may maintain vessel
tion during PDT light treatment, which can diminish the decre
in tumour oxygenation and sustain in this way the oxyg
dependent generation of phototoxic damage (Korbelik et al, 19
Additionally, NO increases vascular permeability and conseq
vascular leakage, which are characteristic occurrences in P
treated vasculature (Dougherty et al, 1998). The NO-sens
processes that unfold after the termination of photodynamic 
treatment include:

• Ischaemia-reperfusion injury, where NO can have a 
protective role.

• Apoptosis of tumour cells, which can be stimulated by NO
• Development of the immune reaction against the treated
tumour, where NO has immunoregulatory functions
(Korbelik et al, 1998; Dougherty et al, 1998).

The levels, as well as main cellular sources of endogeno
produced NO, vary considerably among solid human and an
1835
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tumours (Tozer and Everett, 1997b; Parkins et al, 1995). Since NO
acts as a vasodilator, its generation may be upregulated in s
tumours to compensate for deficient blood supply. Indeed, 
appears to act in the signalling cascade for tumour neovascula
tion (Jenkins et al, 1995). In a preliminary report, we ha
suggested that endogenous NO production may represen
important determinant in the response of tumours to P
(Korbelik et al, 1997).

Marked changes in tumour NO levels may be expected to oc
after photodynamic treatment. An increase in the generation of
was observed following PDT treatment of tumour cells in vit
(Gupta et al, 1998). This was attributed to the enhanced expres
of the constitutive form of nitric oxide synthase (NOS), observ
to peak at 5 min post-PDT and return to normal levels with
60 min. The increased activity of this Ca2+-regulated NOS
isoform, which could be tumour type- and PDT photosensitiz
dependent, may be triggered by the PDT-induced release of in
cellular calcium stores (Ochsner, 1997). Moreover, the interac
of PDT-based oxidative stress with cellular signal transduct
pathways leads to the activation of nuclear transcription fact
(Dougherty et al, 1998), which may also result in the upregulat
of genes encoding NOS. On the other hand, activated inflam
tory cells accumulated in PDT-treated tumours may be respons
themselves for the release of NO (Cecic and Korbelik, 19
McCall et al, 1989; Mehta et al, 1991; Evans et al, 1996).
contrast, a decreased release of NO can be expected if its 
source is impaired by cytotoxic damage inflicted by PDT to ce
largely responsible for endogenous NO production (e.g. endo
lial cells in tumour vasculature) (Gilissen et al, 1993).

From the above consideration it is clear that the NO levels
tumours and their modulation may considerably impact the cu
tive result of PDT. In the present study, we have investigated
effect of NOS inhibitors on the PDT response of mouse tumo
characterized by a different production of endogenous NO.

MATERIALS AND METHODS

Tumour models

Squamous cell carcinoma SCCVII (Suit et al, 1985), as well
fibrosarcomas RIF-1 (Twentyman et al, 1980) and FsaR (Volpe
al, 1985) were implanted into syngeneic C3H/HeN mice, wh
mammary sarcoma EMT6 (Rockwell et al, 1972) was implan
into syngeneic BALB/c mice. For experiments, the tumours w
inoculated subcutaneously in lower dorsal region of 7–9 week 
female mice. The exception was blood flow experiments, 
which the tumours were implanted in the dorsal side of hind 
footpads. Details of maintenance and implantation of the
tumours have been reported earlier (Korbelik and Krosl, 1996a).

Chemicals

All drugs were purchased from Sigma Chemical Co. (St. Lou
MO, USA). The NOS inhibitors used were Nω-nitro-L-arginine
(L-NNA) (Sigma N-5501) and Nω-nitro-L-arginine methyl ester
(L-NAME) (Sigma N-5751). The inactive analogue Nω-nitro-D-
arginine methyl ester (D-NAME) (Sigma N-4770) was also test
These arginine analogues were administered at 20 mg kg–1 (0.1 ml
per 20 g body weight). Superoxide dismutase (SOD) (Sig
S-5639), a manganese-containing enzyme (EC 1.15.1.1), 
British Journal of Cancer (2000) 82(11), 1835–1843
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administered at 450 U per mouse. The same SOD dose was u
a previous work (Parkins et al, 1995). All these compounds w
dissolved in 5% dextrose solution and injected intravenously.

Analysis of NO production using tumour explants

The exact procedure has been described previously (Parkins
1995). Briefly, the excised tumours were weighed, finely min
and incubated in small Petri dishes containing nitrate-free Min
Essential Medium Eagle (Sigma M-4655) supplemented with 1
FBS (Hyclone Laboratories, Inc., Logan, UT). Aliquots of cultu
supernatants collected at different time-points after incubatio
37°C in a humidified CO2-air incubator were analysed by hig
performance ion chromatography (HPIC) for the concentratio
the NO metabolites nitrite and nitrate (Stratford et al, 1997).
the samples collected in the present study showed no signif
accumulation of nitrite (NO is oxidized to nitrite first and sub
quently to nitrate if haemoglobin or other serum proteins 
present). At least four identical tumour explant cultures were u
for each determination. The size of these tumours was simil
that used for PDT (see below).

In some experiments, the production of NO was assessed 
a modified NOS assay (Rees et al, 1995). In this case, 0.5µCi of
L-[14C]arginine (278 mCi mmol–1) purchased from Amersham Lif
Science (Buckinghamshire, UK) was added to tumour exp
medium during 1 h incubation at 37°C. NOS activity was deter
mined from the conversion of L-[14C]arginine to L-[14C]citrulline
using a kit produced by Cayman Chemical Company (Ann Ar
MI, USA).

PDT treatment

One week after inoculation, tumours reached 5–6 mm in lar
diameter and the host mice were administered Photofrin (porf
sodium, QLT PhotoTherapeutics, Inc., Vancouver, Canada
10 mg kg–1 i.v. The light treatment was performed 24 h later w
doses ranging from 75–180 J cm–2, depending on the tumou
model. Specially designed lead holders were used for imm
lizing the mice during PDT illumination without anaesthesia. T
tumours and 1 mm of surrounding normal skin were treated su
ficially with 630 ± 10 nm light delivered from a tunable ligh
source based on a 1 kW xenon bulb (Model A5000; Pho
Technology International, Inc.) through a 5 mm core diam
liquid light guide (2000A; Luminex, Munich, Germany). Th
power density at the treatment area was 60–70 m W cm–2.

Evaluation of tumour response

After treatment with PDT and/or other agents, mice were obse
for tumour regrowth every second day until 90 days post-PD
which time mice showing no sign of tumour were conside
cured. Each treatment group consisted of eight mice. In the ca
treatment with NOS inhibitors only (no PDT), changes in tum
volumes were determined by measuring with a caliper the les
three orthogonal diameters.

Measurement of tumour blood flow

The procedure based on laser Doppler flowmetry was identic
that described by Durand and LePard (1994) and was perform
© 2000 Cancer Research Campaign
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Figure 1 The production of NO by mouse tumours measured during ex-
vivo explant culture. Subcutaneously growing EMT6, FsaR, SCCVII and RIF
tumours were excised and cultured ex vivo for either 6 or 24 h. The
production of NO in tumours was determined from aliquots of culture
supernatants analysed for its oxidized product, nitrate. The NOS inhibitor L-
NNA (1 mM) was added to some SCCVII explant cultures. Significantly
greater nitrate was produced by SCCVII and RIF tumours compared with
EMT6 and FsaR tumours (Bars, SD; * = P < 0.005).

Figure 2 The effect of L-NNA on growth of subcutaneous SCCVII tumours.
The drug was administered intravenously (20 mg kg–1) at 6 days post-tumour
implant. Changes in tumour volumes were monitored for 16 days after
L-NNA injection.
Dr Durand’s laboratory. Unanaesthetized mice were immobili
exposing their tumour-bearing leg; tumour size was as descr
for PDT treatment. Blood flow in superficial tumour regions w
measured using a laser Doppler flowmeter (Laserflo Perfu
Monitor, Model BPM 403; TSI, Inc., St Paul, Minnesota, USA
which registers tissue microvascular flow continuously and n
invasively with a spatial resolution of approximately 1 mm3

(Shepherd et al, 1987). The contribution of the superficial skin 
found not to obscure tumour-related blood flow changes meas
by this instrument (Durand and LePard, 1994). The needle p
with a 0.7 mm tip diameter was placed directly on the skin ab
the tumour. A winged needle infusion set connected to a syr
containing NOS inhibitor solution was installed into the tail ve
of mice before the onset of blood flow measurement. The drug
injected as a bolus (0.1 ml per 20 g body weight) after 30
recording pre-treatment blood flow. The values for relative blo
flow were derived from the number and velocity of moving r
blood cells, normalized to the mean pre-treatment value. Du
the PDT treatment, the laser Doppler flowmetry was stopped
then resumed immediately after the termination of PDT illumi
tion, by carefully repositioning the needle probe on the tum
precisely at the pre-treatment site.

Statistical analysis of the tumour response data was perfor
using the long-rank test and other data were analysed u
Student’s t-test.

RESULTS

A previous report (Parkins et al, 1995) has shown that the intri
production of NO can considerably vary with different types
mouse tumours. This is also exemplified in Figure 1, which dep
the results of NO production measurement in four mouse tum
models. Explants of freshly excised tumour tissue were incub
ex vivo for 6–24 hours and the oxidized metabolites of NO (nit
and nitrate) released in the culture medium were analysed
HPIC. Since no significant accumulation of nitrite was detect
the production of NO was assessed based on the increase of n
in the explant medium. The results show that RIF and SCC
tumours are more active producers of NO than FsaR and E
tumours. For instance, RIF tumours produced approximately f
fold more NO than EMT6 tumours. The presence of NO synth
inhibitor L-NNA (1 mM) in the explant medium suppressed t
production of NO by these tumours, as illustrated with the SCC
explants (Figure 1). An alternate method of NO product
measurement, a modified version of NOS assay based on14C-
labelled L-arginine described by Rees et al (1995), produced equiv-
alent results. The NOS activity (pmol hour–1 mg–1 protein ± SD)
in SCCVII, RIF, EMT6 and FsaR tumours was 8.36 ± 1.19,
13.41 ± 8.66, 2.56 ± 1.07, and 0.69 ± 0.44, respectively.

As alluded to above, local levels of NO may influence 
response of tumours to therapeutic modalities such as PDT. 
was tested by examining the effect of a single treatment with N
inhibitors L-NNA and L-NAME on the response of ‘low’ (Fsa
and EMT6) and ‘high’ NO producing tumours (SCCVII and RI
to Photofrin-based PDT. The effect of a single injection of L-NN
or L-NAME at doses used in these experiments showed no sig
cant effect on tumour growth. An example is depicted in Figur
which shows that L-NNA produced an apparent but statistic
insignificant temporary retardation of the growth of SCCV
tumours.
© 2000 Cancer Research Campaign
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The photosensitizer and light dose combination used for
treatment of SCCVII tumours produced their complete initial ab
tion, but all the tumours re-grew within 2–3 weeks (Figure 3)
contrast, in mice that received L-NAME or L-NNA (20 mg kg–1

i.v.) immediately after the termination of photodynamic light tre
ment, 40–50% of tumours remained non-palpable over 90 
after treatment, which qualifies as tumour cure. Similar res
were obtained with RIF tumours, as illustrated for the PDT plu
NAME combination in Figure 3. While the chosen PDT-only tre
ment was not curative, over 60% of RIF tumours were cured w
L-NAME was injected immediately after PDT. As shown in t
same graph, delaying the L-NAME administration to 30 min
24 h after PDT abrogated the beneficial effect on the tum
British Journal of Cancer (2000) 82(11), 1835–1843
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L-NAME immed. post PDT
L-NAME 30 min. post PDT
L-NAME 24 h post PDT

PDT only

RIFSCCVII
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Figure 3 The effects of L-NNA and L-NAME on the response of various tumour models to PDT. Tumours growing in syngeneic mice were treated with light
(150 J cm–2 for SCCVII and FsaR, 180 J cm–2 for RIF, and 75 J cm–2 for EMT6) at 24 h after Photofrin administration (10 mg kg–1 i.v.). L-NNA or L-NAME were
injected immediately after light treatment (both at 20 mg kg–1 i.v.). The mice were thereafter monitored for signs of tumour growth or its absence. Eight tumour-
bearing mice were treated in each experimental group. * = P < 0.05 (compared to PDT only).
response. The administration of NOS inhibitors before the P
light treatment diminished the curative effect of PDT (Korbe
and Krosl, 1996b), presumably because of reduced tumo
oxygenation during light treatment (Wood et al, 1994).

The adjuvant treatment with NOS inhibitors produced no the
peutic benefit with PDT-treated FsaR and EMT6 tumours. T
examples for L-NNA with FsaR tumours and for L-NAME wit
EMT6 tumours (the drugs injected immediately after PD
depicted in Figure 3, show that no significant difference in tum
cures was obtained between PDT-only and PDT plus L-NNA
NAME treatment groups. The results with these two tum
models indicate that they exhibit greater intrinsic sensitivity
PDT than RIF and SCCVII tumours.

The NOS inhibitors L-NNA and L-NAME are known to induc
the inhibition of tumour blood flow (Andrade et al, 1992; Horsm
et al, 1996), but no evidence is available on the relevance o
level of intrinsic NO production in tumours for the expression
this effect. The effects of these two drugs on tumour blood flow
the four models used in this study are shown in Figure 4. 
results of blood flow measurement, using laser Dopp
British Journal of Cancer (2000) 82(11), 1835–1843
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flowmetry, in four representative individual tumours growing
mice injected with L-NNA are shown on the left. It is evident t
this drug induced a different response in RIF tumours than in F
tumours, which were growing in the same strain of mice. 
blood flow in RIF tumours started to decrease within 5 min a
L-NNA injection, dropped to 20–50% of normal values during 
next 10–
15 min, and showed little, if any, signs of recovery at 60 m
post-drug administration. In contrast, the blood flow of low N
producing FsaR tumours was either moderately decrease
showed no obvious changes. At 30 min after the L-NNA inject
the relative blood flow levels in RIF and FsaR tumours w
0.40 ± 0.22 and 0.81 ± 0.18 (means ± SD, n = 4), respectively.

The effects of L-NAME on the blood flow in RIF, SCCVII an
EMT6 tumours, presented in this case as average values 
measurements in 3–4 tumours, are shown in the right side g
of Figure 4. The inhibitory effect of this drug was clearly evid
with the blood flow in RIF and SCCVII tumours, showing
similar pattern as depicted for L-NNA in RIF tumours. Howev
in parallel with the situation shown for L-NNA with Fsa
© 2000 Cancer Research Campaign
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Figure 4 The effect of L-NNA, L-NAME and D-NAME on the perfusion of different tumours. The drugs were injected intravenously (20 mg kg–1) into tumour-
bearing mice and blood flow measurements from superficial tumour regions were made by laser Doppler flowmetry. Left graph shows individual blood flow
traces from a single tumour recorded from L-NNA injected mice bearing either RIF (closed symbols) or FsaR tumours (open symbols). Right graph depicts
average blood flow data from groups of L-NAME injected mice bearing either RIF (circles), SCCVII (diamonds) or EMT6 tumours (inverted triangles). Also
shown are the results from RIF tumour-bearing mice injected D-NAME (squares). Bars, SD; n = 5.
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tumours, L-NAME exerted no apparent influence on the blo
flow of the low NO producing EMT6 tumours. Also shown in t
same graph (Figure 4, right) is the result obtained with D-NA
(RIF tumours), demonstrating that this metabolically inact
analogue of L-NAME is ineffective as a tumour blood flo
inhibitor.

Since the effects of L-NAME on tumour blood flow correla
with its beneficial action on tumour response in combination w
PDT, it was warranted to examine the effect of this drug on
blood flow of PDT-treated tumours. The PDT dose used in 
experiments presented in Figure 3 promptly reduced the b
flow of treated SCCVII tumours to approximately 50% of norm
levels, as shown with the examples of four individual tumour
Figure 5. However, this inhibitory effect generally lasted no lon
than 20 minutes and then the blood flow was largely restore
British Journal of Cancer (2000) 82(11), 1835–1843

Figure 5 The effect of L-NAME on the tumour blood flow changes induced
by PDT. Mice bearing SCCVII tumours were given Photofrin (10 mg kg–1 i.v.)
followed 24 h later by 150 J cm–2 of tumour-localized red light. Some of the
mice were also injected L-NAME (20 mg kg–1 i.v.) immediately after light
treatment. Tumour blood flow was recorded before and after PDT as
described in Figure 3. Individual traces are shown of four mice treated either
by PDT alone (open symbols) or five mice treated by PDT plus L-NAME
(closed symbols).
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Figure 6 The effect of superoxide dismutase (SOD) on the response of
EMT6, FsaR and SCCVII tumours to PDT. Mice (eight per experimental
group) bearing either EMT6 (top graph), FsaR (mid graph) or SCCVII tumour
were treated by PDT as described in Figure 2, except that the light dose for
SCCVII tumours was increased to 300 J cm–2. SOD (450 U per mouse) was
administered intravenously immediately after light treatment. Other details
were as in Figure 2. The difference between the two treatment groups is
statistically significant (P < 0.05) in the top two graphs.
even temporarily increased above normal levels in some tum
In contrast, the blood flow in tumours of mice injected w
L-NAME immediately after PDT was more profoundly reduc
(to 10–30% of normal levels) and showed no signs of recover
to the end of measurement (60–70 min post PDT); example
five individual tumours are shown in Figure 5.

The observed pattern of changes in SCCVII tumour blood f
following PDT alone suggests that this treatment may ind
ischaemia (as a consequence of the pronounced decrease in
circulation) followed by reperfusion due to the restored nor
blood flow. This can be associated with classical ischae
reperfusion injury, characterized by the production of supero
in the treated tumour vasculature, which can contribute to the
tumour effect of PDT. To test this possibility, we have exami
the effect of superoxide dismutase (SOD) on the tumour P
response. The enzyme was injected intravenously immedi
British Journal of Cancer (2000) 82(11), 1835–1843
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after the termination of PDT light treatment. The results w
EMT6 and FsaR tumours show that the treatment with S
markedly decreases the curative effect of PDT, while with SCC
tumours this impact is much less pronounced and statistic
insignificant (Figure 6). This finding corroborates the assump
that superoxide is formed after PDT and that the inhibition of
formation can be detrimental to the curative outcome of P
particularly with low NO-producing tumours. The inter-expe
mental variations in the PDT only response of EMT6 and F
tumours that can be noted in Figures 3 and 6 most likely origi
from differences between cohort of tumours implanted at diffe
times.

DISCUSSION

In this study, we have used four mouse tumour models, tw
which (RIF and SCCVII) are characterized by at least several-
higher endogenous production of NO than the other two (EM
and FsaR). This qualification is based on the measurement o
production using an in vitro assay in which tumour explants 
fully oxygenated. This may not represent the actual in vivo tum
microenvironment characterized by the presence of variable s
of hypoxic fraction in which NOS activity is arrested. Althoug
showing marked heterogeneity, the hypoxic fraction is gener
dependent of tumour size (Moulder and Rockwell, 1984), whic
our experiments ranged 5–7 mm (largest diameter). At these s
hypoxic fractions may be large in EMT6 (> 30%), but not 
SCCVII and FsaR (< 10%), and even less so in RIF tumo
(< 2%) (Moulder and Rockwell, 1984; 1987). Thus, the size of
hypoxic fraction does not appear to determine our classificatio
tumours as high and low NO producers.

Alternate methods of NO measurement have other limitatio
Probes inserted for in situ measurement damage blood vesse
may perturb tumour oxygenation, while immunohistochemis
assays do not quantify NOS activity in vivo. The advantage of
assay chosen in this study is that total NO production is te
under controlled conditions, containing fixed oxygenation a
supply of co-factors, thereby allowing direct comparisons betw
tumour types. Our results show that the above classified 
groups of tumours respond differently to the NO modulation tre
ments performed either alone or in conjunction with PDT.

In tumour models characterized by relatively high production
NO, lowering the NO levels immediately after PDT (by intr
venously administered NOS inhibitors) appears to enhance
degree of destruction of treated tumours, as suggested by
improved tumour cure rates. Regular blood flow in these tumo
appears to be maintained by a constant vasodilatation ex
through the presence of NO, as indicated by a strong impa
NOS inhibitors L-NNA and L-NAME (Figure 4). Moreover, NO
has an important role in the restitution of PDT-inhibited tumo
blood flow in those vessels that are not permanently dama
since a more profound and longer lasting inhibition of tum
blood flow was observed with the L-NAME injection combine
with PDT (Figure 5). On the other hand, tumours producing r
tively low levels of NO (EMT6 and FsaR) are more sensitive
PDT, their blood perfusion is much less dependent on NO (show
very little, if any, sensitivity to the treatment with NOS inhibitors
and their PDT-mediated cure rate cannot be improved by NO l
modulation. These results demonstrate that NO has an impo
role in events critical for the therapeutic outcome of PDT.
© 2000 Cancer Research Campaign
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Depending on tumour genotype and/or the level of its prod
tion, NO may play a facilitory or inhibitory role in tumour progre
sion. The latter relates to the fact that high (micromolar) 
concentrations are cytotoxic (Schulz and Wambolt, 1995; Lala
Orucevic, 1998). The facilitory role NO exerts through the prom
tion of tumour blood flow (highly relevant for the effects inves
gated in this study), induction of angiogenesis in tumo
(Fukumura and Jain, 1998; Lala and Orucevic, 1998) and pro
tion of tumour-cell invasiveness (Orucevic et al, 1999). In 
present study, the modulation of NO levels achieved by a si
treatment with NOS inhibitors was sufficient for a short-te
modulation of tumour blood flow, but had no obvious impact
these other roles of NO in tumour progression, as evidenced b
absence of significant retardation of tumour growth (Figure 2)

Other authors (van Geel et al, 1994, 1996) already docume
the induction of blood flow decrease by PDT in SCCVII and R
tumour models. Results in our laboratory suggest that the inte
of this response is dependent on the PDT dose. The dose u
the experiments presented in Figure 5 is just below the cur
threshold, and higher (curative) doses produce more pronou
or even permanent inhibition of blood flow in SCCVII and oth
tumour models (data not shown). However, even at relatively 
PDT doses, vessel reperfusion may occur in tumour regions 
distant to the source of illumination. The existence of episode
partial or complete obstruction and subsequent restoratio
tumour blood flow is of particular interest, because they may
associated with the induction of ischaemia-reperfusion in
(Kimura et al, 1996). During ischaemia, metabolic breakdown
ATP leads to the accumulation of xanthine/hypoxanthine 
increased levels of xanthine oxidase (Grisham et al, 1986; Pa
et al, 1997). Consequently, a sudden re-introduction of oxyge
the time of reperfusion will result in a massive generation of su
oxide in the affected tumour vasculature (Parkins et al, 1998).
presence of this oxygen radical in tumours following PDT w
indirectly confirmed by the effect of SOD treatment on tum
cures (Figure 6). Since intravenously injected SOD is not likel
reach perivascular regions (or even endothelium), it can
concluded that a significant generation of oxygen radicals oc
in the vessel lumen of PDT-treated tumours. Earlier reports h
also demonstrated the generation of superoxide in the skin of 
following PDT using ESR spectroscopy (Athar et al, 1988), 
shown that the PDT effect can be inhibited by a SOD mi
compound or augmented by a SOD inhibitor (Athar et al, 1989

The results of the experiments with SOD (Fig. 6) suggest 
superoxide generated following tumour PDT treatment 
contribute to the curative outcome both directly through induc
oxidative stress at the endothelium and indirectly through 
interaction with NO. Because NO contains an unpaired elec
and is paramagnetic, it rapidly reacts with superoxide form
peroxynitrite anion (ONOO–) (Blough and Zalfiriou, 1985; McCal
et al, 1989). Since very modest, if any, effect on PDT respon
observed with high NO-producing SCCVII tumours, it may 
speculated that under elevated NO concentrations superoxi
detoxified without reducing NO levels below the critical thresho
In contrast, under reduced NO concentrations present in E
and FsaR tumours, NO levels may be further depleted throug
interaction with PDT-generated superoxide, whereby supero
may not be completely detoxified. Consequently, the adminis
tion of SOD following PDT treatment of these tumours results
scavenging of superoxide, which diminishes superoxide-medi
© 2000 Cancer Research Campaign
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injury. Although it was suggested that SOD may act as a vasc
modulator (Beckman et al, 1990), it is more likely that this eff
is mediated through the interaction of superoxide with N
(Nakazono et al, 1991; Wolin, 1996).

Ischaemia-reperfusion insult is primarily inflicted by activat
neutrophils massively invading the affected site (mediated thro
superoxide-induced upregulation of P-selectin) that induce con
erable damage to the vasculature and surrounding tissue (Ga
et al, 1994). The existence of a pronounced influx of neutrop
into PDT-treated tumours has been well-documented (Krosl e
1995; Gollnick et al, 1997; Korbelik and Cecic, 1998). Stud
based on an experimental model of ischaemia-reperfusion in
induced by transiently clamping the feeding blood vessels
subcutaneous mouse tumours have demonstrated that this ty
insult can produce significant generation of oxygen radic
leading to tumour cytotoxicity (Parkins et al, 1995; 1998). In th
reports, it was also shown that NO exerts a strong protective ro
this type of injury, since it affects more profoundly low NO
producing tumours and is potentiated by the L-NNA treatme
Endogenous NO production may also be one of the determin
of tumour sensitivity to PDT. This is indicated by the fact th
EMT6 and FsaR tumours, ‘low’ NO producers, exhibit marke
greater sensitivity to PDT than ‘high’ NO producing RIF a
SCCVII tumours. This property, if verified by more detaile
experimental evidence, will deserve to be evaluated as a pote
prognostic indicator for the outcome of PDT.

Further investigation needs to clarify which NOS isoform
(constitutional or inducible) are responsible for the endogen
NO production in chosen tumour models, and which cells are
main source. The PDT-induced changes in NO production
treated tumours have to be better characterized, particularly
NO-generating activity of neutrophils accumulating in PD
treated lesions. As emphasized above, there are a number of e
associated with PDT tumour responses that are influenced b
presence of NO. It can be assumed that, in addition to influen
blood flow and oxygen availability, NO controls the activity 
platelets, neutrophils and other leukocytes, as well as the relea
inflammatory mediators in the vasculature of PDT-treated tumo
(Korbelik et al, 1998), and this merits further investigation.

Note added in proof
After this paper was submitted for publication, a report w
published by Henderson et al (1999). In this work, the auth
show that the NOS inhibitor L-NNA, under conditions similar 
in this study, affects the cure rate and blood flow in PDT-trea
RIF tumours in a similar way as described in this report.
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