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Understanding the mammalian energy balance can pave the way for future therapeutics

that enhance energy expenditure as an anti-obesity and anti-diabetic strategy. Several

studies showed that brown adipose tissue activity increases daily energy expenditure.

However, the size and activity of brown adipose tissue is reduced in individuals with

obesity and type two diabetes. Humans have an abundance of functionally similar

beige adipocytes that have the potential to contribute to increased energy expenditure.

This makes beige adipocytes a promising target for metabolic disease therapies. While

brown adipocytes tend to be stable, beige adipocytes have a high level of plasticity that

allows for the rapid and dynamic induction of thermogenesis by external stimuli such

as low environmental temperatures. This means that after browning stimuli have been

withdrawn beige adipocytes quickly transition back to their white adipose state. The

detailed molecular mechanisms regulating beige adipocytes development, function, and

reversibility are not fully understood. The goal of this review is to give a comprehensive

overview of beige fat development and origins, along with the transcriptional and

epigenetic programs that lead to beige fat formation, and subsequent thermogenesis

in humans. An improved understanding of the molecular pathways of beige adipocyte

plasticity will enable us to selectively manipulate beige cells to induce and maintain their

thermogenic output thus improving the whole-body energy homeostasis.

Keywords: brown fat, beige fat, development and origin, transcriptional regulation, epigenetic regulation,

browning, thermogenesis, maintenance

INTRODUCTION

Prolonged periods of excess energy storage lead to weight gain and obesity. This excess energy
is stored in white adipose tissue (WAT), which is the major fat storage depot and is linked
to metabolic disease states. Contrarily, brown adipose tissues (BAT) dissipates energy as heat
and consequently modulates daily energy expenditure (1). As the amount of metabolically active
BAT is limited in patients with obesity and type two diabetes (T2D), alternatives are required to
increase energetic expenditure via thermogenesis (2–6). In addition to classic brown adipocytes,
human adults have inducible brown adipocytes (named as brown-in-white or beige) with unique
characteristics that differentiate them from both white and brown adipocytes (1, 7–10). Inducing
beige adipocytes formation in WAT (browning) potentially decreases the negative effects of excess
WAT and improves overall metabolic health (11). In response to cold exposure, inducible BAT
greatly increases mitochondria and uncoupling protein 1 (UCP1) abundance. Additionally, after
browning stimuli are removed, there is a rapid decrease of the thermogenic gene expression.
This dynamic response in beige fat can be contrasted with classic BAT where the levels of UCP1
and mitochondria are constitutively high (12, 13). Although numerous studies have identified
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several regulators of browning and thermogenesis, the molecular
basis underlying beige adipocyte reversibility is yet to be
understood (14–20).

DEVELOPMENT AND ORIGIN OF BROWN
AND BEIGE ADIPOCYTES

Beige adipocytes mainly reside in subcutaneous white adipose
tissue (scWAT) depots (8). The scWAT depots in humans
include cranial, facial, abdominal, femoral, and gluteal depots.
In rodents, scWAT includes the anterior subcutaneous white
adipose tissues (ascWAT) and the posterior subcutaneous
adipose tissue (pscWAT) which itself includes inguinal, gluteal,
and dorso-lumbal WAT (7, 21). BAT depots are distributed
in the thoracic (mediastinal) and scapulae (interscapular,
cervical, and axillary) areas of mice and rats (22). In
humans, BAT was initially thought to exist only in the
neck and shoulder of infants (23). However, later studies
found active BAT in the paracervical and supraclavicular
as well as in the anterior neck regions of adult humans
(23–27).

In mammals, BAT is formed earlier during embryogenesis
as compared to WAT. In human fetuses BAT formation begins
early in the second trimester primarily in the head and neck
regions and later in development forms in the trunk as well as in
upper and lower limbs. The development of subcutaneous white
adipose tissue is completed prenatally (28). In rodents, functional
thermogenic BAT is formed 2 days before birth (E18–19) (29–32)
and the development of scWAT continues postnatally (33–35).

Both white and brown adipose tissues are known to have
mesodermal origins including the intermediate and lateral plate
as well as the axial, and paraxial mesoderm. The paraxial
mesoderm gives rise to BAT (36), and though the origin of
scWAT is still debated, the progenitors of scWAT are known
to originate from both the mesoderm and neuroectoderm (37–
40). Furthermore, each fat depot includes numerous distinct
progenitor fields that vary with age, gender, and environmental
conditions. Additionally, scWAT depots are mainly derived
from paired related homeobox 1 (PRX1) expressing progenitors
(41–45). Despite the previous view that myogenic factor 5
(MYF5), paired box 7 (PAX7), and paired box 3 (PAX3)
expressing progenitors only give rise to BAT, it is now
believed that the scWAT depots of the dorsal–anterior body
region originated partly from those progenitors (9, 39, 46–
49). While ex vivo studies reported the presence of both
PDGFRα and PDGFRβ in adipocyte stem cells (ASCc) (50),
in adult mouse progenitors are heterogeneous and either
express PDGFRα or PDGFRβ (51, 52). A recent study by
Gao et al. suggested that the balance between PDGFRα

and PDGFRβ determines whether progenitors will commit to
beige (PDGFRα) or white (PDGFRβ) adipocytes (53). Some
satellite cell-derived myoblasts in skeletal muscle and fibro-
adipogenic progenitors (FAPs) also give rise to beige fat with
higher rate of glycolysis and hence, named as glycolytic beige
adipocyte (54).

TRANSCRIPTIONAL REGULATION OF
BROWN AND BEIGE ADIPOCYTES

In brown and beige adipocytes, the adipogenic differentiation
program and the thermogenic program are regulated by different
pathways each involving a complex network of transcription
factors (TFs) and epigenetic factors. The main parts of
transcriptional machinery regulating fat cell differentiation is
common among various types of fat cells and has been extensively
discussed elsewhere (8, 55–57). Here, several TFs which are the
main signatures of brown and beige fat are briefly described.

EBF2
Early beta Cell factor 2 is a marker of committed brown
adipocytes in rodents and humans (29, 57, 58). EBF2 promotes
brown adipocytes differentiation by recruiting peroxisome
proliferator-activated receptor gamma (PPARγ) to its brown-
specific chromatin regions (58). Overexpression of EBF2 in
myoblast induces brown adipogenesis and inhibits myogenesis
(30). In the absence of EBF2, the brown fat specific features of
BAT are abolished (58). Moreover, overexpression of EBF2 in
WAT induces browning and thermogenesis (59).

PRDM16
PR domain zinc finger 16 promotes brown and beige adipocyte
differentiation and inhibits myogenic and WAT gene expression
in mice and in vitro in human fibroblasts (46, 60–63). PRDM16
is also important in brown fat maintenance by binding to specific
enhancer regions along with a mediator complex to establish
enhancer-promoter looping, leading to the expression of PPARα

and PPARγ co-activator 1A (PGC1α). Also, PRDM16 interacts
with PGC1α (described below) and increases its transcription
(60, 64, 65). PRDM16 also inhibits the signaling of repressor type
1 interferon response genes thereby preventing mitochondrial
dysfunction and a decrease in UCP1 levels (66). PRDM16
overexpression increases beige adipogenesis and thermogenesis
in WAT and its deficiency inhibits beige adipocyte formation
(67, 68).

PGC1α

PPARγ co-activator 1A is known to directly interact with
PRDM16 and PPARγ in brown adipocytes (60, 69). In
differentiated brown and beige adipocytes, PGC1α plays a
crucial role in cold-induced thermogenesis and thermogenic
maintenance in mice and human WAT (69, 70). Interacting
with other transcriptional regulators, PGC1α activates the
transcription of UCP1 and several mitochondrial genes (65, 71,
72). PGC1α overexpression induces thermogenesis in adipocytes
and myocytes (73, 74). Brown adipocytes lacking PGC1α express
lower levels of UCP1 in response to adrenergic stimuli (75, 76).
PGC1α is also required for the browning of WAT (77).

IRF4
Interferon regulatory factor 4 interacts with PGC1α upon
cold stimuli and regulates UCP1 expression by binding to its
chromatin regulatory regions in BAT of mice and humans (78).
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ZFP516
Zinc finger protein 516 also increases brown adipogenesis and
thermogenesis upon cold induction. ZFP516 interacts with
PRDM16 and activates UCP1 and PGC1α expression (79).

CREB-ATF2
Phosphorylation and activation of activating transcription
factor 2 (ATF2) and cAMP-responsive element-binding (CREB)
downstream of cold-induced adrenergic signaling results in
activation of UCP1 and PGC1α gene expression (80).

KLF11
Kruppel-like factor 11 expression is induced in vitro in
human white adipocytes in response to the PPARγ agonist
rosiglitazone and promotes beige adipocyte-selective gene
expression via increasing PPARγ binding to beige-selective
super-enhancers (81).

FOXC2
Forkhead box protein C2 expression increases beige adipocyte
formation by promoting protein kinase A (PKA) activity; a main
kinase activated downstream of the adrenergic pathway upon
cold induction (82).

FOXP1
Foxhead P1 expression is highly enriched in vWAT and acts
as a transcriptional repressor that directly represses β3-AR
transcription. FOXP1 deletion increases brown fat activation and
the browning of WAT and its overexpression is inhibitory to
browning and thermogenesis in mice and humans (83).

GABPα

GA-binding protein α is expressed in myoblasts and inhibits
myogenesis and promotes adipogenesis and beige fat
development. The interaction between PGC1α and GABPα

is also shown to stimulate mitochondria biogenesis and oxidative
phosphorylation (84–86). GABPα expressing beige adipocytes
are unlike other beige adipocytes with higher glucose oxidation
rate than fatty acid oxidation (54).

EBF2 and GABPα mainly function as commitment factors.
EBF2 marks committed brown adipocytes and GABPα inhibits
myogenic development thereby promoting brown/beige fat
formation. During brown fat differentiation, EBF2, PRDM16,
and ZFP516 together with other common adipogenic regulators
such as C/EBPβ and PPARγ regulate the induction of brown
fat specific genes with PRDM16 acting mainly as a coactivator.
Upon cold exposure and activation of adrenergic signaling, the
concentration of cyclic AMP (cAMP) and PKA activity increase.
PKA activity, which is further increased by FOXC2, results in
p38 MAPK phosphorylation and activation. Phosphorylated p38
then phosphorylates and activates both ATF2 and PGC1α. IRF4
recruits phosphorylated PGC1α to the chromatin which will then
coactivate PPARγ, thyroid receptor (TR), and retinoid X receptor
alpha (RXRα) to increase the expression of thermogenic genes.

Several other transcriptional regulators and nuclear receptors
are known to be involved in activating or repressing brown

and beige fat specific programs (87). The roles of long non-
coding RNA and microRNA in brown/beige fat regulation are
comprehensively discussed elsewhere (88, 89).

EPIGENETIC REGULATION OF BROWN
AND BEIGE ADIPOCYTES

The chromatin landscape which plays a critical role in brown/
beige fat identity, differentiation, and activation is modulated via
tight cooperation between TFs and epigenetic modifiers. ChIP-
seq analysis showed that PPARγ bind to 55% similar regions
in BAT, scWAT, and vWAT. However, only 10% of PPARγ

binding sites are BAT specific (90). In a separate study in human
adipocytes, PPARγ ChIP-seq before and after rosiglitazone
induced browning identified only 10% of the binding sites
were different, indicating that the beige and BAT-selective
characteristics are derived from a small subset of genomic sites
(81, 90). Nuclear isolation and chromatin analysis of specific cell
types from heterogeneous adipose tissue using UCP1-NuTRAP
mice demonstrated the stability of the chromatin landscape
in BAT upon temperature changes while extreme plasticity of
chromatin landscape was observed in beige adipocytes with
temperature changes (91).

Enhancers in BAT, but not WAT are enriched in active
histone marks such as H3K4me1/2 and H3K27ac (92). The
UCP1 promoter in BAT is enriched for H3K4me3 and in
WAT is enriched for H3K27me3 (93). Several histone-modifying
enzymes have been identified that regulate the chromatin
landscape in brown fat (94, 95). Some examples are ubiquitously
transcribed tetratricopeptide repeat X chromosome (UTX),
lysine-specific histone demethylase 1 (LSD1), jumonji domain
containing 3 (JMJD3), and jumonji domain containing 1A/lysine
demethylase 3A (JMJD1A/KDM3A) demethylate H3K27me3
at the promoters of UCP1 which leads to the upregulation
of BAT selective genes in response to acute cold exposure
(93, 96–98). Deletion of myeloid/lymphoid or mixed-lineage
leukemia 4/lysine demethylase 2D (MLL4/KMT2D) in brown
precursors increases the level of repressor H3K27me3 marks
and impairs brown adipogenesis in mice and humans (99).
Ablation of euchromatic histone-lysine N-methyltransferase 1
(EHMT1) decreases activator H3K4me3 marks and impairs
brown adipocyte differentiation thereby activating myogenesis
(62). The depletion of histone deacetylase 3 (HDAC3) in mice
decreases thermogenesis in cold temperatures (100). In general,
cold induction in brown adipocytes increases the expression of
activator H3K27ac marks and removes the repressive H3K27me3
marks (101).

BROWNING: PATHS AND PLAYERS

The increase of UCP1 positive, multilocular, thermogenic beige
adipocytes within WAT (browning) is a potential therapeutic
approach to increase insulin sensitivity and combat metabolic
diseases such as obesity (102, 103). In mammals all browning
features can be achieved by adrenergic stimulation, the main
signaling pathway of thermogenic BAT which is induced by cold
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FIGURE 1 | Bidirectional transition between beige and white adipocytes; the beige-to-white transition (browning) has been extensively studied at the levels of (A)

transcriptional and epigenetic regulation including the chromatin landscape, transcriptional regulators, and epigenetic modifiers, (B) the role of lifestyle and

environment including diet, fasting, obesity, exercise, temperature, and circadian rhythm, (C) the role of endocrine factors and hormones secreted by various organs

including pancreas, muscle, liver, heart, gut, and fat when adapting to environmental challenges, (D) the role of natural products and plant extracts as well as the role

of synthetic chemical products including small molecules, nanoparticles, synthetic peptides, and drug. Contrarily, the beige-to-white transition which is the immediate

result of stimuli removal is poorly investigated and so far, (E) mitochondrial disappearance (mitophagy) is known to be the main contributor. Figure created with

©BioRender.io.

temperatures. In addition, several alternatives to this canonical
pathway have been reported to regulate browning of WAT
through interorgan crosstalk (104). Several browning agents have
been reported that are extensively reviewed elsewhere (20, 105–
107) (Figure 1). For example, numerous pharmacological small
molecules, dietary compounds, and nutritional agents are known
to increase WAT browning (108–111). Additionally, various
organs respond to environmental challenges such as cold, fasting,
feeding, and exercise by secreting several factors and hormones
that contribute to the browning (3, 112). Gut microbiota as well
as immune cells and macrophages influence WAT browning
process and have been well-discussed by others (113–115). In
mammals, increased energy expenditure and browning of WAT
after gastric bypass surgery have been reported (116–118). The
link between WAT browning and thermogenesis is supported by
generic mouse models of UCP1 knockout and BAT paucity, both
leading to compensatory browning of WAT (119, 120).

Beige adipocytes form via three main processes (121):
(I) proliferation and de novo differentiation of beige
adipocytes from the progenitor pool located in adipose
vasculature mural cells and express smooth muscle actin
(SMA), myosin-11 (MYH-11), and PDGFRα (122, 123). In
addition to adipose tissue vasculature, smooth muscle cells
are also proposed as a source of beige progenitors (124);
(II) transdifferentiation of mature white adipocytes to beige
adipocytes (12, 125) where adrenergic stimulation by cold
and high-fat diet feeding increases de novo formation of beige
adipocytes as well transdifferentiation of mature white cells
into beige adipocytes (16, 51, 126, 127); (III) the activation
of dormant beige adipocytes without the involvement of
progenitors contributes to the formation of thermogenic
beige fat (12, 128, 129). These competing hypotheses
remain unresolved as current lineage tracing technologies
are unable to distinguish between white-to-beige adipocyte
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transdifferentiation and the activation of dormant beige cells.
The current strategies for lineage tracing are summarized by
Sebo and Rodeheffer (129).

WAT BROWNING IN HUMANS

Recent studies that carried out FDG-PET/CT imaging were able
to identify BAT activity in supraclavicular, cervical, axillary,
and less often in abdominal, mediastinal, and paraspinal fat
depots. The UCP1 positive fat depots in adult humans detected
as 18F-FDG positive contained both classical brown adipocytes
as well as beige adipocytes (6, 11, 24, 26, 130–135). Beige
and brown fat activity in humans is increased in response to
cold exposure and is inversely associated with age, body mass
index, and the levels of circulating lipid and glucose (24, 25,
136–141). Studies have shown that even in lean people with
larger BAT depot, the cold induced thermogenic function of
BAT does not significantly impact energy balance (142, 143).
Hence, targeting the large scWAT for browning to increase
thermogenesis has recently become a target for therapeutic
approaches. So far, the browning of WAT in humans has only
been reported under extreme conditions and its contribution
to energy expenditure compared to BAT is minor (144–146).
Ten days of cold exposure in humans was insufficient to
induce WAT browning, despite increasing BAT activity. This
indicates a requirement for higher levels of adrenergic stimuli
(147, 148). The effects of prolonged physical training on
human scWAT browning and increasing the levels of circulating
adiponectin, apelin, irisin, and FGF21 are in line with improved
metabolic health (145, 149). Additionally, severe weight loss
in cancer patients as well as in obese patients going through
weight loss surgeries leads to increased browning (150, 151).
Prolonged elevations in norepinephrine levels as a consequence
of burn injury also leads to increased scWAT browning and
thermogenesis (152). Surgical trauma, not necessarily related to
the incision, is also linked to local and distal WAT browning in
humans (153).

BEIGE REVERSIBILITY AND
MAINTENANCE

The thermogenic phenotype of beige adipocytes is reversible
upon withdrawal of the external stimuli. Upon removal of
adrenergic stimulation (for example in warm temperature), beige
fat will gradually convert into cells with a unilocular lipid
droplet and will progressively lose beige characteristics while
increasing the white characteristics (e.g., reduced mitochondria
and thermogenesis). This beige-to-white transformation is
accompanied by reduced innervation, vasculature, and UCP1
expression and increased neural chemorepellent (semaphorin
III) secretion and leptin expression (154–156). Although beige
phenotype reversibility seems like a recent hallmark of adipocyte
plasticity, it has been reported for decades (157–160). The
phenotypic and morphological conversion found in beige fat
upon withdrawal of stimuli is not observed in classical brown
adipocytes (46). In 2013, Christian Wolfrum’s research team

used lineage tracing to validate beige-white interconversion.
They showed that the cold-induced beige fat was reversed
within 5 weeks of warm temperature and almost 75% of
the whitened beige adipocyte could become beige again upon
cold induction. Interestingly, after a second cold exposure,
half of the beige adipocytes were formed from the former
whitened beige adipocytes and the other half of the newly
formed beige adipocytes seemed to come from a different
source (12). Though the beige adipocytes lost their brown-
like phenotype and acquired a white-like phenotype when the
temperature was increased, they kept their epigenetic memory
of the cold exposure which allowed them to activate browning
genes as soon as they were exposed to cold temperatures (91).
Interestingly, beige fat apoptosis and death was not found to
be the cause of beige phenotype loss (12). Contrarily, BAT
whitening was shown to increase cell death by increasing
adipose inflammation, indicating a lack of plasticity in BAT
(161). In 2015, Kozak and his research team reported much
higher dynamics in UCP1 and mitochondrial turnover in beige
fat when compared to BAT (162). In 2016, Kajimura and his
research team elegantly linked the beige-to-white transition to
mitochondrial disappearance (mitophagy). Mitophagy increased
upon adrenergic stimuli withdrawal and was shown to be
mediated by parkin (PARK2) recruitment to the mitochondria.
Inhibition of autophagy via deletion of autophagy-related 5
(ATG5), autophagy-related 12 (ATG12), and PARK2 maintained
the beige phenotype after stimuli removal. By monitoring single-
cells, the same study also observed direct transdifferentiation
from beige-to-WAT which did not involve an intermediate
step (163). Recently, a natural and more stable beige adipose
depot called thigh adipose tissue (tAT) was identified in
mice (164). In contrast to classic beige adipocytes, tAT seems
rather stable and maintains a beige fat phenotype in warm
temperatures. However, high-fat diet (HFD) feeding and aging
increased the white phenotypic features of tAT including the
presence of unilocular adipocytes. Browning stimuli can increase
brown adipocyte gene expression in tAT to a higher level
than in iWAT. Furthermore, tAT has a higher rate of energy
expenditure and lower expression of inflammatory genes relative
to iWAT (164).

FUTURE DIRECTIONS AND
PERSPECTIVES

With the worldwide increase in obesity and its comorbidities,
many studies have indicated the great potential of beige fat
to increase energy expenditure. The main bottleneck in the
use of beige adipocytes as a therapeutic target is the fact
that the beige adipocytes transition to a white phenotypic
state shortly after stimuli withdrawal. Studies in mice have
shown that obesity increases the beige-to-white adipocyte
transition (165, 166). The instability of beige adipocyte compared
to classic BAT could be partly explained by differences
in their developmental origins. Chromatin and epigenetic
analysis during cold to warm thermal shifts uncovered that
the chromatin landscape is stable in BAT while in beige
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adipocytes chromatin changes are transient (91). Currently
mitophagy is thought to be the main contributor to beige-to-
white transition (Figure 1), and a higher rate of mitochondrial
biogenesis or a lower rate of mitophagy could explain BAT
stability when compared to beige adipocytes. Understanding
the underlying mechanism of thermogenic maintenance in
BAT and tAT after external stimuli removal may elucidate the
pathways that prevent the beige-to-white transition. In this
regard, strategies to inhibit mitochondrial autophagy as well as
to increase mitochondrial biogenesis are potential therapeutic
prospects to prolong the thermogenic phenotype of beige
adipocytes. Beige adipocyte maintenance has the potential to
attenuate reoccurring weight gain after weight loss surgery, diet,
and exercise.
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