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Abstract

A suite of factors may have contributed to declines in the tītī (sooty shearwater; Ardenna gri-

sea) population in the New Zealand region since at least the 1960s. Recent estimation of

the magnitude of most sources of non-natural mortality has presented the opportunity to

quantitatively assess the relative importance of these factors. We fit a range of population

dynamics models to a time-series of relative abundance data from 1976 until 2005, with the

various sources of mortality being modelled at the appropriate part of the life-cycle. We pres-

ent estimates of effects obtained from the best-fitting model and using model averaging.

The best-fitting models explained much of the variation in the abundance index when sur-

vival and fecundity were linked to the Southern Oscillation Index, with strong decreases in

adult survival, juvenile survival and fecundity being related to El Niño-Southern Oscillation

(ENSO) events. Predation by introduced animals, harvesting by humans, and bycatch in

fisheries also appear to have contributed to the population decline. It is envisioned that the

best-fitting models will form the basis for quantitative assessments of competing manage-

ment strategies. Our analysis suggests that sustainability of the New Zealand tītī population

will be most influenced by climate, in particular by how climate change will affect the fre-

quency and intensity of ENSO events in the future. Removal of the effects of both depreda-

tion by introduced predators and harvesting by humans is likely to have fewer benefits for

the population than alleviating climate effects.
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Introduction

Tītī (sooty shearwater; Ardenna grisea) are an abundant, medium-sized petrel that breed mainly

on islands around southern New Zealand and South America during the Austral summer [1].

Most of the population then migrates to the North Pacific outside the breeding season [2, 3].

They are the numerically dominant seabird species in the New Zealand region [1] and as a bur-

rowing petrel have an important role in structuring the ecosystem on the islands on which they

breed [4–6]. While tītī remain abundant, several datasets indicate that populations have

declined substantially over recent decades [7–10]. A suite of mechanisms may have contributed

to these declines, most of which have been widely implicated in threatening populations of

other petrel species; for reviews of petrel conservation status see [11] and [12]. Sources of mor-

tality that may have changed in recent decades, and hence could have contributed to declining

populations, include depredation by introduced predators [13], bycatch in fisheries operations

[14, 15], changing climatic conditions [8, 16, 17] and harvesting of chicks by humans [18].

Extinctions of tītī colonies on the New Zealand mainland have occurred in the presence of

a suite of introduced predators [19, 20]. Furthermore, recent research on several islands has

indicated that the introduced weka (Gallirallus australis), a large flightless rail native to other

parts of New Zealand, and three species of introduced rat (ship rat, Rattus rattus; Norway rat,

R. norvegicus; and Pacific rat or kiore, R. exulans) prey upon tītī eggs and young chicks [13].

As most depredation of eggs and chicks on breeding islands has been attributed to weka [21],

we focus on the effect of this predator.

Bycatch in fisheries operations has also potentially impacted tītī populations, with driftnet

fisheries in the North Pacific being especially culpable prior to their ban in 1991. It was esti-

mated by [14] that between 1.0 and 12.8 million tītī were caught in fisheries operations over

the period 1952–2001, and although the period of intense fishing effort coincided with declines

in tītī abundance, no previous studies have attempted to estimate the demographic conse-

quences of this mortality.

Links between large-scale climatic events and tītī abundance have previously been reported

by [8] and [16]. They suggested that catch per unit effort (CPUE) of tītī chicks by human har-

vesters displays a lagged relationship with the Southern Oscillation Index (SOI), with years of

high and low shearwater abundance pre-empting low (El Niño conditions) and high (La Niña

conditions) SOI values respectively. While these studies did not investigate the demographic

pathways through which SOI conditions may be affecting tītī abundance, they noted that the

limited ability of the population to rebound after detrimental climatic events was consistent

with adult survival, in addition to fecundity, being negatively affected during El Niño periods.

Lastly, the harvest of tītī chicks is estimated to have begun in Foveaux Strait 200–600 BP

[22, 23], although scientific investigation of the harvesting system is largely restricted to the

past 20 years [24]. Recent [1, 18] and historical [25] estimates of harvest offtake are now avail-

able, although the impacts of this mortality have yet to be quantified.

There are clearly many factors to consider when diagnosing the causes of population

declines. Consequently, a prerequisite for optimal management of tītī populations is integrat-

ing all the available information on these mortality sources, over past decades, into a structured

analysis that allows their relative influences on population growth to be assessed. No studies

have yet been able to separate the relative importance of the various putative threats in influ-

encing historical tītī population dynamics, owing to a lack of robust estimates of mortality

rates and the absence of data for several key population parameters. At best, several attempts

have been made to correlate indices of tītī abundance with covariates, in each case representing

a single threat [8, 9]. The results are necessarily coarse and ignore the dynamics of the popula-

tion underlying the abundance indices. While such observational studies have inherent
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problems, they are often the only choice when manipulative experiments are impractical,

which is a common theme in conservation science. However, management decisions need to

be made despite data deficiencies, and so it is often a matter of using the best techniques avail-

able for the given problem [26]. Using dynamical models to assess relative threats can be more

appropriate than simple correlative methods, by allowing perturbations to be applied to the

population at the appropriate scale (e.g. harvesting restricted to chicks or a climate covariate

impacting on adult survival), with impacts affecting the population in a more realistic manner

via equations representing life history. Furthermore, the likely outcomes of various competing

management strategies can be assessed in a more structural manner using these models.

Therefore, in response to Rakiura Māori concerns about whether tītī will remain plentiful

enough for future generations to continue birding, a study (Kia Mau Te Tītī Mo Ake Tōnu Atu–

which can be translated as “Holdfast to tītī forever”) was conducted to assess harvest sustainabil-

ity and advise on consequences of various management options for future birding. We develop a

candidate set of population dynamics models which we fit, within a Bayesian framework, to data

on the fluctuations of tītī abundance in southern New Zealand. The models are fitted to data

from 1976 until 2005, the latest year for which estimates of population size and harvest rate are

available. We synthesise prior information by making use of the best-available evidence on the

mortality levels associated with most threatening agents [13, 14, 18, 25], demographic parameters

[27, 28], and regional population size [1]. These quantities allow us to estimate the relative

impacts that the major threats hypothesised by the Rakiura muttonbirding community have had

on the abundance of tītī in the New Zealand region between 1976 and 2005. We use an age-struc-

tured model to determine which threats can be addressed by management actions, and at which

stage of the life cycle these actions can be prescribed to achieve conservation success. Sensitivity

analyses are then carried out to ensure inferences from the modelling process are robust to

departures from several of the inherent assumptions. Lastly, we summarise the posterior distri-

butions of population vital rates, which will provide the basis for future research involving popu-

lation projections to predict the outcome of competing future management interventions.

Materials and methods

Description of the study system

The population of tītī in the New Zealand region is largely restricted to offshore islands, with

particularly large numbers occurring on the Tītī Islands around Stewart Island and The Snares

Islands in the New Zealand sub-Antarctic region. A detailed description of the distribution of

populations in the New Zealand region was given by [1]; they also estimated the total popula-

tion size to be 21.3 million individuals in the 2005 breeding season (95% CI: 19.0–23.7 mil-

lion). The breeding cycle of tītī is as follows; adults return to the colony in late September–

October, eggs are laid in November–early December, chicks hatch in late January–February,

adults begin migrating to the Northern Hemisphere in late March and the chicks fledge and

also migrate in late April–May [29].

The Tītī Islands constitute approximately 36 islands, most of which are subjected to annual

traditional harvesting by Rakiura Māori (the southern-most indigenous peoples in New Zea-

land). Harvesting is restricted to these islands and only occurs between 1 April and 31 May

each year, when pre-fledgling chicks are procured for human consumption (for detailed

accounts of the harvesting system see [30]).

Population model

We constructed an age-structured model consisting of 15 age-classes (0–14) and assumed a

post-breeding census occurring immediately prior to the start of the harvesting season, which
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begins on the 1st April. Age-class 0 represents fully developed chicks and age-class 14 is a recy-

cling "plus group", which accumulates all individuals older than age-class 13.

Data on individuals banded as chicks at two breeding colonies, Taiaroa Head and The

Snares, were analysed by [31] in order to obtain estimates of annual juvenile survival rate, age

at first return to the colony and age-specific probabilities of breeding. In modelling such data,

it is necessary to assume that all individuals above a certain age have the same survival rate.

Based on the analysis in [31], we therefore assumed that all individuals aged 2 years or more

have the same survival rate. For simplicity we refer to this as the adult survival rate, even

though some of the individuals to which it is applied are not sexually mature. In addition, such

banding data cannot provide age-specific juvenile survival rates, so we assumed a single juve-

nile survival rate for individuals less than 2 years old.

If the population size in age-class i and year t is denoted ni,t, the model is given by

n0;t ¼ 0:5ð1 � wÞftN
a
t

n1;t ¼ ð1 � bt� 1Þs
j
t� 1ðn0;t� 1 � Ht� 1Þ

n2;t ¼ ð1 � bt� 1Þs
j
t� 1n1;t� 1

ni;t ¼ ð1 � bt� 1Þs
a
t� 1

ni� 1;t� 1 ði ¼ 3; . . . ; 13Þ

and n14;t ¼ ð1 � bt� 1Þs
a
t� 1
ðn13;t� 1 þ n14;t� 1Þ

where ft is fecundity (number of chicks alive per adult on April 1) in year t, Na
t is the number

of adults making breeding attempts in year t, w is the probability that a breeding attempt will

fail due to weka depredation, sjt is the probability of juvenile birds alive in year t surviving to

year t+1, sat is the probability of adult birds alive in year t surviving to year t+1, Ht is the num-

ber of chicks harvested by humans immediately after the census on 31 March in year t, and bt
is the proportion of birds caught as bycatch in commercial fishing operations between cen-

suses in years t and t+1. Fecundity was multiplied by 0.5 as only one egg is laid per breeding

pair.

We calculated total population size, and total number of adults, in year t as

Nt ¼
X14

i¼0

ni;t and Na
t ¼

X14

i¼0

pini;t

respectively, where pi is the probability that an individual in age-class i is sexually mature.

Adult survival and fecundity in year t are assumed to be related to climatic covariates by the

equations

sat ¼
sam

1þ e� ðasþbszst Þ
and ft ¼

fm
1þ e� ðafþbf z

f
t Þ

respectively, where sam and fm are maximum potential adult survival and fecundity, βs and βf are

coefficients controlling the strength of the relationships with climate, and zst and zft are the val-

ues of two specific climate covariates in year t. We return later to the choice of zst and zft . The

form of these allows both positive and negative linear relationships, on the logit-scale, with the

climate covariate. We used the method based on allometric relationships in [32] (see also [33])

to set a conservative maximum potential adult survival ðsamÞ at 0.98. Fecundity is given by f =
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uv, where u is the probability that an adult will lay an egg and v is the probability that an egg

will survive to become a chick on April 1. We therefore set maximum fecundity (fm) at 0.9, as

this is just greater than the product of the maximum annual estimate of u (for the congeneric

short-tailed shearwater, Ardenna tenuirostris, between 1952 and 1994) and the maximum

annual estimate of v [28]. We assumed that survival for the first two age-classes was lower and

proportional to adult survival, with sjt ¼ rsat , where r is a scaling parameter estimated during

the modelling. This assumption of proportionality is common in population modelling of

long-lived species, and it allowed juvenile survival to also have a relationship with SOI, since it

implies that

sjt ¼
rsam

1þ e� ðasþbszst Þ
:

The proportion of individuals caught as bycatch between years t and t+1 is bt = Bt/Nt,

where Bt is the total number caught between the censuses in years t and t+1, as estimated by

[14], and Nt is the total population size in year t. This assumes that all individuals in the popu-

lation (e.g. both breeders and non-breeders) are equally vulnerable to bycatch. We calculated

the proportion of chicks that are in the population on March 31 in year t, and subsequently

harvested by Rakiura Māori, as ht = Ht/n0,t.

The usual method of estimating population structure in the first year of the model involves

placing vague priors on population size in each age-class in that year. However, because we do

not have any estimates of abundance for individual age-classes, other than for chicks in the

final year (2005), this approach is not feasible. We therefore specify the initial (1976) age-struc-

ture of the population as the stable-age distribution for a Leslie matrix [34] formed by setting

each demographic parameter equal to the mean of its prior distribution. As we had no prior

information on the ratio of juvenile to adult survival, we set juvenile survival rate equal to the

geometric mean of the 1st and 2nd year survival rates of the closely-related short-tailed shear-

water [35]. We used the resulting stable-age distribution as the age-distribution in the first

year of a five-year “run-in”. The length of this run-in was chosen after preliminary analyses

suggested that adequate convergence occurred within that time-frame. Thus the stable age dis-

tribution from the Leslie matrix simply acted as a set of initial values used to determine an ini-

tial age distribution that was based on the demographic parameters in the model, including

the model-based estimate of juvenile survival rate. The model structure during the run-in was

identical to that for the actual model, except that harvesting and bycatch levels were specified

as constant rates, h and b, rather than numbers of individuals. For the run-in we set sa, sj, f, h,

and b at their 1976 values. The age-distribution in year five of the run-in was then used as the

age distribution for the model proper in year 1 (1976). A similar approach has been advocated

in frequentist state-space modelling [36, 37]. Fig 1 provides an overview of the population

model.

Observation model

The modelling period was restricted to 1976–2005 as no relevant data on population size or

harvesting rate is available since then. Reliable records of harvest and hunting effort data were

only available for the periods 1979–1992 and 1994–1998. Informed written consent was

obtained from the individuals involved in the hunting, and approved by the University of

Otago Ethics Committee (AEC 1–03). Although more recent harvest data are available [16],

they do not provide a reliable measure of CPUE. The CPUE data we use correspond to the

“Rama” period (the second half of the season), in which chicks are harvested when they emerge

from burrows to fledge, as CPUE for this period is known to be proportional to chick density
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(R2 = 0.93; see [19]). The CPUE for the “Nanao” period (the first half of the season), in which

chicks are harvested from the burrows, shows a much weaker relationship with chick density,

and was therefore not used. CPUE was calculated by dividing the harvest tally (number of

chicks) in the Rama period by the total effort that year (minutes), and then scaled to ensure

that the total tally could not be identified. This scaling was part of a cultural safety agreement

between the research team and the Rakiura Tītī Islands Administering Body and does not

affect the modelling, as only the relative sizes of the year-to-year changes in CPUE are needed

to provide the information needed on fluctuations in chick abundance. We specified the fol-

lowing observation model

It � Nðkn0;t; s
2Þ;

where It is the CPUE in year t, k is the constant of proportionality, akin to the catchability coef-

ficient used in fisheries [38], and both k and σ2 are estimated during the modelling.

We assumed that the observed decline in density of tītī burrows on The Snares [10] is a reli-

able estimate of the trend in the abundance of adult birds in the whole population, given that

burrow densities are a reliable index of abundance [39], and the problems inherent in estimat-

ing trends from either beach-wrecked bird counts [9] or at-sea surveys of abundance [7]. The

annual trend in adult abundance in the model is

lm ¼
Na

30

Na
1

� �1=29

:

In order for the model to match our estimate of the trend in adult abundance, we specified

that

l̂ � Nðlm; s
2

l
Þ;

where l̂ = 0.983 is the estimate of population growth rate on The Snares, and σλ = 0.002 is its

standard error [10].

Adult survival rate over 1996–2004 was estimated by [27] on Whenua Hou (Codfish Island)

and The Snares. In order for the model to match the estimate for this period, we specified that

l̂a ¼ logf̂sa=ðsam � ŝaÞg � Nð�la; s2

aÞ

where

�la ¼
1

9

X2004

t¼1996

logfsat =ðs
a
m � sat Þg;

ŝa = 0.952 is the estimate of annual adult survival rate, l̂a = 2.987 is the corresponding esti-

mate of the logit of adult survival rate and σa = 0.422 is the standard error of l̂a. Adult survival

is likely to be related to broad-scale factors, and should therefore be similar on each island.

The value of ŝa is therefore the mean estimate for Whenua Hou and The Snares [27].

Fig 1. Overview of the tītī population model. The 15 age classes are represented by circles and intermediate

calculations (chicks not harvested, and number of adults) by rectangles. The multipliers used to determine the number

of individuals progressing to the next age-class are shown in red. The notation is as in the text, except that the

dependence on year is suppressed for simplicity. Likewise, age classes 4 to 12 are suppressed for ease of presentation.

https://doi.org/10.1371/journal.pone.0243794.g001
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Fecundity was estimated by [28] for the periods 1997−1999 and 2003−2005. In order for

the model to match the estimate for this period, we specified that

l̂ f ¼ logff̂ =ðfm � f̂ Þg � Nð�lf ; s2

f Þ

where

�l f ¼
1

6

X1999

t¼1997

logfft=ðfm � ftÞg þ
X2005

t¼2003

logfft=ðfm � ftÞg

( )

;

f̂ = 0.52 is the estimate of fecundity, l̂ f = 0.08 is the corresponding estimate of the logit of

fecundity and σf = 0.108 is the standard error of l̂ f . Estimates of the probability that a sexually

mature individual will lay an egg (u) do not exist for tītī, so we used an estimate available for

the congeneric short-tailed shearwater as a prior for this parameter (Stuart Bradley, unpub-

lished data). The probability that an egg laid will survive to become a chick (v) has been esti-

mated during long-term monitoring at The Snares and Whenua Hou [28]. It is difficult to

assess how the value of this parameter for the whole population would relate to estimates from

individual islands, as this vital rate is likely to be more site-specific than survival, owing to

potential differences in rainfall, burrow quality, etc. between islands. We used a precision-

weighted mean rate over the two islands to obtain v̂ and hence f̂ ¼ ûv̂.

The mark-recapture models used by [31] to estimate juvenile survival rate, at both Taiaroa

Head and The Snares during the period 1996–2003, cannot distinguish juveniles that die from

those that do not return to their natal colony, which will lead to underestimation of the true

juvenile survival rate. We therefore ensured that the mean (on the logistic scale) of the model-

based juvenile survival rate over this period was at least as big as the larger of these two esti-

mates (Taiaroa Head), by specifying that

l̂ j ¼ logf̂sj=ð1 � ŝjÞg � Nðrj�l
j; s2

j Þ

where

�lj ¼
1

8

X2003

t¼1996

logfsjt=ð1 � sjtÞg;

ŝ j = 0.566 is the estimate of annual juvenile survival rate from Taiaroa Head, l̂ j = 0.266 is the

corresponding estimate of the logit of juvenile survival rate, σj = 0.155 is the standard error of

l̂ j, and rj is a parameter between 0 and 1 that is estimated during the modelling.

Finally, an independent study estimated the number of tītī in age-class 0 in the New Zea-

land region in 2005 to be n̂0;30 = 2.787 million [1]. In order for the model to match this esti-

mate, we therefore specified that

n̂0;30 � Nðn0;30; s
2

nÞ;

where σn = 0.132 is the standard error of n̂0;30 [1].

Input variables

We used estimates of bycatch of tītī over the period 1952–2001 [14] to set the values for Bt in

those years. While some bycatch still occurred during the period 2002–2005, in both active

and passive fishing gears [15, 40–42], the magnitude is believed to be low relative to the period

before driftnet fisheries were banned in 1991. In addition, the estimate of total tītī bycatch in
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New Zealand fisheries has been less than 1200 in each fishing season between 2002–03 and

2016–2017 [43], which amounts to less than 0.01% of the estimate of the New Zealand adult

population size (12.8 million) for the period 1994–2005 [1]. We therefore assumed bycatch

was negligible during the period 2002–2005, and set the corresponding values of Bt to zero.

We used estimates of chick harvest during 1976–2005 [25] to set the corresponding values of

Ht. Sensitivity analyses were carried out in order to investigate the consequences of bias in the

assumed harvest and bycatch levels.

Most depredation of eggs and chicks on breeding islands has been attributed to weka [22].

Norway rats probably also affect productivity, although this has yet to be quantified [13]. In

addition, Norway rats are only present on a few of the smaller islands where tītī breed, and for

the purposes of modelling the entire New Zealand population their impacts are likely to be

insignificant, so we do not estimate their effects. We calculated a regional rate of depredation

of chicks by weka (11%) by multiplying the rate estimated by [22] by the proportion of the

New Zealand population estimated to be present on islands where weka existed in 2005 [1].

This rate was used as the value of w in the population model.

Priors

We use an informative prior for the probability of being sexually mature in age-class i (pi),
based on the results in [31]. This probability was set to zero for age-classes 0–2, and to 1 for

age-classes 13 and 14. For age classes 3 to 12, it was assumed to be a linear function of age on

the probit scale, i.e.

pi ¼ F
i � mp

sp

 !

where F(.) is the cumulative distribution function for the standard normal distribution. The

parameters μp and σp are the mean and standard deviation of age at maturity, which were esti-

mated by [31] to be 7.5 years and 1.9 years respectively. We specified the prior for (μp, σp) as a

bivariate normal distribution with mean (7.5,1.9) and variance-covariance matrix as estimated

by [31]. We also used the following independent vague priors [44]: we gave both βs and βf a

normal prior with mean 0 and standard deviation 100, both k and σ had a uniform prior on

[0,1000], r and rj both had a uniform prior on [0,1], and we gave Na
1

a uniform prior on [0,100]

(million adults).

Selection and formulation of climate indices

We used results from the previous investigation of the relationship between climate and CPUE

of harvesters by [8] to formulate climate indices. This led to using the monthly Troup SOI

[45], which measures the standardised anomaly of the mean sea level pressure difference

between Tahiti and Darwin. We obtained the monthly Troup index, with a base period of 1951

−2000, from Brett Mullan at the National Institute of Water and Atmospheric Research in

Wellington, New Zealand. Large negative and positive SOI values indicate strong El Niño and

La Niña events, respectively. As survival and fecundity operate over different time-periods, we

calculated different annual SOI measures for adult survival and fecundity in year t, which we

denote as zst and zft respectively. We defined zst to be the mean of the 12 monthly SOI values

between April in year t to the following March, as this covers the period that survival is calcu-

lated over. Likewise zft is the 12-month mean between October (just before the onset of egg-

laying) in year t−1 and the following September. We investigated the possibility of a lagged

relationship between vital rates and climate indices (e.g. [8]). Thus we define an S0 model to
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be one with a “zero lag” on adult survival and an F0 model to be one with a zero lag on fecun-

dity, i.e. the equations relating these two rates to SOI are exactly as described above. In con-

trast, an S–1 model is defined to be one with a –1 lag on survival, the function involving zst now

being a model for sat� 1
, i.e.

sat� 1
¼

sam
1þ e� ðasþbszst Þ

:

Likewise, an S1 model has a +1 lag on survival, with

satþ1
¼

sam
1þ e� ðasþbszst Þ

:

Analogous definitions hold for an F–1 model and an F1 model. A model with 0-lags on

both adult survival and fecundity is denoted S0F0, with similar definitions for other lags.

Based on the optimal lags identified by [8], we considered models involving all combinations

of lags −1, 0 and +1, for both and adult survival and fecundity, resulting in nine models. To

ensure that we were identifying the optimal lags of the climate indices, we monitored whether

the fit of any of the models was highest at the boundaries of the set of lags we were investigat-

ing. For instance, if the fit was best for a model with the most extreme lag in the candidate set,

we formulated new models incorporating climate indices with more extreme lags, until the fit

became worse. S1 Table gives the values of zft and zst that were used in the modelling, and

Table 1 provides an overview of how the data inform the model.

Table 1. Overview of how the data inform the tītī population model.

Estimates and input variables Population model parameters informed

Estimate (with SE) of chick abundance in 2005 (n̂ 0;30

and σn)

Chick abundance in 2005 (n0,30)

Estimate of trend in burrow density 1976–2005 (l̂

and σλ)
Trend in adult abundance 1976–2005 ðNa

30
=Na

1
Þ

CPUE in 1979–92, 1994–98 (It for

t = 4,. . .,17,19,. . .,23)

Chick abundance in 1979–92, 1994–98 (n0,t for

t = 4,. . .,17,19,. . .,23)

Overall adult survival (with SE) in 1996–2004 (̂s a and
σa)

Adult survival in 1996–2004 (sat for t = 21,. . .,29)

Overall juvenile survival (with SE) in 1996–2003 (̂s j
and σj)

Juvenile survival in 1996–2003 (sjt for t = 21,. . .,28)

Fecundity (with SE) in 1997–99, 2003–05 (f̂ and σf) Fecundity in 1997–99, 2003–05 98 (ft for

t = 22,. . .,24,28,. . .,30)

Age at sexual maturity (with covariance matrix) (μp
and σp)

Age at sexual maturity (pi for i = 0,. . .,14)

Bycatch total in 1976–2004 (Bt for t = 1,. . .,29) Bycatch rate in 1976–2004 (bt for t = 1,. . .,29)

Chick harvest in 1976–2004 (Ht for t = 1,. . .,29) Chick harvest in 1976–2004 (Ht for t = 1,. . .,29)

Chick depredation by weka (w) Chick depredation by weka (w)

Mean (Oct-Sep) SOI during 1974–2005 (zft for t =

−1,. . .,30)

Fecundity in 1976–2005 (ft for t = 1,. . .,30)

Mean (Apr-Mar) SOI during 1975–2006 (zst for
t = 0,. . .,31)

Adult and juvenile survival in 1976–2005 (sat and sjt for

t = 1,. . .,29)

Maximum adult survival (sam) Adult survival in 1976–2005 (sat for t = 21,. . .,29)

Maximum fecundity (fm) Fecundity in 1976–2005 (ft for t = 1,. . .,30)

https://doi.org/10.1371/journal.pone.0243794.t001
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Modelling procedures, sensitivity analyses and model fit

Our modelling procedure comprised two steps; selecting appropriate climate indices and,

given the selected indices, investigating the sensitivity of our inferences to both changes in

input values and alternative datasets. We compared the fit of models by calculating the Wata-

nabe-Akaike Information Criterion (WAIC; [46]). We summarised the WAIC-values by calcu-

lating the WAIC-based model weight wm for model m as

wm ¼
e� 0:5DWm

PM
k¼1

e� 0:5DWk

where ΔWm = Wm−min(Wm), Wm is the WAIC-value for model m and M is the total number

of models [47]. We compared the best model (i.e. with the highest WAIC weight) with one in

which only adult survival was related to climate (with the same lag in the best model), and

fecundity was assumed to be constant each year (denoted NoF). We repeated this for a model

where only fecundity was related to climate (with the same lag as in the best model) and adult

survival was assumed to be constant each year (denoted NoS). For completeness, we also

included a model with both adult survival and fecundity assumed to be constant each year

(NoSNoF). We also used model averaging, based on the WAIC weights, in order to allow for

model uncertainty when calculating posterior means and 95% credible intervals [48].

Ideally analyses of population time-series using demographic models include both observa-

tion and process error. State-space models provide a means to fit such models within a Bayes-

ian or frequentist framework, and have received substantial interest in population ecology

[49–52]. Unfortunately, many time-series contain insufficient information to achieve identifia-

bility of all parameters in these models, especially variance terms [53]. This is true for our situ-

ation, where only part of the population is observable, and so, in the absence of prior

information on the absolute (or relative) magnitude of process and observation error, our

attempts to incorporate process error into the models were unsuccessful, with the MCMC

sampler unable to converge on a stationary distribution. We therefore used an observation

error-only model. When state-space modelling is prohibitive, this appears to be preferable to

process error-only models [54, 55]; the latter often result in severely biased parameter esti-

mates [56], which are largely avoided in observation error-only models [55]. In addition, there

is evidence that fitting complex models that are not supported by the data can have severe con-

sequences for management advice [57]. Having said that, we would expect parameter estimates

from an observation-error-only model to be overly precise. We therefore carried out a sensitiv-

ity analysis, in order to gauge the extent to which our models might be overly optimistic about

the precision with which we can estimate the parameters. We modified the best-fitting model

by adding process error to the relationship between SOI and both adult survival and fecundity,

with pre-specified “high” values for the two error standard deviations. In order to determine

these high values, we specified a minimum and maximum value for the true annual adult sur-

vival and fecundity rates for the period 1976–2005. We then calculated the process-error stan-

dard deviations that would lead to the modified model predicting that the true adult survival

and fecundity rates for this period cover the range specified by the minimum and maximum.

We then fitted the modified best model and assessed the extent to which the results differed

from those given by the original best model, in terms of the relationships between SOI and

both adult survival and fecundity, the posterior prediction intervals for CPUE, and the esti-

mated effects of climate, harvest, bycatch, and weka depredation during the period 1976–2005.

A second type of sensitivity analysis involved identifying input parameters and prior values

which were difficult to specify during formulation of the model, and assessing the sensitivity of

our results to these. For example, it is difficult to obtain estimates of fecundity ðf̂ Þ and
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population growth ðl̂Þ for the entire New Zealand population, as monitoring was restricted to

a subset of individual islands. We fitted 11 alternative models, all being variations of the best-

fitting model (Table 2), and monitored the differences in key model outputs. Only one compo-

nent of the best-fitting model was changed in each alternative model, as the computational

burden of investigating interactions between components was deemed to not be feasible.

We used posterior predictive checking [44] to assess the adequacy of the best model in esti-

mating CPUE. This involved comparing the observed CPUE with the model-averaged poste-

rior predictive distribution of CPUE, this distribution being summarised by a 95% prediction

interval.

We fitted the models using the package “rjags” in R version 3.6.2 [58], which uses the soft-

ware JAGS (http://mcmc-jags.sourceforge.net/; version 4.3.0) to implement Markov Chain

Monte Carlo (MCMC) methods to sample from the posterior distributions of the parameters.

We ran two chains for 200,000 iterations, discarding the first 100,000 as a “burn-in”, and

thinned the chains to 1 in 20, resulting in 5,000 samples from each chain being used for infer-

ence. Convergence of the sampler was assessed by the Brooks-Gelman-Rubin potential scale

reduction factor R̂c [59] and by visual inspection of trace plots. Estimation of parameters is

summarised by posterior means and 95% central credible intervals, unless otherwise stated.

Results

The model that best fitted the data was S–1F0, with a WAIC weight of 0.49 (Table 3). This

model includes a relationship between adult survival and SOI lagged by one year, and no lag

between fecundity and SOI (Table 3). The next best model (S–2F0) had a much smaller weight

of 0.21. All of the best five models (total weight = 0.95) include a relationship between fecundity

and SOI without a lag, and all of the top four models (total weight = 0.91) include a relationship

between adult survival and SOI. Models that included only one, or neither, of the relationships

between climate and the two vital rates were given little weight (Table 3). All of the results from

these models are based on model averaging using the WAIC weights, except when the parame-

ter of interest does not have the same interpretation in all models, as model averaging is then

inappropriate [46]; in such a case, we present results from the best model (S–1F0).

The model-averaged predictions appear to provide an adequate description of the data (Fig

2), capturing the fluctuations in abundance with a good level of precision (Fig 2A), and each of

the observed CPUE values lies inside the corresponding 95% model-averaged prediction inter-

val (Fig 2B).

Table 2. Description of alternatives to the best model (S-1F0) that were fitted in the sensitivity analysis.

Model Parameter Original New Description

B-HIGH1 Bt Estimate Upper limit 1 Bycatch at upper limit of Uhlmann et al. (2005)

B-HIGH2 Bt Estimate Upper limit 2 Bycatch at upper limit of Uhlmann et al. (2005) with Bt for 1991–2005 at estimate in 1990 (before driftnet ban)

F-LOW f̂ 0.520 0.416 Mean observed fecundity = 0.8 x estimate

F-HIGH f̂ 0.520 0.624 Mean observed fecundity = 1.2 x estimate

FM-LOW fm 0.9 0.8 Maximum fecundity rate = 0.8

SM-HIGH sam 0.980 0.999 Maximum survival rate = 0.999

H-LOW Ht Estimate Lower limit Harvest at lower limit of Bragg et al. (2007)

H-HIGH Ht Estimate Upper limit Harvest at upper limit of Bragg et al. (2007)

T-LOW l̂ 0.983 0.973 Observed trend one percentage-point below estimate

T-HIGH l̂ 0.983 0.993 Observed trend one percentage-point above estimate

https://doi.org/10.1371/journal.pone.0243794.t002
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Parameter estimates from the best-fitting model (S–1F0) revealed clear relationships

between vital rates and SOI, with the posterior probabilities that βf> 0 and βs> 0 being 0.99

and 0.97 respectively. The estimated relationship between adult survival and SOI showed a

pronounced reduction in survival for very low SOI values, although the occurrence of such val-

ues in the data was rare (Fig 3). The model estimated that fecundity increases in a roughly lin-

ear manner with increasing SOI (Fig 3), the predicted reduction in mean fecundity between

the years with the highest and lowest observed SOI values being approximately 0.17. These

results imply that adult survival will generally be lower (higher) in the year before an El Niño

(La Niña), while fecundity will be lower (higher) in the year of an El Niño (La Niña). The other

two models with a WAIC weight greater than 0.1 (S–2F0 and S1F0) had the same type of posi-

tive relationship between SOI and both adult survival and fecundity, the main differences

being that these models had slightly higher values for βf and smaller values for βs, compared to

the best model.

The model-averaged posterior mean for population size shows a steady decline over the

period 1976–2005, interspersed with several seasons of abrupt declines (Fig 4; black line). The

largest decline occurred in 1982, with a strong, sustained period of decline in the late 1980s

and early 1990s, when a series of negative SOI values occurred. The population is predicted to

have declined from 39.6 million in 1976 to 22.7 million in 2005, a decline of 1.9% (1.5%–2.3%)

per year (Fig 4). As we would expect, this is close to the estimated decline of 1.7% per year that

was used to fit the model. We now consider the historical impact of those threats that are open

to management; harvesting, bycatch and weka depredation. In doing so we generated three

independent “virtual populations”, in which there was no harvest, no bycatch, or no depreda-

tion by weka (Fig 4; blue, orange and green lines respectively). These impacts were estimated

to be similar, with the model-averaged posterior mean for the decline over the period 1976–

2005 being 1.4% (0.9–1.9%), 1.4% (0.9–1.8%) or 1.2% (0.7–1.8%) for a population not exposed

to harvest, bycatch or weka, respectively. The impact of the relationship between SOI and

adult survival is stronger than that from any of the threats that are directly open to manage-

ment (Fig 4; red line), with the model-averaged posterior mean for a population not exposed

to this climate-related threat being relatively stable, with an annual growth rate of 0.01%. How-

ever, the uncertainty around this projection was high, with the 95% credible interval lying

between an annual decline of 2.2% and an annual increase of +2.4%. The impact of the rela-

tionship between SOI and fecundity is not shown in Fig 4, as the effect was negligible. This is

Table 3. ΔW values and WAIC model weights for models with different relationships between adult survival and

SOI, and fecundity and SOI.

Model ΔW Weight

S–1F0 0.0 0.49

S–2F0 1.7 0.21

S1F0 2.0 0.17

S0F0 4.6 0.04

NoSF0 4.7 0.04

S–1NoF 6.0 0.02

S–1F–1 6.8 0.02

S–1F1 8.2 0.01

S0F–1 13.4 0.00

NoSNoF 15.2 0.00

S0F1 18.0 0.00

S1F–1 18.7 0.00

S1F1 19.5 0.00

https://doi.org/10.1371/journal.pone.0243794.t003
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Fig 2. Fit of the demographic models to harvest data. Observed and predicted catch per unit effort (CPUE) data from harvesting of tītī
chicks in New Zealand during the period 1979–1998. In both plots the solid line shows the model-averaged posterior mean for CPUE. In (a)

the dashed lines show the 95% model-averaged credible interval; in (b) the dots are the observed CPUE values and the dashed lines show the

95% model-averaged 95% prediction interval. Model averaging was performed using WAIC model weights.

https://doi.org/10.1371/journal.pone.0243794.g002

PLOS ONE Climate effects on tītī population dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0243794 December 14, 2020 14 / 28

https://doi.org/10.1371/journal.pone.0243794.g002
https://doi.org/10.1371/journal.pone.0243794


Fig 3. Southern Oscillation Index versus adult survival and fecundity of tītī. Estimated relationship, based on the best

model (S–1F0), between SOI and both adult survival rate and fecundity rate, for tītī in New Zealand during the period

1976–2005, plotted against the observed values of zst and zft respectively (dots), together with 95% credible intervals

(dashed).

https://doi.org/10.1371/journal.pone.0243794.g003
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not surprising, given the fact that population growth rate of a long-live species is known to be

far less sensitive to fecundity than to adult survival.

The proportion of chicks in the total population that were estimated to be harvested was rel-

atively low, the model-averaged posterior mean for the mean proportion over all years being

0.11 (0.09–0.12), with that for the minimum and maximum over all years being 0.07 (0.06–

0.08) and 0.15 (0.13–0.18) respectively. Bycatch of tītī in fisheries operations initially increased

from the start of the time-series and reached a peak around the mid-late 1980s, before reduc-

ing dramatically after the ban of North Pacific drift nets in 1992. The model-averaged posterior

mean for the maximum bycatch mortality rate over all years is 0.016 (0.013–0.020).

The first sensitivity analysis involved modifying the best-fitting model (S–1F0) to include

process errors in adult survival and fecundity, i.e. we set

sat� 1
¼

sam
1þ e� ðasþbszstþεstÞ

and ft ¼
fm

1þ e� ðafþbf z
f
tþε

f
t Þ

where εst and εft are the process errors, with εst � Nð0; s2
s Þ and εft � Nð0; s2

f Þ. We chose a high

value for σs by specifying that this new model would predict that the true adult survival rates

during 1976–2005 cover the range 0.65 to 0.97, with 0.65 representing a very low adult survival

rate for a petrel species and 0.97 being just below the specified maximum (sam). We did so by

Fig 4. Effects of climate, harvesting, bycatch, and weka-depredation on tītī population dynamics. Model-averaged posterior mean

of population size of tītī in the New Zealand region for the period 1976–2005 (black), together with the model-averaged posterior mean

of the predicted population size in the absence of harvest (blue), absence of bycatch (orange), absence of weka (green), and absence of a

relationship between SOI and adult survival (red). Model averaging was performed using WAIC model weights.

https://doi.org/10.1371/journal.pone.0243794.g004
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setting

sam
1þ e� ðasþbszsmin� 2ssÞ

¼ 0:65 and
sam

1þ e� ðasþbszsmaxþ2ssÞ
¼ 0:97;

where zsmin = –2.03 and zsmax = 1.08 are the minimum and maximum value of zst observed during

the period 1976–2005 (Fig 3), and αs and βs are set at their posteriors means, as given by the

original S–1F0 model. Solving these two equations gives σs = 0.37 and σs = 0.10 respectively, so

we set σs at the maximum of these two values. Likewise, we chose a high value for σf by specify-

ing that the modified model would predict that the true fecundity rates during 1976–2005

cover the range 0.2 to 0.8 (approximately 60% lower and 60% higher respectively than the esti-

mate of 0.52 in [28]), and therefore set

fm
1þ e� ðafþbf z

f
min� 2sf Þ

¼ 0:2 and
fm

1þ e� ðafþbf z
f
maxþ2sf Þ

¼ 0:8;

where zfmin = –1.32 and zfmax = 1.04 are the minimum and maximum value of zft observed during

the period 1976–2005 (Fig 3), and αf and βf are set at their posteriors means, as given by the

original S–1F0 model. Solving these two equations gives σf = 0.56 and σf = 0.72 respectively, so

we set σf at the maximum of these two values.

Using the values σs = 0.37 and σf = 0.72 in the modified model, we obtained the results

shown in Figs 5 and 6. The relationship between SOI and adult survival was slightly weaker in

the modified model, with the posterior means at the extremes being 0.84 and 0.95, compared

to 0.78 and 0.96 for the original model; the uncertainty was also generally greater for the modi-

fied model, as we would expect, with the mean increase in the width of the 95% credible inter-

val being 33% (Fig 5A vs 5B). This difference was generally less marked for fecundity, with the

mean increase in the width being 6% (Fig 5C vs 5D). For the modified model the posterior

probability that βs> 0 was 0.73, compared to 0.97 for the original best model; the posterior

probability that βf> 0 was 0.99, identical to that for the original model. Qualitatively, these

results are what we would expect, with addition of process errors leading to greater uncertainty

about the association between SOI and both adult survival and fecundity. Having said that, the

modified model still provides evidence that strong El Niño events are associated with decreases

in adult survival and fecundity, while strong La Niña events are associated with increases in

these parameters. The process errors in the modified model correspond to non-SOI factors

that might affect the temporal variation in adult survival and fecundity. As discussed earlier,

the data do not allow estimation of the true size of these error terms, but the sensitivity analysis

indicates that even if these errors are large the conclusions concerning the potential impact of

SOI are qualitatively unchanged.

The posterior prediction intervals for CPUE obtained from the modified model were gener-

ally wider than hose for the original model, again as we would expect, the mean increase in the

width of the interval being 34% (Fig 6A vs 6B). The posterior means showing the estimated

effects of climate, harvest, bycatch, and weka depredation during the period 1976–2005 indi-

cate a weaker effect of SOI, as we would expect from the above results (Fig 5A vs 5B). The pos-

terior mean for population size obtained from the modified model shows a similar pattern of

decline to that from the original model (Fig 6C vs 6D; black lines). For the modified model,

the posterior mean for the population decline is 1.9% per year, the same (to 1dp) as that

obtained from the original model; the 95% credible interval for this decline is 1.4% to 2.5%,

which is 39% wider than the corresponding interval from the original model, as we would

expect.
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The impacts of harvest, bycatch, and depredation by weka are again estimated to be similar

(Fig 6D; blue, orange and green lines respectively), with the posterior means for the annual

decline being 1.5% (0.7–2.2%), 1.4% (0.7–2.1%) or 1.3% (0.6–2.0%) for a population not

exposed to harvest, bycatch or weka, respectively. These estimates are almost identical to those

from the original model, but the 95% credible intervals are 43%, 55% and 37% wider respec-

tively, again as we would expect. The impact of the relationship between SOI and adult survival

is still stronger than that from any of the other threats, but to a lesser extent than for the origi-

nal model (Fig 6C vs 6D; red lines); the posterior mean for the growth rate suggests an annual

decline of 0.5% in the absence of this relationship, compared to a growth of 0.2% for the

Fig 5. Effects of including process error in the best-fitting model on the relationship between SOI and both adult survival and fecundity. Estimated relationships

(solid) between a) adult survival from the best model (S–1F0) and zst ; b) adult survival from the modified best model and zst ; c) fecundity from the best model (S–1F0)

and zft ; d) fecundity the modified best model and zft . The dashed lines are 95% credible intervals.

https://doi.org/10.1371/journal.pone.0243794.g005
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original model. The 95% credible interval from the modified model lay between an annual

decline of 2.4% and an annual increase of 3.1%, which is 27% wider than the interval for the

original model, which lay between an annual decline of 2.0% and an annual increase of 2.4%.

The impact of the relationship between SOI and fecundity is not shown in Fig 6C and 6D, as

the effect was again negligible, for both the modified and the original model.

Identical comparisons for the modified and original versions of the other models in Table 3

led to similar conclusions to those discussed here. Note that we have not computed model-

averaged posterior means and credible intervals for the modified versions of the models in

Table 3, as we could not estimate the process-error standard deviations, which makes

Fig 6. Effects of including process error in the best-fitting model on the estimation of CPUE and the effects of climate, harvesting, bycatch, and weka-

depredation. Posterior means (solid) and 95% credible intervals (dashed) for a) CPUE from the best model (S–1F0) and b) CPUE from the modified best model,

plus posterior means of population size (black), predicted population size in the absence of harvest (blue), the absence of bycatch (orange), the absence of weka

(green), and the absence of a relationship between SOI and adult survival (red) c) from the best model (S–1F0) and d) from the modified best model.

https://doi.org/10.1371/journal.pone.0243794.g006
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comparison, and hence averaging, of the modified models impossible. As we deliberately

chose high values for σs and σf, we would expect that adding the true process errors to the best

model would lead to qualitatively similar, but less marked, differences between the original

and modified versions of the model, compared to those evident in Figs 5 and 6.

Our second sensitivity analysis did not identify any substantial changes in model output

when the models in Table 2 were fitted and compared to the best model (Fig 7). Posterior dis-

tributions of βf were similar across all models, with zero outside all the 95% credible intervals

(Fig 7A). All but two of the alternative models (F-HIGH and SM-HIGH) had a lower 95%

credible limit for βs which was below zero (Fig 7B), but the posterior probabilities of being less

than zero were relatively small, ranging from 0.02 to 0.15. Inferences about the relative impacts

of harvesting were similar across all models (Fig 7C), the largest differences being between low

and high estimates of harvest (H-LOW vs H-HIGH), and between low and high estimates of

trend (T-LOW vs T-HIGH). For bycatch, there were predictable differences between some of

the models (Fig 7D); for example, use of high estimates of bycatch (B-HIGH1 and B-HIGH2)

led to a larger estimate of the effect of bycatch on the predicted population size in 2005, and

vice versa for low estimates of bycatch (B-LOW). For weka depredation, there was little varia-

tion between the models (Fig 7E). Finally, for all three sources of mortality combined (Fig 7F),

the largest differences were between the models with different estimates of bycatch (B-LOW vs

B-HIGH1 and B-HIGH2).

Discussion

Climate induced variation in abundance

Climate is increasingly being recognised as an important driver of seabird dynamics, with a

number of studies detecting relationships between abundance or demographic parameters and

large-scale climate indices or physical variables that are themselves correlated with climate [60,

61]. This was also the case for our analysis, where incorporation of climate-related variation in

vital rates explained much of the variation in the data. In general, our models support the

work of [8] and in addition we have extended their work by focusing on relationships between

climate indices and individual demographic rates, allowing climate to separately influence sur-

vival and fecundity. Interestingly, the optimal lags for the two relationships differed, and non-

negligible weight was given to models with different lags for adult survival. The potential link

between tītī demography and El Niño and La Niña events that we identify here has also been

detected in tropical pelagic seabirds elsewhere in the Pacific [62]. Tītī exhibit very complex

spatial dynamics, which includes migration to the Northern Pacific during the Austral winter

and foraging trips over vast areas of the Southern Ocean during the breeding season [2]. The

different relationships between SOI and demographic rates likely reflect this complexity and

are presumably related to the physical (e.g. wind) and/or biological (prey abundance and qual-

ity) mechanisms influencing the different rates in different areas and times.

A significant hurdle to assessing the influence of climate on population dynamics is the

need to reduce the candidate set of climate covariates to a practical number [63]. While rela-

tionships with more specific environmental variables could be investigated, our understanding

of the mechanisms influencing the response of the population to climate is poor, and thus

modelling large-scale climatic events would appear to be a suitable first approach. Further-

more, large-scale climate indices can in some cases be better indicators of the climatic events

that affect populations [64] due to the difficulties in identifying the specific climate variables

responsible, or the possibility that they are multivariate. There remains the possibility that

other indices may have been suitable for inclusion in the modelling, for instance, those calcu-

lated from conditions in the North Pacific, where tītī spend the Austral winter. Future
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Fig 7. Sensitivity analysis for the best-fitting demographic model. Comparison of estimates, between models with different input parameter values, of a) the

coefficient of the relationship between fecundity and SOI, b) the coefficient of the relationship between adult survival and SOI, c) the predicted population size in 2005

relative to the predicted population size in 2005 in the absence of harvesting, d) the predicted population size in 2005 relative to the predicted population size in 2005 in

the absence of fisheries bycatch, e) the predicted population size in 2005 relative to the predicted population size in 2005 in the absence of weka depredation, and f) the

predicted population size in 2005 relative to the predicted population size in 2005 in the absence of harvesting, bycatch and weka depredation. Dots are posterior means

and error bars show the central 95% credible intervals.

https://doi.org/10.1371/journal.pone.0243794.g007
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investigation of relationships with conditions during this stage of the life-cycle would certainly

be interesting and could potentially allow the roles of the different regions in regulating shear-

water numbers to be assessed. The sensitivity analysis in which we added process errors to the

best model suggests that we can be confident that there is a relationship between SOI and the

vital rates, even after allowing for other (climate) factors that might influence these rates.

Relative impacts of other mortality sources

Despite climate-driven variation in abundance, the functional form of the relationships

between climate indices and demographic rates, and the distribution pattern of climate index

values, some of the reduction in abundance over the period 1976–2005 is accounted for by

non-climate factors. It appears that declines can largely be explained by the synergistic effects

of fisheries bycatch, depredation by introduced animals, human harvesting of chicks and, for

certain periods of time, unfavourable climatic conditions. Perhaps the most important finding

of this study is that none of the individual threats to the tītī population appear to be capable of

explaining the observed dynamics alone. However, the limited role of climate in the decline

over 1976–2005 is partly the result of the series of favourable SOI values in the very late 1990s

and early 2000s, that appeared to allow some rebuilding of the population. Just prior to this, in

1997, the "pristine" modelled population was predicted to be at its lowest point, a decline of

17.6% relative to 1976, which can presumably be attributed mainly to the prevailing climatic

conditions at that time, given that the other main mortality sources had been “factored out”.

This demonstrates the potential influence that climate can have, and suggests that future abun-

dance of tītī may well depend on the frequency and severity of climate fluctuations, providing

a strong relationship between demography and climate persists. While these inferences rely on

accurate measurement of the magnitude of each threat, our sensitivity analyses indicate that

these results are relatively robust to a wide range of potential model misspecifications.

We model non-natural mortality additively under the assumption that estimation of the

vital rates is independent of the mortality sources. For instance, estimates of adult survival are

made for the period after the banning of driftnet bycatch, and fecundity is estimated in the

absence of predation and harvesting. There remains the possibility that modelled sources of

mortality may also have contributed to population growth rates, the most obvious of which is

the possible reduction of tītī prey through intense commercial fishing pressure, as has been

proposed by [65] as a potential agent in the declines of other top predators in the Southern

Ocean. Some unmodelled mortality is to be expected and will be included in the error terms

when the model is fitted to the data, thereby limiting its effect on inferences. Substantial mod-

elled mortality is more serious, but our results suggest this has not occurred. Firstly, vital rates

presumably include most other mortality sources if they occurred over the period the rate was

estimated. For instance, the period of intense depletion of many fish species in the Southern

Ocean occurred prior to, or during, the early part of the model period [65]; if this suppressed

tītī vital rates we would expect it to be accounted for in our parameter estimates e.g. mortality

of adults would be included in the "natural" mortality estimate. If a modelled mortality source

was occurring and not accounted for by the vital rates then we would expect either the mod-

elled mortality to be unable to reproduce the observed decline or significant shifts in the poste-

rior densities of vital rates would have occurred during model fitting to accommodate the

mismatch. Neither of these phenomena were observed.

Limitations in the modelling of tītī dynamics

Robust modelling of animal population dynamics relies on a number of conditions being met

including; the use of a model that adequately approximates the true dynamics of the system, a
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dataset that provides sufficient information to estimate all parameters, and accommodation of

all relevant sources of uncertainty. While model diagnostics and sensitivity analyses can be

useful in checking some aspects of model development and fit, there will generally be a num-

ber of caveats required when the results are reported. Two processes that were not included in

our modelling and sensitivity analyses were the potential for island-specific vital rates (includ-

ing immigration between islands) and density dependence.

Lack of data on vital rates and on the magnitude of different mortality sources, at an island-

scale over the study period, precludes construction of spatially explicit models. Therefore, if

our region-wide approach is to be robust, mortality rates among islands must either be similar,

or immigration rates between island populations must be sufficient to ameliorate site-specific

differences in mortality. It seems reasonable to assume that both bycatch and climate influ-

ences are likely to be similar across the different island populations, given the time and spatial

scales at which these processes operate. In contrast, harvesting rates of chicks display moderate

variation between islands [19], and introduced predators are present on only some islands

[13]. A valuable future research topic would be to determine the level of mixing between popu-

lations that would be necessary to offset any differences in population growth rate that resulted

from population-specific vital rates. For now we assume that our model provides a fair reflec-

tion of the overall New Zealand population, given that the demographic parameters to which

growth rate is most sensitive (adult and juvenile survival) are presumably similar across popu-

lations. However, there remains the possibility that changes in abundance in some individual

populations with very different mortality rates (e.g. very high harvest rate of chicks) will be

misrepresented by our model. While potentially important to the viability of an individual col-

ony, this issue is unlikely to affect conclusions for the entire regional population [1, 19]. Fur-

thermore, immigration between island populations are increasingly being detected in a range

of long-lived seabird species [66, 67]. Although these rates have yet to be estimated for tītī, if

similar levels occur we can expect the results of our modelling to be robust to the assumption

that the spatial scale of our model is adequate.

An important consideration when developing the structure of population models is whether

to accommodate density dependence, and if so, how it should be parametrised. We assume that

density dependence is not operating over the density range encountered in the study period.

While the presence and strength of density dependence can, in principle, be estimated from

time-series data, reliable estimation is difficult to achieve, even for simple models (e.g. [68, 69]).

Robust inferences generally rely on abundance datasets spanning a wide range of densities,

from near to well below carrying capacity [70]. Tītī, like other long-lived species are expected to

exhibit a population growth response curve [71] that decreases in a convex manner as density

increases [72]. This suggests that density dependent changes in vital rates should primarily

occur over the density range close to carrying capacity. Declines in tītī populations are believed

to have occurred from well before our study period [9], so we expect population density to be

well below the range at which significant density dependent changes in vital rates occur.

In spite of the caveats given above, the purpose of constructing our models was to make infer-

ences about the main influences on the dynamics of the New Zealand tītī population, utilizing

models that capture the most important properties of the system. In this respect our research

appears to have been successful, given that the best models account for much of the variation in

the dataset, and this is supported by the consistency of our results across the sensitivity analysis.

Management implications

Our primary aim in this paper has been to gain some understanding of the relative contribu-

tions of climate, bycatch, harvest and depredation by weka to the decline of the New Zealand
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tītī population over the period 1976–2005. Population projections based on our results will be

the focus of future research, in which we plan to compare different management strategies,

using both simulation and sensitivities obtained from a deterministic version of the model

[34]. The results presented here already suggest that climate change, particularly the frequency

and intensity of future El Niño and La Niña events, will be an important factor in determining

the sustainability of the population.

Some past threats to the population have been alleviated but others remain and will be diffi-

cult to mitigate. Fisheries bycatch levels have declined dramatically since peak mortality prior to

the international ban on driftnet fishing. Bycatch is no longer thought to be an important issue

for tītī, unlike other seabird species; while it persists [43], mortality rates would appear to have

little impact at the population level, unless there are very large unreported sources of death as a

consequence of illegal large-scale fisheries [73]. There are additionally few actions that can be

taken by harvest managers to curb the impacts of El Niño-Southern Oscillation (ENSO), with

most benefits for tītī persistence probably relying on international climate change policy. An

improved understanding of how predicted climate changes will influence ENSO patterns will be

a key to future research. Case studies of demographic relationships with climate change, such as

our one, are important for policy makers to grasp the consequences of their actions.

Depredation of chicks by introduced predators, and harvesting by humans, can be more

readily addressed in management strategies than can the impacts of climate. However, our

results suggest that removing these factors has fewer benefits for the tītī population than allevi-

ating climate drivers. Easing harvesting pressure could help by increasing the rate of recovery,

especially after El Niño knock-down events. A similar outcome would be envisaged if the

depredation effects of weka on some islands were removed. Preliminary versions of our model

have been utilised in the past to guide operations aimed at eradicating introduced predators

(i.e. ship rats) from tītī breeding islands [74]. In that case management aimed to mitigate the

effects of an oil spill in the North Pacific which affected migrating tītī. The models we have pre-

sented here will be a useful tool for prioritizing which islands should be the focus of future

eradication or control programs, and the likely conservation gains that would result. It is envi-

sioned that the model presented will continue to form the basis for quantitative assessments of

competing management strategies.
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