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Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target
organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An
important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins
are the peroxisome proliferator activated receptors (PPARs). Three PPAR isotypes can be distinguished, all of which have a major
role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in
mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a
clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL)-cholesterol levels
are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation
of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma
triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to
PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper,
a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological
role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels.

Copyright © 2008 Sander Kersten. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Plasma lipoproteins are responsible for carrying triglycerides
and cholesterol in the blood and ensuring their delivery to
target organs. Extensive research over the past few decades
has demonstrated that elevated plasma levels of cholesterol-
rich low-density lipoproteins (LDLs) are associated with in-
creased risk for coronary heart disease, whereas elevated lev-
els of high-density lipoproteins (HDLs) have a protective ef-
fect. Accordingly, raising HDL levels and especially lowering
LDL levels has become the cornerstone for the nutritional
and pharmacological prevention and treatment of coronary
heart disease. While lowering of plasma LDL can be effi-
ciently and adequately achieved by treatment with statins,
limited pharmacological treatment options are available for
efficiently raising HDL levels. Hence, the quest for effec-
tive and safe drugs that raise HDL levels and/or decrease
the atherogenic properties of plasma lipoproteins continues.

A group of proteins that plays a major role in the regulation
of lipoprotein metabolism and can be considered as major
drug targets for correcting abnormal plasma lipoprotein lev-
els are the nuclear receptors [1]. Nuclear receptors are ligand-
activated transcription factors that alter gene transcription
by direct binding to specific DNA response elements in target
genes [2]. In addition, they modulate transcription by inter-
fering with specific intracellular signaling pathways, thereby
impairing transcriptional activation by other transcription
factors. Nuclear receptors share a common modular struc-
ture that includes a relatively well-conserved central DNA-
binding domain and a C-terminal ligand binding domain
(LBD) [2]. Several nuclear receptors have been shown to be
involved in the regulation of plasma lipoprotein metabolism,
including the estrogen receptors (ERs), the oxysterol recep-
tors (LXRs), the bile acid receptor (FXR), and the fatty acid
receptors (PPARs). Here, the emphasis will be on the role of
PPARs.
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The PPAR family includes three members encoded by
distinct genes: α, β/δ, and γ [3]. Since the initial discovery
of the PPARα isotype in 1990 [4], an impressive amount of
literature on these receptors has accumulated. PPARs mainly
operate by governing the expression of specific sets of genes.
Analogous to many other nuclear receptors, PPARs bind to
DNA and regulate transcription as a heterodimer with the
retinoid X receptor (RXR) [5]. The genomic sequence rec-
ognized by PPARs, referred to as PPAR response element
or PPRE, consists of a direct repeat of the consensus hex-
americ motif AGGTCA interspaced by a single nucleotide.
Functional PPREs have been identified in genes involved in
a variety of biological processes including lipid and glucose
metabolism, detoxification, and inflammation [6]. Activa-
tion of transcription by PPARs is achieved by binding of spe-
cific ligands to the LBD, followed by recruitment of coacti-
vator proteins and dissociation of corepressors. Coactivator
recruitment generally leads to an increase in enzymatic activ-
ity of histone acetyltransferases, histone methyltransferases,
and subsequent nucleosome remodeling, activities which are
essential to initiate transcription of PPAR target genes. X-
ray crystallographic analysis of the LBD of PPARs has re-
vealed an exceptionally spacious ligand binding pocket that
can be occupied by a wide variety of synthetic and natural ag-
onists, including numerous fatty acids and fatty acid-derived
eicosanoids [7, 8].

The three PPARs are distinguishable by specific tissue
and developmental patterns of expression and by their ac-
tivation by distinct, yet overlapping, ligands [9]. The PPARα
isotype is well expressed in tissues such as liver, heart, and
small intestine and regulates a variety of target genes in-
volved in cellular lipid metabolism ranging from mitochon-
drial, peroxisomal, and microsomal fatty acid oxidation to
fatty acid uptake and binding, lipolysis, lipogenesis, and glyc-
erol metabolism [6]. In contrast, PPARγ, which is highly ex-
pressed in brown and white adipose tissue, directs the ex-
pression of genes involved in adipocyte differentiation and
fat storage. In addition, PPARγ governs glucose uptake and
storage [10]. Much less is known about the ubiquitously ex-
pressed PPARβ/δ, although recent evidence suggests an in-
volvement in wound healing [11], fatty acid oxidation [12],
and lipoprotein metabolism [13].

Here we present an overview of the literature on PPARs
and lipoprotein metabolism. The emphasis is on physiologi-
cal role of PPARs and the mechanisms underlying the effect
of synthetic PPAR agonists on plasma lipoproteins.

2. PPARα AND PLASMA TRIGLYCERIDE METABOLISM

The seminal evidence that placed PPARα at the center of
lipoprotein metabolism was the demonstration that fibrates,
which had been used clinically for many years to treat dys-
lipidemia, act by binding to PPARα and induce PPARα-
dependent gene transcription [4, 14]. The role of PPARα
in lipoprotein metabolism could thus be extrapolated ret-
rospectively by analyzing the reported effect of fibrates. The
availability of PPARα null mice further spurred progress in
elucidating PPARα function and has resulted in an extensive
picture of the role of PPARα in lipoprotein metabolism [15].

Numerous clinical studies in humans have provided am-
ple evidence that fibrates, which include clofibrate, bezafi-
brate, fenofibrate, and gemfibrozil, effectively lower fasting
plasma triglycerides (TG) [16–19]. The plasma TG lowering
effect of fibrates can be reproduced in mice [20, 21]. Con-
versely, plasma TG levels are elevated in mice lacking PPARα
[22]. Since in the fasted state plasma TG are carried mainly
in the form of very low-density lipoproteins (VLDL), this
suggests that PPARα suppresses VLDL production in liver
and/or stimulates clearance of VLDL triglycerides in periph-
eral tissues.

3. PPARα AND VLDL PRODUCTION

Limited data are available on the effect of fibrates on pro-
duction and secretion of VLDL in humans. In one study, the
PPARα agonist gemfibrozil decreased production of VLDL-
TG, while clofibrate had no effect [23]. In mice, PPARα has
been shown to have a major impact on hepatic TG secre-
tion. Indeed, deletion of PPARα is associated with a signif-
icant increase in VLDL-TG production in liver [24, 25]. In
contrast, activation of PPARα using Wy14643 dramatically
lowers VLDL-TG production (Figure 1). Furthermore, acti-
vation of PPARα suppresses TG secretion from primary rat
hepatocytes [26].

VLDL is synthesized by the stepwise lipidation of the
structural component apolipoprotein B through the action
of microsomal triglyceride transfer protein (MTTP), result-
ing in the gradual formation of a mature TG-rich VLDL1
particle [27]. It may be expected that elevated hepatic TG
levels increase VLDL secretion, on the one hand by target-
ing apolipoprotein B away from degradation toward secre-
tion, thus increasing VLDL particle number, and on the other
hand by increasing the amount of TG that becomes incor-
porated into VLDL, thus increasing VLDL particle size [27–
29]. However, a positive correlation between hepatic TG and
VLDL production is not always evident, as illustrated by the
lack of change in hepatic VLDL production in ob/ob mice
despite massive steatosis [30]. These data feed a growing
recognition that the relation between hepatic TG storage and
VLDL production is dependent on where the excess TG are
stored. This argument holds both at the tissue level, as only
excess TG stored in the periportal area may promote VLDL
formation, and at the cellular level, as TG incorporated into
VLDL are likely drawn from specific intracellular lipid com-
partments.

Numerous studies have shown that PPARα activation
lowers liver TG levels, especially in the context of a fatty liver
[31–36]. Conversely, deletion of PPARα is associated with el-
evated hepatic TG stores, which is evident under normal fed
conditions but becomes considerably more pronounced af-
ter prolonged fasting and chronic high fat feeding [22, 37–
40]. The potent effect of PPARα activation and deletion on
hepatic TG levels is illustrated in Figure 2. Remarkably, treat-
ment of wildtype but not PPARα null mice with Wy14643 for
10 days can completely prevent the fasting-induced increase
in hepatic TG, most likely by stimulating fatty acid oxidation.
Indeed, probably the best understood property of PPARα is
its ability to stimulate fatty acid oxidation by upregulating
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Figure 1: The PPARα agonist Wy14643 dramatically lowers VLDL production in a mouse model of hypertriglyceridemia. Male Angptl4-
transgenic mice (n = 7 per group) were given vehicle or Wy14643 for 10 days (0.1% mixed in their food). After a 24-hour fast, the LPL-
inhibitor tyloxapol (Triton WR1339, 500 mg/kg bodyweight as 15% solution in saline) or saline were injected intraorbitally. (a) Plasma
triglyceride concentration was measured every 30 minutes to determine the VLDL production rate. (b) Mean rate of increase of plasma TG
concentration in mice that received tyloxapol. Differences were evaluated by Student’s t-test (∗∗∗P < .001). Error bars represent SEM.

almost every single gene within the mitochondrial, peroxi-
somal, and microsomal fatty acid oxidation pathway, includ-
ing carnitine palmitoyl transferase 1 and 2, acyl-CoA oxidase,
acyl-CoA dehydrogenases, and numerous others [6]. Many
of these genes have been identified as direct PPARα targets
characterized by the presence of a functional PPRE. Accord-
ingly, the most plausible explanation for the hepatic TG low-
ering effect of PPARα activation is that by promoting fatty
acid oxidation, PPARα shifts fatty acids away from esterifica-
tion and storage. While its effect on fatty acid oxidation likely
accounts for the major share of its antisteatotic action, regu-
lation of other genes and pathways by PPARαmay contribute
to some extent as well.

Suppression of VLDL production by PPARα agonists is
generally attributed to lowering of hepatic TG stores, despite
uncertainties surrounding the relationship between hepatic
TG storage and VLDL production. In addition to its role
in fatty acid catabolism, PPARα impacts on multiple as-
pects of intracellular lipid trafficking and metabolism, some
of which may oppose hepatic TG lowering, including in-
duction of genes involved in fatty acid synthesis and fatty
acid elongation/desaturation [41–44]. Furthermore, expres-
sion of MTTP, which is involved in the lipidation of apoB100
to form a nascent VLDL particle, has recently been shown
to be increased by PPARα [21]. Upregulation of MTTP may
promote apoB100 secretion, which together with a decreased
TG availability may favor the targeting of apoB100 to IDL
and LDL rather than VLDL [21]. Interestingly, a recent study
points to adipose differentiation-related protein (ADRP),
which is a direct target gene of PPARα [45], as a potential
mediator of the effect of PPARα on VLDL production. Us-
ing cultured cells it was shown that an increase in ADRP pre-

vents the formation of VLDL by diverting fatty acids from the
VLDL assembly pathway into cytosolic lipid droplets [46]. It
can be expected that as the process of VLDL assembly and
secretion becomes better understood and the role of PPARα
in this process is further clarified, the general view on the
mechanism underlying the effect of PPARα on hepatic VLDL
secretion may change.

4. PPARα AND VLDL-TG CLEARANCE

Several studies have examined the impact of PPARα on clear-
ance of TG-rich lipoproteins in humans, all of which show
increased clearance after treatment with PPARα agonists
[23, 47–49]. Clearance of VLDL-TG from plasma is medi-
ated by the enzyme lipoprotein lipase (LPL) which thus has
a critical role in determining plasma TG concentrations. LPL
is synthesized mainly by adipocytes and myocytes, and after
translocation to capillary endothelial cells it is anchored into
the vessel wall via heparin-sulphate proteoglycans. Treatment
of human subjects with PPARα agonists is associated with a
significant increase in postheparin total LPL activity, suggest-
ing that stimulation of plasma TG clearance by PPARα ago-
nists can be attributed to enhanced LPL activity [49–51].

Theoretically, changes in LPL activity can be achieved by
altering the production of LPL itself, or by altering the pro-
duction of proteins that assist with LPL function or modulate
its enzymatic activity. The latter group includes apolipopro-
teins such as APOC3, APOC2, and APOA5, as well as
angiopoietin-like proteins 3 and 4. While it is clear that ex-
pression of LPL is upregulated by PPARα in liver [52], no
evidence is available indicating a role for PPARα in govern-
ing LPL expression in heart and skeletal muscle. According
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Figure 2: The PPARα agonist Wy14643 prevents the fasting-induced increase in liver TG levels. Male wild-type and PPARα null mice
(n = 5 per group) were given vehicle or Wy14643 for 10 days (0.1% mixed in their food). After a 24-hour fast, livers were dissected and
stained histochemically using hematoxylin/eosin (a) or oil Red O (b). Representative livers sections are shown. Differences visualized by
histochemistry were perfectly confirmed by quantitative measurement of hepatic TG levels.

to our unpublished microarray data, neither PPARα dele-
tion nor 5-day treatment with Wy14643 had any influence
on LPL mRNA expression in mouse heart. It thus appears
that rather than by regulating expression of LPL itself, PPARα
agonists stimulate plasma TG clearance by altering the hep-
atic expression of inhibitors or activators of LPL activity.
In both mouse and human, hepatic mRNA expression and
plasma levels of APOC3, which inhibits LPL activity, are low-
ered by PPARα agonists [53–56]. Several mechanism have
been put forward to explain downregulation of APOC3 ex-
pression by PPARα, involving the transcription factors Rev-
erbα, HNF4α, or FOXO1 [57–60]. In contrast to APOC3,
PPARα agonists increase hepatic expression and plasma lev-
els of APOA5, an activator of LPL [61]. A functional PPAR
responsive element has been identified in the promoter of the
human APOA5 gene, classifying APOA5 as a direct PPARα
target gene [62, 63].

It can be hypothesized that the stimulatory effect of
PPARα on clearance of TG-rich lipoproteins may be coun-
terbalanced by PPARα-dependent upregulation of the LPL
inhibitor Angptl4 [64, 65]. Plasma levels of Angptl4 are in-

creased by fenofibrate treatment [66]. Data obtained from
various transgenic mouse models and from human ge-
netic studies indicate that Angptl4 inhibits the clearance of
TG-rich lipoproteins, likely by stimulating the conversion
of catalytically active dimeric LPL to catalytically inactive
monomeric LPL [67–72]. It can be speculated that upregu-
lation of Angptl4 may explain the inhibitory effect of PPARα
agonists on LPL activity in macrophages, adipose tissue, and
cardiomyocytes [73–76].

5. PPARα AND HDL METABOLISM

In addition to their plasma TG-lowering effect, fibrates
are used clinically for their ability to raise plasma HDL-
cholesterol (HDLc) levels. A recent meta-analysis of 53 clin-
ical trials indicates that on average, fibrates elevate plasma
HDLc levels by about 10%, which translates into a 25% re-
duction in risk for major coronary events [77]. Remark-
ably, this effect is not observed in rodents, which seriously
complicates study of the molecular mechanisms underly-
ing the effect of PPARα agonists on HDL. In mice, plasma
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total cholesterol and HDLc levels are reduced by treatment
with synthetic PPARα agonists [78], whereas levels are in-
creased in mice lacking PPARα [20]. The differential effects
of PPARα on plasma HDL between mouse and human is
likely due to species-specific regulation of apolipoprotein A-I
(APOA1), the core apolipoprotein of HDL. Whereas PPARα
activation increases plasma levels and hepatic mRNA expres-
sion of APOA1 in human, as supported by studies using hu-
man APOA1 transgenic mice and human hepatocytes [79],
the opposite effect is observed in rodents [78]. The lack of
upregulation of APOA1 gene expression by PPARα in rat
was attributed to 3 nucleotide differences between the rat
and the human APOA1 promoter A site, rendering a posi-
tive PPAR-response element in the human APOA1 promoter
nonfunctional in rats [80]. In addition to APOA1, plasma
levels and hepatic mRNA expression of APOA2, another ma-
jor apolipoprotein component of HDL, are also increased by
fibrates in humans [51, 81]. In contrast, in rodents both a re-
duction and induction of APOA2 expression after treatment
with fibrates have been observed [20, 78].

In recent years, our knowledge regarding the mechanisms
and location of HDL formation has improved considerably.
Recent evidence suggests that the intestine and liver are re-
sponsible for the major share of HDL synthesis [82, 83]. It
is generally believed that HDL is formed by lipidation of
lipid poor APOA1 mediated by the cholesterol efflux trans-
porter ABCA1. The importance of ABCA1 in HDL synthesis
is illustrated by the almost complete absence of HDL from
plasma of patients with a dysfunctional ABCA1 gene [84].
This metabolic abnormality is reproduced in mice that lack
ABCA1 [85, 86]. Importantly, the expression of ABCA1 is in-
creased by PPARα in intestine and macrophages [87, 88]. No
PPRE has yet been identified in the human or mouse ABCA1
gene, suggesting that ABCA1 may not be a direct PPARα tar-
get. Instead, upregulation of ABCA1 mRNA by PPARα ag-
onists in macrophages likely occurs via PPARα-dependent
upregulation of LXR, which is a transcriptional activator of
ABCA1 [88, 89]. Whether the same mechanism operates in
intestine remains unclear.

Recently, ABCG1 was identified as the transporter re-
sponsible for cellular efflux of cholesterol towards mature
HDL [90]. So far no evidence is available that suggests reg-
ulation of ABCG1 by PPARs.

Several proteins are involved in HDL remodeling includ-
ing lecithin cholesterol acyltransferase (LCAT), phospholipid
transfer protein (PLTP), and cholesteryl ester transfer pro-
tein (CETP). In mice, fibrates decrease plasma LCAT activ-
ity and hepatic LCAT mRNA expression [91]. Hepatic ex-
pression and plasma activity of PLTP, which increases HDL
particle size by catalyzing the transfer of phospholipids from
VLDL/IDL to HDL, are increased by PPARα in wild-type
but not PPARα null mice. Accordingly, upregulation of PLTP
may account for the observed increase in HDL particle size
in mice treated with fibrates [92]. Since CETP is absent
from mice, the role of PPARα in the regulation of CETP
activity has largely remained elusive. Interestingly, in a re-
cent study using hCETP-transgenic mice on an apoE3 Leiden
background, it was found that fenofibrate markedly reduced
CETP activity in parallel with an increase in plasma HDLc

levels [93]. These data imply that fibrates reduce CETP activ-
ity in humans, suggesting that the effect of fibrates on plasma
HDL levels in humans may be partially achieved by suppress-
ing CETP activity. In addition, it can be speculated that as
PPARα activation decreases plasma VLDL levels, the acceptor
pool for the CETP-catalyzed exchange of cholesterol-esters
with HDL will be diminished, resulting in increased HDL
size.

HDL cholesterol can also be cleared by the SCARB1-
mediated selective removal of cholesterol from the HDL par-
ticle, or by endocytic uptake and degradation of the whole
particle, called holoparticle HDL uptake. A possible mech-
anism by which fibrates may impair HDL clearance is by
downregulating hepatic SCARB1 gene expression in a PPARα
dependent manner [94].

6. PPARβ/δ AND LIPOPROTEIN METABOLISM

While the role of PPARα in the regulation of lipoprotein
metabolism is relatively well characterized, much less is
known about PPARβ/δ. Initial studies in mice showed that
selective PPARβ/δ agonists raise plasma HDLc levels [13, 95].
The HDLc-raising effect is also evident in rhesus monkeys
[96], and, according to a recent report, in human subjects
[97]. In monkey and human, but seemingly not in mice,
PPARβ/δ agonists decrease plasma TG levels as well. The
mechanism behind the HDLc-raising effect of PPARβ/δ ag-
onists remains obscure, although a role for ABCA1, which is
upregulated by PPARβ/δ, has been proposed [96].

In line with the plasma TG-lowering effect of PPARβ/δ
agonists observed in primates, plasma TG levels are elevated
in PPARβ/δ null mice [98]. In contrast, plasma total choles-
terol and HDLc remain unchanged. It was proposed that the
elevated plasma TG levels in PPARβ/δ null mice are caused
by a combination of increased VLDL production and de-
creased plasma TG clearance, as evidenced by a decrease
in postheparin LPL activity and increased hepatic expres-
sion of LPL inhibitors Angptl3 and 4. Overall, insight into
the molecular mechanisms that may underlie the observed
changes in plasma lipoproteins is lacking, which is partly due
to the fact that very few PPARβ/δ specific or selective target
genes are known. Since PPARα agonists also increase plasma
HDLc levels, it might be hypothesized that PPARβ/δ agonists
might act via common molecular targets. However, at least in
mice, PPARα and PPARβ/δ agonists display divergent effect
on plasma TG levels, suggesting a different mode of action.

7. PPARγ AND PLASMA TRIGLYCERIDE METABOLISM

Synthetic PPARγ agonists are prescribed for their ability to
promote insulin sensitivity and lower plasma glucose levels
in patients suffering from type 2 diabetes mellitus (T2DM).
On top of an insulin-sensitizing action, numerous studies in
mice and humans have shown that use of PPARγ agonists
leads to a reduction in fasting and postprandial plasma TG
levels [99–103]. Some variability in the plasma TG lowering
effect is observed between different PPARγ agonists, and in
mice between various disease models. Indeed, no effect of
PPARγ agonists on plasma TG is observed in the two mouse
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models most commonly used for atherosclerosis research,
which are the LDL receptor knock-out and apoE knock-out
mice [104]. In humans rosiglitazone seems to specifically
lower postprandial but not fasting TG levels [105, 106]. Evi-
dence has been provided that the plasma TG lowering effect
of PPARγ agonists may be connected to their insulin sensitiz-
ing action by suppressing adipose tissue lipolysis and plasma
FFA levels, which is expected to lead to decreased hepatic
VLDL-TG production [106]. However, no relationship ex-
ists between the insulin-sensitizing potency of PPARγ ago-
nists and plasma TG lowering [107]. Furthermore, in a re-
cent study, treatment of type 2 diabetic subjects with piogli-
tazone did not result in any change in hepatic VLDL-TG pro-
duction [108]. Thus, whereas PPARα agonist lowers plasma
TG by a combination of suppressing hepatic VLDL produc-
tion and stimulating plasma TG clearance, PPARγ agonists
seem to lower plasma TG exclusively by enhancing plasma
TG clearance [100, 108].

The stimulatory effect of PPARγ agonists on plasma TG
clearance is achieved by upregulating LPL expression and ac-
tivity in adipose tissue [52, 100, 106, 109, 110], which is asso-
ciated with an increase in postheparin plasma LPL mass/total
activity [101, 102]. As a consequence, LPL-mediated lipoly-
sis and the fractional clearance rate of VLDL-TG are elevated
[108]. Besides directly regulating LPL production, PPARγ ag-
onists may influence LPL-mediated lipolysis by decreasing
plasma levels of APOC3, a potent inhibitor of LPL [108].

Interestingly, in rats induction of LPL activity and gene
expression by PPARγ agonist was observed in inguinal but
not retroperitoneal adipose tissue [111]. This type of adipose
depot-specific regulation of LPL by PPARγ likely accounts
for the redistribution of stored fat from visceral towards sub-
cutaneous adipose tissue upon treatment with PPARγ ago-
nists [112]. Also, no induction of LPL expression by PPARγ
was observed in murine skeletal muscle [113].

In contrast to what is observed in vivo, PPARγ ago-
nists decrease LPL activity in primary rat and mouse 3T3
adipocytes [100, 114]. It can be hypothesized that the in-
hibition of LPL activity may be mediated by upregulation
of Angptl4, similar to what was discussed for the suppres-
sion of LPL activity in various cell types after treatment with
PPARα agonist. In light of the recent finding that rosiglita-
zone raises plasma Angptl4 levels in human subjects [115],
and that Angptl4 increases abundance of monomeric LPL in
preheparin plasma (our unpublished data), it can be specu-
lated that upregulation of Angptl4 may also account for the
observed increase in plasma preheparin LPL levels in subjects
treated with pioglitazone [108].

Use of gene targeting to study of the role of PPARγ in
regulation of lipoprotein metabolism has been complicated
by the lethality of PPARγ null mice. However, mice with a
specific ablation of the PPARγ2 isoform are viable and, op-
posite to the effect of PPARγ agonists, show elevated plasma
TG levels, especially on a leptin-deficient background [116].
A similar elevation of plasma TG was observed in mice in
which PPARγ was specifically deleted in adipose tissue [117].

Apart from LPL, very few PPARγ target genes that impact
on TG-rich lipoproteins are known. It has been shown that

LDL-receptor-related protein 1 (LRP-1), which is involved in
clearance of cholesteryl-esters from chylomicron remnants
and possibly HDL, is a direct target gene of PPARγ in hu-
man adipocytes [118]. These data suggest that upregulation
of LRP-1 may contribute to the stimulatory effect of PPARγ
agonists on clearance of TG-rich lipoproteins.

8. PPARγ AND HDL METABOLISM

Although PPARγ agonists are best known for their ability to
lower plasma glucose and TG levels, depending on the type of
PPARγ agonist and the type of animal species/model, plasma
levels of cholesterol and specific lipoprotein subclasses may
be altered as well [104, 119]. Recently, the results of two
large clinical trials involving either rosiglitazone or piogli-
tazone were reported. In the ADOPT trial, 4360 subjects
recently diagnosed with T2DM were randomly assigned to
treatment with metformin, glyburide, or rosiglitazone. Af-
ter 4 years, plasma HDLc levels were modestly higher in the
rosiglitazone-treated patients [120]. In the proactive trial,
5238 patients with type 2 diabetes received either piogli-
tazone or placebo. Again, a significant increase in plasma
HDLc levels was observed in the patients treated with piogli-
tazone [121]. The small but reproducible increase in plasma
HDLc upon treatment with PPARγ agonists was substanti-
ated in a meta-analysis summarizing the effects of thiazo-
lidinediones from a large number of randomized controlled
trails [122]. In addition, treatment with PPARγ agonists is
associated with an increase in LDL size [101, 103, 119]. It
has been reported that the relative efficacy of pioglitazone
towards ameliorating plasma lipid levels is more favorable
compared to rosiglitazone [119].

Presently, the mechanism(s) behind the HDLc raising ef-
fect of PPARγ agonists remains elusive. Possibly, PPARγ ago-
nists may carry minor agonist activity towards PPARα. How-
ever, in contrast to PPARα agonists, PPARγ agonists do not
appear to have any effect of APOA1 and APOA2 syntheses
[100, 108]. The observation that plasma HDLc levels do not
respond to PPARγ agonist treatment in rodents complicates
study of the underlying mechanisms [100]. It is conceivable
that the modest increase in HDLc following PPARγ ago-
nist treatment is due to reduced CETP-mediated exchange
of VLDL TGs for HDL cholesterol, concomitant with a drop
in VLDL-TG levels. Finally, PPARγ has been shown to up-
regulate expression of ABCA1 in macrophages [88, 123]. As
ABCA1 is required for the flux of cholesterol from cells onto
APOA1 to form nascent HDL, upregulation of ABCA1 by
PPARγ may contribute to the HDLc-raising effect of PPARγ.
However, it still needs to be demonstrated that expression of
ABCA1 is under control of PPARγ in tissues responsible for
the major share of HDL synthesis, which are intestine and
liver.

9. CONCLUSION

PPARs have a major impact on levels of lipoproteins in
plasma by governing the expression of numerous genes in-
volved in the synthesis, remodeling, and clearance of plasma
lipids and lipoproteins. The changes in plasma lipoprotein
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levels associated with treatment with PPAR agonists, charac-
terized by decreased plasma TG levels, increased HDLc, and
an increase in LDL size, are expected to decrease the risk for
cardiovascular disease. In recent years, several new proteins
that play a role in lipoprotein metabolism have been iden-
tified. In addition, the functional characterization of other
proteins involved in lipoprotein metabolism has advanced
significantly. As progress is made in PPAR-dependent gene
regulation, especially in human, our insight into the molec-
ular mechanisms underlying the effects of PPARs on plasma
lipoproteins will further continue to improve.
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[110] M. Tiikkainen, A.-M. Häkkinen, E. Korsheninnikova, T. Ny-
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