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Introduction
End-stage heart failure (HF), which is medically intractable, 
became an important problem in the setting of HF. In such 
cases, heart transplantation is a radical cure, and left ventricular 
assist device (LVAD) is another helpful support and used as 
either a bridge to heart transplantation or destination therapy. 
However, the sources of these surgical therapies were limited so 
that inotrope support is easily used to maintain the flow to vital 
organs as a bridge or alternate to the surgical interventions.1 
The use of inotrope might sometimes lead to the correction of 
appropriate hemodynamic balance, resulting in the weaning off 
of inotrope agents, whereas the state of inotrope dependency 
could not be taken off in some cases. There was little epidemio-
logic data about the dependency of inotrope; however, there are 
many opportunities of the use of inotrope in various clinical 
settings. However, the discussion about the efficacy of ino-
tropic agents had not led to definitive conclusions because of 
lacking well-designed investigations that were practically dif-
ficult.2,3 In addition, the continuous inotropic infusion therapy 
could have various influences, such as suppressing the physical 
activities, leading to skeletal muscle atrophy, which might 
aggravate the course of HF.

Several reports discuss the effect of exercise-based rehabilita-
tion programs for patients with New York Heart Association 
(NYHA) class I to III HF.4,5 However, there is little evidence 
about the effect of cardiac rehabilitation (CR) for patients with 
more severe HF. Recently, several studies investigated the effect 
of exercise in patients with left ventricle (LV) dysfunction and 
subsequent improvements in exercise capacity without an adverse 
effect on LV remodeling or other serious complications.3 Rather 

than having a detrimental effect, exercise was reported to 
decrease abnormal remodeling in cases of HF with impaired LV 
function.4 However, studies that investigated the effect of exer-
cise in patients with HF excluded patients with NYHA class IV, 
those who were hemodynamically unstable, or those who 
received continuous inotropic agents.6 Whether exercise training 
should be avoided until stabilization of HF has not been clearly 
elucidated yet. On the other hand, delayed CR significantly 
affects fitness outcomes.7 For every 1 day of waiting time for 
instituting CR, patients are 1% less likely to show improvement 
across all fitness-related measures.7

In particular, patients who were dependent on inotropic 
agents were the most problematic. Inotropic agents such as 
dobutamine are used for acute or subacute decompensation of 
HF due to severely impaired cardiac output, or these agents are 
used for hemodynamic support as a pharmacologic bridge to a 
more definitive intervention such as a ventricular assist device 
or cardiac transplantation. Inotrope dependence means that 
withdrawal of inotropes leads to symptomatic hypotension, 
recurrent congestive symptoms, or worsening renal function.8 
As a result, the duration of continuous dobutamine infusion is 
highly variable; if used for a long period of time, exercise 
restriction may worsen the atrophic change of skeletal muscle 
and decrease the adaptive response to exercise. These detri-
mental effects may easily aggravate the course of HF itself.

In this review, we summarize the methodology of exercise 
training in stable patients with advanced HF receiving con-
tinuous inotropic agents, which can be represented by the 
patients with the Interagency Registry for Mechanically 
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Assisted Circulatory Support (INTERMACS) profile 3 in 
other words.

Pathophysiological Change in Advanced HF
In patients with advanced HF, there are much systemic influ-
ences, which affect the course of HF. One important site 
affected by the presence of HF is skeletal muscle and it has 
been reported to be abnormal. A change in size of skeletal mus-
cle fiber or type was detected in one study.9 An anabolic/cata-
bolic imbalance affects muscle loss as a result of reduced muscle 
anabolism, increased muscle catabolism, or both.10 In addition, 
muscle consists of slow-twitch type I and fast-twitch type II 
muscle fibers, and the fiber type distribution was distributed 
toward type II fibers in patients with HF; their capillary length 
density of skeletal muscle was also reduced.9 These intrinsic 
alterations of skeletal muscle are the main contributors of lim-
ited exercise capacity in patients with HF. These skeletal mus-
cle abnormalities are often complicated in cases of severe HF. 
In addition, the patient’s condition sometimes worsens to car-
diac cachexia. Cardiac cachexia is characterized by increase in 
inflammatory cytokine and neuroendocrine factors, such as 
tumor necrosis factor α, norepinephrine, and cortisol; muscle 
wasting; and loss of muscle protein.11 The presence of skeletal 
myopathy and cardiac cachexia suggests a poor prognosis in 
patients with HF. For instance, reduced muscle mass or muscle 
power suggests poor prognosis in HF patients undergoing ven-
tricular assist device placement.12 Therefore, prevention of 
these complications may improve the course of HF and become 
one critical target of HF therapy in the clinical viewpoint.13–15 
However, it remains unknown how suppression of the path-
ways leading to skeletal myopathy or cardiac cachexia contrib-
utes to reduce risk of HF or increase the survival rate.

According to vascular function, endothelial dysfunction and 
increased vascular tone were also complicated with HF and 
these complications further worsened the hemodynamic com-
promise in HF.16 The decrease in endothelial dysfunction in 
patients with HF complicates the coordination of hemody-
namic compromise, leading to increased mortality and worse 
prognosis.17 Increased vascular tone, which is mediated by sev-
eral pathways, such as autonomic nerve system or renin-angio-
tensin pathways, also becomes a burden to the compromised 
hemodynamics in HF.18

Beneficial or Evil Effects of Inotrope Agents on 
Exercise in Advanced HF
Few published reports discuss exercise in patients receiving 
continuous inotropic support.19,20 The safety and efficacy of 
exercise training in patients with intravenous inotropic support 
have been described; however, there is insufficient evidence for 
the benefits of exercise training in this setting because of the 
small numbers of subjects included in the studies. According to 
the safety, the appropriate assessments for the feasibilities of 
exercise training significantly reduce the risk of exercise train-
ing for patients with inotropic infusion who were awaiting for 

heart transplantation. However, more critical evaluation of 
exercise training for these patients should be performed by 
longer follow-up duration. Indeed, several reports on exercise 
training in patients with advanced HF showed unchanged 
exercise capacity.21 The ability to perform exercise testing itself 
means a capacity for maintained exercise. By contrast, there are 
little data on the effect of exercise training in patients with 
severely impaired exercise capacity, those who are dependent 
on continuous inotropic support, or those who are unable to 
perform exercise testing.

The physiology of dobutamine infusion results in an effi-
cient reduction in pulmonary wedge pressure with a mild 
increase in heart rate,22 lowering the risk of worsening HF dur-
ing exercise. Milrinone (phosphodiesterase inhibitor) infusion, 
another commonly used inotrope, also has similar beneficial 
effects on exercise.3 In addition, milrinone has another pleio-
tropic effect and suppresses the inflammatory cytokines, such as 
tumor necrosis factor or interleukin 8, which are increased in 
patients with HF.23 In contrast, arrhythmic events reportedly 
increased during inotropic infusion.24 However, the effect of 
inotropic agents’ infusion on exercising skeletal muscle was 
described previously, demonstrating that the increased cardiac 
output and blood flow to limbs does not necessarily improve 
oxygen delivery to working skeletal muscle in patients with 
HF.25,26 In another study, a metabolic change in skeletal muscle 
occurred during inotropic infusion and it increased glucose pro-
duction and uptake to adapt higher levels of muscular carbohy-
drate use during exercise.27,28 In addition, β-adrenergic signaling 
has been proposed as an important regulator of skeletal muscle 
regenerations and it may have some effects on the increase in 
skeletal muscle mass through its anabolic properties.29,30 Among 
β-agonists, β2-adrenergic pathway had been reported to have 
beneficial impact on skeletal muscle.31 Indeed, β2-adrenergic 
agonists can change the composition of skeletal muscle fiber 
type and increase maximal isometric force production.32,33 
There are several reports demonstrating that β-agonists can 
exert a protective effect on skeletal muscle in patients with HF 
by antagonizing the protein degradation associated with 
cachexia.34 Histologically, β2-agonists induced hypertrophy of 
fast-twitch muscles, resulting in slow to fast alterations in skel-
etal muscle fibers.35 Dobutamine has some effects through β2-
receptor as compared with dopamine36 so that dobutamine may 
have some powers against muscle wasting through β2-pathways. 
By contrast, dopamine also has powers of increasing skeletal 
muscle mass through dopamine receptor.37 These protective 
effects have been associated with an inhibition of proteolysis 
(calcium-dependent proteolysis and adenosine triphosphate–
dependent proteolysis) and an activation of protein synthesis 
signaling pathways,38 whereas milrinone may have negative 
impact on skeletal muscle contractility.39 However, there had 
been no clinical data about the comparison of the effect of cat-
echolamine infusion on skeletal muscle.

According to the vascular function and autonomic nerve 
balance, there reported to be some effects by dobutamine 
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infusion.40 Freimark et al41 demonstrated dobutamine infusion 
beneficially affected endothelial function that may have a ben-
eficial effect on exercise. Al-Hesayen et al40 reported that dob-
utamine infusion caused a significant sympatholytic response 
in patients with HF unexpectedly, other than sympathoexcita-
tory effects. The comparative study of dopamine and dobu-
tamine demonstrated that both have comparable therapeutic 
effects in patients with HF; however, low-dose dopamine had 
more favorably affects cardiac autonomic function.42 Dopamine 
even restored the depressed circadian change in patients with 
HF. By these effects, exercise training may be induced with 
ease or reducing its risk. However, little was found about the 
association between exercise and dobutamine or milrinone 
infusion.

Consideration of the Start of Rehabilitation
Prescribing exercise in critically hemodynamically unstable 
patients enhances the risk of exercise more than its benefit. The 
appropriate timing to initiate exercise training has been poorly 
investigated and described.43,44 The state of continuous ino-
tropic infusion has been cited as an increased risk for exercise 
training, not as a contraindication.43 However, once the decom-
pensation of HF is stabilized even with using inotropic agents, 
exercise training can be initiated at a very low level of intensity. 
One example of exercise protocol regimen is presented in 
Figure 1. Indeed, a consensus document of the HF Association 
and the European Association for Cardiovascular Prevention 
and Rehabilitation mentions that early mobilization through 
an individualized exercise program may prevent further 

disability after hospitalization due to HF.43 In addition, just 
1 week is sufficient to start substantial muscle atrophy and 
induce whole-body insulin resistance in the absence of skeletal 
muscle lipid accumulation.45–47 To reduce the detrimental 
effect of bed rest, exercise training should be started as early as 
possible and balancing the risk and benefit of exercise is of 
utmost importance.

The identification of clinical stability is most critical for the 
induction of exercise training and it is defined by stable symp-
toms, absence of resting symptoms and postural hypotension, 
stable fluid balance, freedom from evidence of congestion, sta-
ble renal function, and normal electrolyte value.48 The level of 
B-type natriuretic peptide (BNP) also offers information about 
the clinical stability in HF treatment. BNP–guided decisions 
may reduce the risk of prescribing an exercise protocol too 
early; however, there is insufficient evidence for it.49 Measuring 
the change of BNP can offer some information about clinical 
stability in HF.

Patients with INTERMACS profile 3, who are dependent 
on continuous inotropic support, may progress in a short time 
to the next stage of surgical HF therapies, such as an LVAD or 
heart transplantation. Exercise training before surgery may 
have the beneficial effect of reducing operative risk; however, 
there is no concise protocol regarding this. Early initiation of 
exercise training after implantation of an LVAD has been 
reported to be associated with improvements in exercise capac-
ity.50 Several reports support the effectiveness of exercise train-
ing after the implantation of VAD, but this discussion is beyond 
the scope of this article.51

Figure 1. The course of exercise training for patients with advanced heart failure. BNP indicates brain natriuretic peptide.
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Methodology of Exercise Training in Patients With 
Advanced HF
The difficulty in this situation is uncertainty of appropriate 
exercise protocol. The appropriate intensity of exercise is gen-
erally determined by an exercise test; however, patients with 
severe HF cannot perform the exercise test at the initiation of 
training52 because of their low exercise capacity and lack of 
conditioning.

Indeed, sufficient and effective exercise training protocols 
differ by the expected results of exercise training. For instance, 
high-intensity protocols promote superior improvements of 
VO2max,28,29 whereas muscle mass, metabolic capacity, and 
proteasome activation were sufficiently improved by moderate-
intensity exercise.30 However, the most critical point in the ini-
tiation of CR in patients with severe HF is safety. Care must be 
taken especially with frail older populations because of the 
increased risk of adverse events, including injuries and falls, 
associated with exercise training.53,54

Aerobic training of the lowest intensity still provides a 
training effect in cardiac patients with a markedly reduced 
exercise capacity.55 Therefore, the lowest load of intensity (such 
as 10 W × 5-20 minutes) should be prescribed first and, as the 
exercise is tolerated, it should be increased gradually. Indeed, 
we certified that there was no case in which low-level and 
short-term (such as 5 minutes) ergometer exercise exacerbated 
the status of HF after appropriate screening for the candidate 
of exercise training in patients with inotropic infusion (unpub-
lished data). In the absence of exercise tests, an exercise pro-
gram can be developed using Borg scales and/or subjective 
tools such as the talk test.56 A subjective rating of perceived 
exertion Borg scale rating of 9 to 12 should be sufficient for the 
patient to tolerate light to moderate exertion. The patient’s 
heart rate response may also suggest the tolerability of exercise, 
and abrupt increase in heart rate after the initiation of exercise 
or dull normalization of heart rate after the termination of 
exercise may suggest intolerable excess exercise load and has to 
be carefully managed. According to the principles of endurance 
training, cycle ergometer training at the lowest intensity for 5 
to 10 minutes may be tried with continuous electrophysiologi-
cal monitoring and observing the response of vital signs to the 
prescribed load. A recumbent ergometer may have a hemody-
namically milder load than an upright ergometer.57 Each 
response to exercise should be monitored for abnormal 
responses, such as postexercise hypotension, atrial and ventric-
ular arrhythmias, and worsening HF symptoms.

Resistance training can be safely used for training small 
muscle groups. Short bouts of work are applied, and the num-
ber of repetitions is limited.43 In resistance training, small loads, 
such as those outlined in a pretraining protocol in a consensus 
document, should be performed first.43 This type of resistance 
training is performed before the start of endurance training, 
and the intensities of endurance and resistance training are 
then increased with caution. Some reports conclude that 

resistance training may be more effective than aerobic training 
in attenuating or reversing skeletal muscle atrophy in patients 
with HF.58

Interval training, which has characteristics of both endur-
ance and resistance training, may be a promising method of 
exercise. Interval training can be defined as repeated bouts of 
short-duration, high-intensity exercise separated by brief peri-
ods of constant, lower-intensity work rate exercise. Indeed, 
interval training has been reported to improve skeletal muscle 
function in addition to exercise capacity; however, appropriate 
protocols have not been developed yet.59,60 Recently, lactate 
ambulation induced by high-intensity interval training can 
lead to mitochondrial adaptations in skeletal muscle.61 It may 
be helpful to begin with intermittent instead of continuous 
exercise in patients with severely impaired exercise capacity.

In addition to these protocols, electrical muscle stimulation 
(EMS) and inspiratory muscle training are other effective 
methods of rehabilitation for advanced HF. Indeed, several 
reports demonstrated the efficacy of EMS in patients with 
advanced HF.62,63 For instance, Forestieri et al64 demonstrated 
the improvement of exercise capacity in patients by EMS, and 
EMS demonstrated a significantly higher dose reduction in 
dobutamine infusion. By contrast, the addition of inspiratory 
muscle training was reported to improve quality of life in 
patients with HF.65 However, there had been only insufficient 
evidence for these interventions. How these methods are added 
to regular aerobic exercise should be considered according to 
each individual case.

When exercise capacity improves up to the level in which 
walking in a short distance is available, 6-minute walk test is 
increasingly implemented to assess the exercise capacity.66 
Monitoring and coordination of physical activity using a 
pedometer step count may also be beneficial in the process of 
CR in HF.67

Expected Results of Exercise Training
Exercise training in CR is generally performed to improve exer-
cise capacity. However, there are various expected results of exer-
cise, and exercise training in patients with severe HF who are on 
continuous inotropic support should be approached in a differ-
ent way. There were several studies dealing with the efficacies of 
exercise training on patients with moderately impaired cardiac 
function (Table 1). Among them, there were little studies for 
patients with inotropic agents, and the effect derived from exer-
cise training should be resumed by the reports of patients with 
reduced cardiac function, which are presented in Table 1.

First, the prevention of skeletal myopathy or cardiac cachexia 
is the primary goal for this phase of exercise.83 Oxidative stress 
is one of main pathways leading to sarcopenia and cardiac 
cachexia. Exercise training could modify this oxidative stress 
and overactivity of the ubiquitin-proteasome system thereby 
reversing skeletal muscle atrophy in HF in experimental ani-
mals.84 These effects may lead to the improvement of cardiac 
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cachexia, in which skeletal muscle atrophy is a consequence of 
protein synthesis and degradation imbalance.85 Improvements 
in skeletal muscle function after training have been explained 
by corrections made to the oxidative capacity of impaired mus-
cle, as well as to a reversal of chronic heart failure–mediated 
decline in skeletal muscle mass. Exercise training has also been 
reported to have some effects on neurohormonal factors, such 
as angiotensin II.86 Angiotensin II was reported to be a con-
tributing factor to skeletal muscle atrophy87 so that exercise 
may have beneficial effects on sarcopenia through modifying 
these neurohormonal pathways.

Increased coordination of adaptive response to exercise is 
required to increase exercise capacity. Patients with severe HF 
generally have an exaggerated ventilator response and decreased 
adaptive response to exercise,88 resulting in further decrease in 
exercise capacity. Proposed causes of the increased ventilator 
response to exercise include mismatching of ventilation relative 
to pulmonary perfusion89 and exaggerated ergoreflex response 
originating in the exercising skeletal muscles during effort.90 
Indeed, there is reported to be a close association between abnor-
mal reflex response and reduced skeletal muscle mass.91 These 
responses can be corrected by endurance and variation in resist-
ant training tasks through skeletal muscle reinforcement.92

Exercise training has also a marked beneficial impact on 
vascular function. Linke et  al93 demonstrated the lower-limb 
exercise improved the systemic endothelial function in patients 
with HF. Anagnostakou et al reported that strength training in 
addition to interval cycle training had a marked impact on the 
improvement of vascular function in patients with HF. These 
improvements of vascular function would work for the amelio-
ration of HF.16

Exercise training affects physical activity as well as emo-
tional stability.94 The effect of mood may have a tremendous 
effect on the improvement of HF; emotional mood has a close 
association with autonomic balance,95 and a depressed mood 
certainly aggravates the state of HF.96 These effects can be 
expected more intensely in patients with advanced HF, in par-
ticular, patients with continuous inotropic infusion, who has a 
tendency to become depressive.97 In addition, physical inactiv-
ity itself increases the risk of depression.98 A gradual increase in 
physical activity seems to have meaningful impact during the 
course of HF treatment.

Moreover, exercise training may affect endothelial function 
and improve the flow of nutritive blood and oxygen to the skel-
etal muscle,99 leading to a partial shifting from type II to type 
I muscle fibers and resulting in greater oxidative capacity.100 
Endothelial dysfunction had been reported to have some con-
tributions on the worsening of HF,101 which is expected to be 
improved by exercise training.102

Conclusions
In addition to increasing exercise capacity, several expected 
benefits result from exercise training. These effects, including 
the prevention of skeletal muscle atrophy and cardiac cachexia, 

possibly have a positive effect on the course of HF. Therefore, 
exercise training should be considered in patients with advanced 
HF with continuous inotropic infusion therapy. However, there 
had been little evidence about the methodology of exercise 
training in patients with advanced HF. The association between 
the effects of exercise training and the course of advanced HF 
should be further investigated.
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