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ABSTRACT

Neph et al. (2012) (Circuitry and dynamics of human
transcription factor regulatory networks. Cell, 150:
1274–1286) reported the transcription factor (TF) reg-
ulatory networks of 41 human cell types using the
DNaseI footprinting technique. This provides a valu-
able resource for uncovering regulation principles in
different human cells. In this paper, the architectures
of the 41 regulatory networks and the distributions
of housekeeping and specific regulatory interactions
are investigated. The TF regulatory networks of dif-
ferent human cell types demonstrate similar global
three-layer (top, core and bottom) hierarchical archi-
tectures, which are greatly different from the yeast TF
regulatory network. However, they have distinguish-
able local organizations, as suggested by the fact
that wiring patterns of only a few TFs are enough to
distinguish cell identities. The TF regulatory network
of human embryonic stem cells (hESCs) is dense and
enriched with interactions that are unseen in the net-
works of other cell types. The examination of specific
regulatory interactions suggests that specific inter-
actions play important roles in hESCs.

INTRODUCTION

Living cells are the products of transcription programs in-
volving thousands of genes. Sequence-specific transcription
factor (TF) proteins regulate target genes by binding to pro-
moter regions adjacent to the DNA sequences of the genes.
There are less than 2000 TFs in the human genome (1–4).
They work cooperatively to enhance or inhibit their tar-
get genes to achieve high specificity, and thus to precisely
control the condition-dependent expression of the genes to

respond to extracellular stimuli. Hence, the mutual inter-
actions among TFs determine cellular identity and shape
complex cellular functions (5,6). This makes the study of
human TFs on a system-wide scale of vitally important (7).
In systems biology, regulatory interactions among TFs are
modeled as a TF regulatory network in which the nodes are
the TFs and the links represent the regulatory relationship
among TFs.

Over the past decade, a great deal of information on the
organization of regulatory interactions has been obtained
particularly for Escherichia coli and Saccharomyces cere-
visiae (8–12). However, comprehensive generation of cell-
type regulatory interactions for humans has been a chal-
lenge. First, there are a large number of human TFs as men-
tioned above, but the data collected from individual experi-
ments often target one cell type and only a few TFs in a par-
ticular condition (13–15). Second, correlation-based analy-
ses of microarray gene expression data often do not capture
the orientation of transcriptional regulations, a necessity
for deep analyses of regulatory interactions (16,17). Fortu-
nately, the genome-wide DNaseI footprinting technique has
recently been adopted to determine the regulatory interac-
tions of sequence-specific TFs in the 41 human cell types
(18). This provides a valuable resource for deciphering reg-
ulatory mechanisms in different human cells.

The TF regulatory networks for E. coli (19), S. cerevisiae
(19,20), mice (21) and humans (12) exhibit hierarchical or-
ganizations. Most importantly, these organizations inter-
play with TF dynamics (19,20). In the present paper, we in-
vestigate the structural organizations and dynamics of the
41 human cell-type TF regulatory networks reported in (18)
using the vertex-sort algorithm developed in Jothi et al. (20).
Our findings are interpreted to indicate three insightful con-
clusions. First, the human cell-type TF regulatory networks
share similar global three-layer (top, core and bottom) hi-
erarchical architectures, which are markedly different from
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that of the yeast TF regulatory network. On the other hand,
there are significant differences in the TF regulatory inter-
actions among cell types, as suggested by our finding that
wirings around a few TFs can distinguish cell identities well.
Second, the TF regulatory network of the human embry-
onic stem cell (hESC) is dense and has different topolog-
ical properties from all the other networks. Finally, there
are more specific regulatory interactions than thought in the
hESCs. These cell-type regulatory interactions and the TFs
involved may play unique roles in maintaining pluripotency.

MATERIALS AND METHODS

Network data

The TF regulatory networks of 41 human cell types have
been taken from recent work by Neph et al. (18). These net-
works were derived from the DNaseI footprinting data and
the predicted TRANSFAC motif-binding sites. Each net-
work contains about 475 TFs and 11200 interactions.

According to the physiological and functional properties,
Neph et al. (18) divided the 41 cell types into eight classes:
blood (seven cell types), cancer (two cell types), endothe-
lia (four cell types), epithelia (six cell types), ESCs (one cell
type), fetal (three cell types), stroma (14 cell types) and vis-
cera (four cell types).

Discovery of the hierarchical structures of the regulatory net-
works

We used the vertex-sort algorithm (20) to identify the hierar-
chical structure of a regulatory network. The vertex-sort al-
gorithm first collapses strongly connected components into
supernodes to form a directed acyclic graph, and then con-
structs its transposed graph by reversing the directions of
the edges. Next, it uses the topological structures of both
the directed acyclic graph and its transposed graph to clas-
sify the original nodes into the top, core and bottom layers.

Figure 1. The hierarchical clustering of 41 cell types, where the color indi-
cates which classes they belong to (Methods). (A) The clustering reported
in (18) and redrawn for the purpose of comparison, which is based on the
pairwise Euclidean distances between the NND vectors of the correspond-
ing TF regulatory networks, has RI = 0.801. (B) Our clustering, which is
based on the distribution of the downstream targets of the seven signal
transducer and activator of transcription (STAT) proteins, has RI = 0.856.

Classifying cell types based on TF regulatory networks

Neph et al. (18) made use of the connectivity of the TF regu-
latory networks to classify the 41 human cell types. Specif-
ically, they computed all the pairwise Euclidean distances
between the normalized node-degree (NND) vectors of the
networks, and then applied the Ward clustering method (22)
to cluster the cell types.

Instead, we used local connectivity, defined by a subset
of nodes in the networks, to classify the cell types. Given
a small set of TFs, A, we define the feature vector of each
cell type to be (x1, . . . , xn), where n is the number of TFs
in the corresponding network and where xi = 1 if the ith
TF is a target of some TFs in A and 0 otherwise. Principal
component analysis was then applied to the feature vectors
to reduce the dimension and the noise of feature vector data.
We computed the pairwise Euclidean distances based on the
first seven principal components of the 41 feature vectors
and then applied Ward clustering to classify the cell types.

Measuring the accuracy of the classifications of cell types

The Rand Index (RI) (23) was used to assess the quality
of cell type classifications. To this end, the 41 cell types are
partitioned into four categories: (i) stromal and epithelial,
(ii) blood, (iii) endothelial and (iv) cancer, ESC, and fetal
tissues.

Detection of regulatory complex-target modules in hESCs

The hESC-specific interactions are interactions that are
only found in the regulatory network of hESCs. A total of
1509 interactions were identified (Supplementary Table S1).

We used these interactions to identify regulatory
complex-target modules that are specific to hESCs. For a
protein complex, C, and a set of TFs, B, we say that C and
B form a regulatory complex-target module if C contains
two or more TFs such that all TFs in B are regulated
by every TF (in C) only in the hESCs. We detected 55
regulatory complex-target modules (Supplementary Table
S2) using the protein complexes reported in (24).

Comparing two distributions

The Wilcoxon rank-sum test was used to determine whether
the RI was significantly higher when grouping 41 cell types
based on the targets of a few TFs compared to random
grouping.

The gene expression data of 79 human tissues (25) were
used to investigate whether a TF gene was stably expressed
across tissues. The deviation of an expression level from be-
ing a constant is measured in terms of its relative entropy
(also known as Kullback–Leibler divergence). In our con-
text, for a gene, it is computed as log2 79 + ∑

j f j log2( f j ),

where f j = e j/
(∑79

k=1 ek

)
and ej is the expression level of

the gene in tissue j (1). The entropy equals 0 if the gene ex-
pression levels are identical in all 79 tissues. The Wilcoxon
rank-sum test was also used to test whether the TFs in-
volved in housekeeping (HK) interactions were more stably
expressed than the other TFs.
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Figure 2. The STATs and their downstream regulatory targets in hESCs
(A) and HSCs (B). Purple TFs are those regulated by some STATs in both
cell types. The cell fate commitment process (GO:0045165) is enriched in
the targets of STATs in hESCs (Benjamini corrected P-value = 2.72e−7).
Dark red and blue targets are the TFs annotated with the GO term. The
hemopoietic or lymphoid organ development process (GO:0048534) is en-
riched in the targets of STATs in HSCs (Benjamini corrected P-value =
0.03). Green and blue targets are the TFs annotated with this GO term.
Brown targets are other targets whose GO annotations are not given.

Figure 3. (A) A schematic view of the three-layer hierarchical structure of
the hESC TF regulatory network. The links between the top and bottom
layers are colored yellow. (B) A summary of average percentages of nodes
(dark red) in the three layers and of links (blue) within and across the top,
core and bottom layers in a human cell-type TF regulatory network.

RESULTS

Wirings around a few TFs are enough to distinguish cell iden-
tities

Neph et al. (18) made use of the global connectivity of the
TF regulatory networks to classify the 41 human cell types
(Methods). The resulting grouping (redrawn in Figure 1A)
strikingly groups the anatomical and functional cell-type
groups into clearly preannotated classes with RI = 0.801.
Surprisingly, the local connection patterns involving five to

nine arbitrarily selected TFs are also good enough to obtain
comparable classifications with the RI being in the range
from 0.7 to 0.9 on average (Methods, Supplementary Fig-
ure S1).

Let us consider the seven mammalian signal transducer
and activator of transcription (STAT) proteins. The acti-
vation of STATs by the Janus kinase proteins serves as an
alternative to the second messenger system, transmitting
extracellular signals from a wide spectrum of cytokines,
growth factors and other polypeptide ligands to the nuclei
(26,27). A close examination finds that the TFs regulated
by the STATs are annotated with different gene ontology
(GO) terms in different regulatory networks. For example,
as illustrated in Figure 2, TFs that are regulated by STATs
in hESCs but not in hematopoietic stem cells (HSCs) are
enriched in GO:0045165 (cell fate commitment, Benjamini
corrected P-value = 2.72e−7). By contrast, TFs that are
regulated by STATs in HSCs but not in hESCs are enriched
in GO:0048534 (hemopoietic or lymphoid organ develop-
ment, Benjamini corrected P-value = 0.03).

The diversity of the downstream TFs of the STATs might
indicate their strong distinguishability for the classification
of human cell types. Indeed, using the information on how
the STAT proteins connect with their targets to classify the
cell types, we obtained a grouping with RI = 0.856 (Figure
1B), which is even higher than the RI of the grouping of
Neph et al. mentioned above.

The hierarchical structures of 41 cell-type regulatory net-
works

The E. coli, yeast, rat, mouse and human regulatory net-
works all exhibit hierarchical organization (12,19–21). We
investigate the hierarchical organization of the 41 human
cell type networks using the vertex-sort algorithm (20).

For each network, the vertex-sort algorithm partitioned
its nodes into the top, core and bottom layers (Figure 3A)
(Methods). The percentages of TFs in the three layers of
the 41 regulatory networks are reported in Supplementary
Table S3. On average, 23% of TFs are classified into the top
layer, 67% into the core layer and the lowest amount of TFs
(10%) into the bottom layer (Figure 3B). The top, core and
bottom layers of the 41 networks have 1 (i.e. HNF4G), 141
and 15 TFs in common, respectively.

When compared to the regulatory networks of other cell
types, the hESC TF regulatory network has a significantly
low number of TFs in the top layer (6%, P-value < 0.01,
one-tailed test) and its core layer contains a significantly
high number of TFs (85%, P-value < 0.01, one-tailed test).
However, its bottom layer has a size (9%) similar to those
of the other cell type networks (Supplementary Table S3).

To measure the degree of hierarchy in the three-layer
structures obtained above, we calculated the local reaching
centrality (LRC) of TFs in each of the 41 networks (28). As
expected, the LRC of each TF in a layer is always greater
than that of each TF in the layers below it in all except
two stromal (HCF and HCM) networks. In the HCF net-
work, only HOXC9 and NKX2-1 in the top layer have an
extremely low LRC, smaller than the LRC of the TFs in the
core layer. In the HCM network, only HOXC9 and NKX6-
1 in the top layer have smaller LRC than that of TFs in the
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core layer. The mean values of the LRC of the TFs in a layer
in the 41 regulatory networks are given in Supplementary
Table S4. The global reaching centrality (GRC) of the 41
regulatory networks ranges from 0.065 to 0.125. Low GRC
for each network is due to (i) there are only three hierarchi-
cal layers, (ii) the core layer is much larger than the top lay-
ers (67 versus 23% on average) and (iii) the LRC of a TF is
slightly smaller in the core layer than in the top layer. These
facts lead to the distribution of LRCs skew to the maximum
LRC resulting in small GRC.

Distributions of network links. Seventy-six percent of links
are distributed within the core layer (Supplementary Table
S3 and Figure 3B). Both the size of the core layers and the
links within them reveal the complex regulatory relation-
ships among TFs in different human cells. The remaining
links are distributed as follows: top → core (13%), top →
bottom (2%) and core → bottom (9%), suggesting that TFs
in the top layer mainly regulate TFs in the core layer.

Distributions of hubs. TFs with high out-degrees are cru-
cial in that they have a large number of downstream tar-
gets. Following Jothi et al. (20), the top 20% TFs with the
largest out-degree are defined as hubs in a regulatory net-
work. There are 96–98 hubs that regulate at least 21 TFs in
each of the 41 cell-type regulatory networks. The core lay-
ers of the networks are all enriched in hubs (all P-values ≤
0.005, hypergeometric test, Figure 4A). All the top layers
are depleted in hubs (all P-values ≤ 0.05, hypergeometric
test) except in the networks of hESCs, HSCs, hippocampal
astrocytes and mammary fibroblasts (Figure 4A). These re-
sults on hub enrichment are concordant with those of the
yeast transcription network (20).

Distributions of essential TFs. Essential proteins are nec-
essary for performing basic developmental functions. If
they are disrupted, they will cause pre- or neonatal lethal-
ity (29). There are 280 essential TFs in each of the 41 net-
works. For each network, the percentages of essential pro-
teins in the top and core layers are about the same (average
difference ∼1%) (Figure 4B). By contrast, the percentage of
essential proteins in the top layer (∼12%) is higher than in
the core layer (∼6%) and in the bottom layer (∼3%) in the
yeast transcription network (20).

Distributions of HK TFs. Here TFs encoded by HK genes
(30) are called HK TFs. There are 63 HK TFs in each of
the 41 networks. There are two, 54 and seven HK TFs, re-
spectively, in the top, core and bottom layers of the hESC
TF regulatory network. In the remaining 40 networks, all
the core layers are enriched, whereas all the top layers are
depleted in HK TFs (Figure 4C).

HK and specific regulatory interactions

In analogy to genes, some regulatory interactions appear in
only certain cell types, whereas many others are found in
all cell types. Regulatory interactions that are only found in
one cell type are called specific interactions; those that are
found in all cell types are called HK interactions. Identify-
ing the regulatory interactions belonging to the classes pro-

Figure 4. Percentages of TFs that are hubs (A), essential (B) and HK (C)
in the top (green circle), core (brown triangle) and bottom (blue diamond)
layers in 41 human cell-type TF regulatory networks, grouped according
to cell class. Abbreviations: BL, blood; CA, cancer; EN, endothelia; EP,
epithelia; ES, ESC; FE, fetal; ST, stromal cells; VI, visceral cells.

vides important biological insights into complex biological
systems (31–34).

Neph et al. (18) remarked that ∼5% of all interactions
(i.e. 2041 interactions) (Supplementary Table S5) are com-
mon across the 41 cell types. Our leave k-out validation
shows that the number of common interactions in fewer cell
types increases only slightly (Supplementary Figure S2). We
therefore take these 2041 interactions as HK regulatory in-
teractions. Enrichment analyses show that the proportions
of HK links within the core layer and between the core and
bottom layers are comparable and higher than those be-
tween the top and core layers and between the top and bot-
tom layers (Figure 5C).
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Figure 5. (A) The intersection of the subset of TFs that are involved in
HK interactions and the subset of TFs that are encoded by HK genes. (B)
The box plots of the relative entropy of the expression values of the genes
encoding TFs involved in HK interactions (above) and other TFs (below).
(C) The box plots of the proportions of HK interactions within the core
layer and among the top, core and bottom layers in the 41 human cell-type
TF regulatory networks. (D) TFs and HK interactions among them in a
protein complex (id: HC5737) (24).

There are 296 TFs involved in HK interactions (Figure
5A). These TFs are not necessarily encoded by HK genes.
But, as expected, they are enriched with TFs encoded by
the HK genes listed in (30) (P-value = 1.27e−10; hyperge-
ometric test). Additionally, the expressions of genes encod-
ing them are much stabler than other TF genes across 79
human tissues (P-value = 4.32e−10) based on the entropy
analysis of the gene expression data reported in (25) (Figure
5B). Similar results hold for the HK gene list obtained from
combining the lists in (35–37) (Supplementary Figure S3).

Regulatory interactions specific to hESCs

ESCs are derived from the inner cell mass of an early-
stage embryo. Although OCT4, NANOG and other mark-
ers of hESCs have been identified, the whole picture of how
TFs cooperate with each other in hESCs is largely unclear
(38–40). There are 1509 regulatory interactions specific to
hESCs, involving 411 TFs. The network induced by spe-
cific interactions over these TFs is referred to as the hESC-
specific network (ESCSN). There are 82 hubs (the top 20%
of the TFs with the largest total degree) (Table 1). Among
the 82 hubs, only 35 are the hub TFs in the original hESC
TF regulatory network. The remaining 47 hubs, including
popular NANOG, seem to play unique roles in hESCs.

Superenhancers are large collections of transcriptional
enhancers. Genes with superenhancer domain play impor-
tant roles in the control of cell identity and diseases (41–
43). In mouse and human ESCs, master TFs OCT4, SOX2,

Figure 6. (A) Proportions of hub TFs that are in Assou et al.’s list (36)
and the significance of their enrichment in the ESCSN. (B) The subnet-
work induced by the hub TFs in the Assou et al.’s list in the ESCSN. (C)
Proportions of known hESC interactions (38) and the significance of their
enrichment in the ESCSN. (D) The hESC-specific regulatory interactions
appearing in a reported core transcription network for hESCs (38). (E) and
(F) Two specific regulatory complex-target modules in the hESCs.

NANOG are each encoded by a gene with superenhancer
and also have DNA-binding motifs that are often found
in superenhancer domains (42). Most interestingly, nine
hub TFs (colored red in Table 1) are each encoded by
hESC-specific genes with superenhancer (P-value = 0.03;
hypergeometric test) based on superenhancers reported in
(41). They are FOXD3, GTF2I, NANOG, NR2F6, OCT4,
SIX3, SOX2, ZBTB7B and ZIC3.

Assou et al. (44) compiled a list of 1076 genes that are
overexpressed in hESCs. In the ESCSN, the hubs are signif-
icantly enriched with the TFs encoded by the overexpressed
genes in this list (P-value = 1.61e−3; hypergeometric test,
Figure 6A). More interestingly, 12 of the hubs that are en-
coded by the genes in the list are well connected, except
for ZIC2 (Figure 6B). NANOG, OTX2, PARP1, ZIC2 and
ZIC3 are not hubs in the original hESC TF regulatory net-
work.

ESCs self-renew indefinitely while maintaining pluripo-
tency. Activin A is a member of the transforming growth
factor � superfamily. It is found to play a central role in
maintaining ‘stemness’ (45,46). Activin A initially binds to
type II Activin A receptors and then recruits the Activin
A receptor, type IB (ALK4). ALK4 further phosphorylates
SMAD2/3. Upon activation by phosphorylation and as-
sociation with SMAD4, SMAD2/3 translocates to the nu-
cleus and upregulates the expression of other TF genes,
such as Oct4, Nanog, Modal, Wnt3 and Fgf8, and down-
regulates Bmp7 (46). In hESCs, SMAD3 tends to co-occupy
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Table 1 Eighty-two hub TFs in the ESCSN.

Forty-seven of them, including NANOG, are not hubs in the original
hESC TF regulatory network. TFs encoded by hESC-specific genes with
superenhancer are colored red.

DNA-binding sites with OCT4, SOX2 and NANOG in re-
sponses to transforming growth factor � signaling (47). The
Nadal/Activin A signaling pathway is also enriched (false
discovery rate = 9.86e−5) with the hubs in the ESCSN.

In addition, a core transcriptional regulatory network of
hESCs (38) is enriched in hESC-specific interactions (P-
value = 6.92e−6; hypergeometric test, Figure 6C), as shown
in Figure 6D.

DISCUSSION

We have studied the organizational architectures of the 41
human cell-type TF regulatory networks that were reported
by Neph et al. (18). First, we have shown that the wiring
around five to seven TFs in the networks can be used to
classify all the 41 cell types well. Both Neph et al. (18) and
our studies indicate that the human TF regulatory networks
are different globally as well as locally.

Human regulatory networks exhibit hierarchical and
modular structure (48). We have examined the three-layer
hierarchical organizations of the human cell-type TF reg-
ulatory networks. The networks are each partitioned into
the top, core and bottom layers, containing 23, 67 and 10%
of TFs on average (Figure 3B, Supplementary Table S3), re-
spectively. The large size and well-connectedness of the core
layers are probably due to (i) master cell-type-specific TFs
have a large number of target genes and (ii) their encoding
genes have a superenhancer domain (41,42). For example, in
the core layer of the hESC TF regulatory network, 326 TFs
(81.3%) out of 401 are either the regulators or regulated by
nine TFs each encoded by a gene with superenhancer do-
main, forming a large ‘bow-tie’ subnetwork (49).

The same hierarchical analysis (20) indicates that in the
yeast TF regulatory networks, both the core and bottom
layers have similar sizes (43 versus 40%), whereas the top
layer contains only 13% of the TFs. Taken together, these
two facts together imply a difference in the topological orga-
nizations between the human and yeast TF regulatory net-
works.

Enrichment analyses (Table 2) indicate that for each TF
regulatory network of the 40 non-ESC cell types, (i) the top
layer is lacking in both hub and HK TFs, (ii) the core layer
is enriched with both hubs and HK TFs and (iii) the bot-
tom layer is depleted with hub and essential TFs. However,
essential TFs seem to be distributed evenly in the top and
core layers, but, by and large, sparsely in the bottom layers.

Interestingly, the hESC TF regulatory network has a
topological structure that is different from the rest. It has
significantly small top and bottom layers and therefore a
large core layer. Indeed, seven STATs and 15 key TFs (ap-
pearing in Figure 6B and D) are all found in the core
layer. Moreover, 87.6% of links are within the core layer,
whereas there are only 40 links (0.3%) between the top
and bottom layers. These two facts together suggest that
hESCs have a highly dense and well-connected TF regula-
tory network. And our analyses indicate that master TFs
and superenhancer-associated TFs are in the kernel of the
core layer. Its top layer is neither enriched with nor depleted
of hub, essential and HK TFs, in contrast to the TF regula-
tory networks of the other cell types.

We have also studied the dynamic properties of the hu-
man cell-type TF regulatory networks. The HK interactions
are related to basic life support such as biomolecular syn-
thesis and transcription mechanisms. One of our findings is
that most HK interactions are within the core layer or be-
tween the core and bottom layers. Using the identified HK
interactions to investigate the protein complex database,
we identified 23 protein complexes in which the proteins
are highly connected with HK links (Supplementary Table
S6). One of these complexes is given in Figure 5D. Most of
the identified protein complexes are as predicted and hence
it would be interesting to investigate their biological func-
tions.

The ESCSN, the subnetwork induced by specific links
in the hESC TF regulatory network, has also been investi-
gated. The 82 hub TFs in the ESCSN (Table 1) seem to play
important roles in hESCs due to the following facts: (i) their
genes are overexpressed, (ii) they are enriched in the Activin
A/Nodal signaling pathway and (iii) specific interactions
are enriched in a core transcriptional regulatory network
of the hESCs reported in (38). In general, specific regula-
tory interactions are difficult to detect because the network
of each cell type is based on independent data, leading to a
high false negative rate. Since the number of specific interac-
tions in hESCs is much higher than that in other cell types,
our results should not be greatly affected by the limitations
of the data chosen.

Cell type specificity is believed to be the outcome of the
interplay of the DNA sequence-binding specificity of TFs,
cofactors and epigenetics (38,50). Through the integration
of a database of protein complexes (24) and the ESCSN, we
identified 55 hESC-specific regulatory complex-target mod-
ules (Methods, Supplementary Table S2). One of these mod-
ules is illustrated in Figure 6E: in a complex (id #: HC4463),
both KLF4 and ZFX have three common downstream
targets: FOXD3, OCT4 and ZFP42. As expected, KLF4,
ZFX and their targets are important in the maintenance
of pluripotency, self-renewal and development processes in
ESCs (38,50–55). Another is given in Figure 6F, in which
both ALX4 and MZF1 regulate FOXD3 and TFAP2C. No-
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Table 2 The summary of the enrichment of hubs, essential and HK TFs in the top, core and bottom layers of the 41 cell-type TF regulatory networks.

Hub TFs Essential TFs HK TFs

Top Core Bottom Top Core Bottom Top Core Bottom

Blood (7) – + – – – +
Cancer (2) – + – +c –c – +
Endothelia (4) – + – – – +
Epithelia (6) – + – –b – +
ESC (1) + – + –
Fetal (3) – + – + – – +
Stroma (14) –a + – –a – +
Viscera (4) – + – – – +

For clarity, the cell types are divided into eight classes, listed (together with the numbers of cell types) in the first column. The symbols + and – represent
the enrichment and depletion of TFs of a type in a hierarchical layer in all the networks of a class.
a13 out of 14 are poor in hubs or essential TFs.
bThree out of six are poor in essential TFs.
cOne out of two is enriched with or poor in essential TFs.

tably, FOXD3 has recently been demonstrated to be respon-
sible in directing pluripotency and paraxial mesoderm fates
in hESCs (56). All these facts together suggest that specific
regulatory interactions may play important roles in hESCs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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7. Csermely,P., Korcsmáros,T., Kiss,H.J., London,G. and Nussinov,R.
(2013) Structure and dynamics of molecular networks: a novel
paradigm of drug discovery: a comprehensive review. Pharmacol.
Ther., 138, 333–408.

8. Banerjee,N. and Zhang,M.Q. (2003) Identifying cooperativity among
transcription factors controlling the cell cycle in yeast. Nucleic Acids
Res., 31, 7024–7031.

9. Yu,X., Lin,J., Masuda,T., Esumi,N., Zack,D.J. and Qian,J. (2006)
Genome-wide prediction and characterization of interactions
between transcription factors in Saccharomyces cerevisiae. Nucleic
Acids Res., 34, 917–927.

10. Balazsi,G., Barabási,A.L. and Oltvai,Z. (2005) Topological units of
environmental signal processing in the transcriptional regulatory
network of Escherichia coli. Proc. Natl Acad. Sci. U.S.A., 102,
7841–7846.

11. Ma,H.W., Buer,J. and Zeng,A.P. (2004) Hierarchical structure and
modules in the Escherichia coli transcriptional regulatory network
revealed by a new top-down approach. BMC Bioinformatics, 5, 199.

12. Gerstein,M.B., Kundaje,A., Hariharan,M., Landt,S.G., Yan,K.K.,
Cheng,C., Mu,X.J., Khurana,E., Rozowsky,J., Alexander,R. et al.
(2012) Architecture of the human regulatory network derived from
ENCODE data. Nature, 489, 91–100.

13. Davidson,E.H., Rast,J.P., Oliveri,P., Ransick,A., Calestani,C.,
Yuh,C.H., Minokawa,T., Amore,G., Hinman,V., Arenas-Mena,C.
et al. (2002) A genomic regulatory network for
development. Science, 295, 1669–1678.

14. Gerstein,M.B., Lu,Z.J., Van Nostrand,E.L., Cheng,C., Arshinoff,B.I.,
Liu,T., Yip,K.Y., Robilotto,R., Rechtsteiner,A., Ikegami,K. et al.
(2010) Integrative analysis of the Caenorhabditis elegans genome by
the modENCODE project. Science, 330, 1775–1787.

15. Kim,J., Chu,J., Shen,X., Wang,J. and Orkin,S.H. (2008) An extended
transcriptional network for pluripotency of embryonic stem cells.
Cell, 132, 1049–1061.

16. Basso,K., Margolin,A.A., Stolovitzky,G., Klein,U., Dalla-Favera,R.
and Califano,A. (2005) Reverse engineering of regulatory networks in
human B cells. Nat. Genet., 37, 382–390.

17. Carro,M.S., Lim,W.K., Alvarez,M.J., Bollo,R.J., Zhao,X.,
Snyder,E.Y., Sulman,E.P., Anne,S.L., Doetsch,F., Colman,H. et al.
(2010) The transcriptional network for mesenchymal transformation
of brain tumours. Nature, 463, 318–325.

18. Neph,S., Stergachis,A.B., Reynolds,A., Sandstrom,R., Borenstein,E.
and Stamatoyannopoulos,J.A. (2012) Circuitry and dynamics of
human transcription factor regulatory networks. Cell, 150,
1274–1286.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku923/-/DC1


Nucleic Acids Research, 2014, Vol. 42, No. 20 12387

19. Yu,H. and Gerstein,M. (2006) Genomic analysis of the hierarchical
structure of regulatory networks. Proc. Natl Acad. Sci. U.S.A., 103,
14724–14731.

20. Jothi,R., Balaji,S., Wuster,A., Grochow,J.A., Gsponer,J.,
Przytycka,T.M., Aravind,L. and Babu,M.M. (2009) Genomic
analysis reveals a tight link between transcription factor dynamics
and regulatory network architecture. Mol. Syst. Biol., 5, 294.

21. Bookout,A.L., Jeong,Y., Downes,M., Yu,R.T., Evans,R.M. and
Mangelsdorf,D.J. (2006) Anatomical profiling of nuclear receptor
expression reveals a hierarchical transcriptional network. Cell, 126,
789–799.

22. Ward,J.H. Jr (1963) Hierarchical grouping to optimize an objective
function. J. Am. Stat. Assoc., 58, 236–244.

23. Rand,W.M. (1971) Objective criteria for the evaluation of clustering
methods. J. Am. Stat. Assoc., 66, 846–850.

24. Vinayagam,A., Hu,Y., Kulkarni,M., Roesel,C., Sopko,R., Mohr,S.E.
and Perrimon,N. (2013) Protein complex-based analysis framework
for high-throughput data sets. Sci. Signal., 6, rs5.

25. Su,A.I., Wiltshire,T., Batalov,S., Lapp,H., Ching,K.A., Block,D.,
Zhang,J., Soden,R., Hayakawa,M. and Kreiman,G. et al. (2004) A
gene atlas of the mouse and human protein-encoding
transcriptomes. Proc. Natl Acad. Sci. U.S.A., 101, 6062–6067.

26. Horvath,C.M. (2000) STAT proteins and transcriptional responses to
extracellular signals. Trends Biochem. Sci., 25, 496–502.

27. Levy,D.E. and Darnell,J. (2002) STATs: transcriptional control and
biological impact. Nat. Rev. Mol. Cell Biol., 3, 651–662.

28. Mones,E., Vicsek,L. and Vicsek,T. (2012) Hierarchy measure for
complex networks. PLoS One, 7, e33799.

29. Georgi,B., Voight,B.F. and Bućan,M. (2013) From mouse to human:
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