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Abstract: Colorectal cancer (CRC) is the third leading cause of cancer deaths, and while mortality has
largely improved in the developed world, five-year survival for metastatic disease remains dismally
low at only 15%. Fortunately, nearly a dozen targeted therapies and immunotherapies have been
FDA approved in the past decade for certain patient profiles with metastatic CRC (mCRC), and many
others are under development. Checkpoint inhibitors such as pembrolizumab have proven effective
at extending survival for mismatch repair (MMR)-deficient and high microsatellite instability (MSI)
mCRC patients. In combination with chemotherapy in first- and second-line treatment, antiangiogenic
(anti-vascular endothelial growth factor (anti-VGEF)) agent bevacizumab has been shown to increase
mCRC survival. Anti-epidermal growth factor receptor (anti-EGFR) agents panitumumab and
cetuximab, in combination with chemotherapy, have also prolonged survival among KRAS and
all RAS wild-type mCRC patients. Among these patients, anti-EGFR therapy has been found to
be more efficacious than bevacizumab. Improved selectivity has allowed small-molecule receptor
tyrosine kinase (RTK) inhibitors to target VEGF and EGFR with greater efficacy and tolerability.
Combinations of immunotherapies, RTKs, monoclonal antibodies, and cytotoxic drugs are being
investigated to provide broad-spectrum protection against relapse by simultaneously targeting
many cancer hallmarks. Lastly, human epidermal growth factor receptor 2 (HER2) therapy has
shown promise for HER2-positive mCRC patients, though larger clinical trials are required to secure
FDA approval.

Keywords: colorectal; metastatic; targeted therapy; epidermal growth factor receptor inhibitors;
novel therapeutics

1. Introduction

With nearly two million new cases and one million fatalities in 2018, colorectal cancer (CRC) is
the third leading cause of cancer deaths around the world [1,2]. Moreover, the global burden of the
disease is expected to increase by a further 60% by the year 2030 [3]. Much of the growth in incidence
is associated with the economic development of transitioning nations, which often goes hand in hand
with a transition to the “Western” diet and lifestyle. Obesity, physical inactivity, and consumption
of red and processed meat, alcohol, and tobacco have all been identified as significant risk factors
for CRC [3]. In addition to the environmental risk factors, genetic and epigenetic aberrations are
very prominent in colorectal cancer leading to initiation, propagation, and dissemination of the
tumor [4]. Environmental, epigenetic, and genetic risk factors can in fact often crosstalk in the context
of carcinogenesis. The significant genomic instability generated by such modifications means that
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identifying specific genetic and epigenetic alterations can allow a targeted and precise approach to
therapeutic targets disclosure [4].

Beyond the genes altered sequentially as part of the of the adenoma–carcinoma sequence such as
the oncogenes, APC and KRAS, and tumor suppressor genes, TP53 and deleted in colorectal carcinoma
(DCC), a significant proportion of colorectal cancers display high degrees of microsatellite instability
(MSI) as a result of defects in genes involved in the DNA mismatch repair (MMR) pathway such
as MLH1, MSH2, MSH6, and PMS2 [5]. Tumors with high MSI are more prone to accumulating
mutations that can often generate neoantigens recognized by the immune systems. This principle
is crucial for the purposes of this review as the majority of CRCs responding to immunotherapy
have a high mutation rate. The main immunotherapy targets are programmable death protein 1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), checkpoint molecules that regulate
the function of tumor-specific T-cells. On the other hand, targeted therapies aim mainly at tyrosine
kinases such as vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR),
placental growth factor (PGF), and human epidermal growth factor receptor 2 (HER2). These therapies
block growth factor signaling pathways that would otherwise aberrantly instruct tumor cells to
continuously grow, divide, and metastasize via angiogenesis. As such, the effect of monoclonal
antibodies against these kinases often depends on the KRAS or BRAF status of the tumor, which is
another reason why understanding the molecular pathogenesis of the cancer is crucial in deciding the
appropriate treatment [5].

Even in the face of this growing incidence, CRC mortality in developed nations such as the
US and Western Europe has fallen thanks to improvements in early diagnosis and treatment [3,6].
Procedures available for screening and early diagnosis include colonoscopy, flexible sigmoidoscopy,
computed tomography (CT) colonography, fecal immunochemistry, and fecal occult blood testing [7].
Cases diagnosed in Stage I have a 92% five-year survival, as compared to a 15% five-year survival for
metastatic (stage IV) cases in the US [6]. Early diagnosis in developed countries may also contribute to
the increasing incidence rates [3].

Nevertheless, survival rates have also improved among those with advanced stage disease [6],
indicating advances not only in early diagnosis but also in the treatment of metastatic CRC (mCRC) itself.
While surgery remains the primary option for localized disease, a wide array of therapeutics has been
developed to slow the progression of late-stage CRC. Multi-drug chemotherapeutic regimens such as
FOLFIRI (folinic acid, fluorouracil and irinotecan), FOLFOX (folinic acid, fluorouracil and oxaliplatin),
and CapeOX (capecitabine plus oxaliplatin) have become the standard of care, disrupting multiple
metabolic and proliferative pathways to avoid or delay cancer resistance or relapse [8]. Identification of
genetic mutations that drive CRC tumorigenesis has enabled the development of targeted therapies and
immunotherapies that, in certain patient profiles, have displayed better efficacy for mCRC, and fewer
adverse events, compared to traditional chemotherapy regimens. Immunotherapies and targeted
therapies are currently being investigated in broad-spectrum combinations, including partnerships
with established chemotherapeutics in an effort to address multiple hallmarks of cancer and, thus,
lower the risk of recurrence and relapse [9]. Another avenue of recent development lies in the field
of “migrastatics”—drugs that target cancer invasion and metastasis, which account for over 90%
of cancer mortalities [10]. This is a phenomenon observed in most cancers whereby tumor cells
evolve; the adaptive mechanisms that allow them to employ their cytoskeleton in order to invade the
extracellular matrix and metastasize. Technologies such as small-molecule inhibitors targeting receptor
tyrosine kinases (RTKs) can be employed against molecules involved in invasion and metastasis when
overexpressed by cancers [10].

2. Immunotherapy

Immunotherapy involves priming the host’s natural immune defenses to recognize, target,
and destroy cancer cells effectively. Like other tumors, CRC has been shown to evade immune
detection through several mechanisms. Firstly, CRC inhibits circulating cytotoxic T-cells by releasing
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immunosuppressive cytokines such as Transforming growth factor beta, as well as by recruiting
immunosuppressive cell populations, such as regulatory T-cells and myeloid-derived suppressor cells
(MDSCs) to the tumor microenvironment [11,12]. Additionally, CRC tumorigenesis appears to be
sustained by inflammation, as seen in conditions such as inflammatory bowel disease, and CRC further
releases inflammatory cytokines such as IL-6 to increase blood flow and tumor growth and evade
immunity [13,14]. Other methods of immunosuppression include antigen presentation, trafficking,
and recognition of tumor cells via major histocompatibility complex downregulation.

Immunotherapies include vaccines, checkpoint-inhibitors, and other agents that have shown
unprecedented efficacy in the treatment of other advanced cancers. However, not all immunotherapies
have proven equally effective against CRC. Levamisole, an immunomodulating agent which helps
promote antibody production against tumor antigens, did not demonstrate efficacy as an adjuvant CRC
monotherapy [15,16]. However, the combination of levamisole and 5-FU displayed equal efficacy with
the current standard of 5-FU and leucovorin [17]. Several similar agents have been under development
but have not proceeded to later-phase clinical trials.

3. Checkpoint Inhibitors

Checkpoint inhibitors are a class of immunotherapies that function by targeting and
blocking cancer’s attempt to suppress T-cell detection [18]. Cancer cells exploit weaknesses
in the natural regulation of T-cells by inducing the expression of co-inhibitory signals such as
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or programmed death ligand 1 (PD-L1) on
tumor-infiltrating lymphocytes. These receptors normally act as natural checkpoints to control the
activity of T-cells, for example, during the clearance of a viral infection, in order to prevent damage
to the host. However, in a cancer context, engagement of these T-cell receptors by ligands expressed
on cancer cells propagates an inhibitory signal that induces the circulating cytotoxic T-cells to ignore
tumor cells and become anergic, or even commit apoptosis, thus allowing CRC to avoid the body’s
immune defenses [19]. In turn, checkpoint inhibitors function to block these receptors and thus the
mitigation of the negative regulatory signals (during T-cell priming and exposure to tumor antigen),
enabling the unrestricted activity of tumor-specific T-cells, and have proven remarkably effective in
patients with certain mCRC sub-types.

Specifically, mismatch repair (MMR)-deficient cancers, which comprise about 15% of all CRCs,
are highly responsive to immune checkpoint blockade therapy [20,21]. By promoting frameshift
mutations, MMR deficiency results in cancer cells displaying unusual antigens, known as neoantigens,
on their surface. Since host T-cells have acquired no immunological tolerance for these neoantigens,
MMR-deficient CRC is more likely to be recognized by the immune system, labeled as foreign/dangerous
and targeted for destruction. As these rapidly mutating cancers are also more likely to express ligands
(such as PD-L1) to engage the immunosuppressive checkpoint molecules on T-cells, they are excellent
targets for treatment with checkpoint inhibitors [22]. For all these reasons, MSI, a characteristic feature
of CRC, increases the efficacy of checkpoint inhibitors [23].

In fact, in 2017, pembrolizumab (Keytruda), became the first immunotherapy to be approved by the
FDA for metastatic or unresectable CRC, specifically tumors with high MSI or poor MMR. Keytruda is
a monoclonal antibody against PD-1 (programmed death protein 1) that acts as a checkpoint inhibitor
by binding PD-1 on cytotoxic T-cells and preventing their interaction with the immunosuppressive
PD-L1 and PD-L2 ligands overexpressed in cancer cells [24,25]. A phase II trial found Keytruda to
be more effective than the standard of care for MMR-deficient CRC. The trial reported an objective
response rate (ORR) and progression-free survival (PFS) of 40% and 78%, respectively, for patients with
MMR-deficient CRC, as compared with 0% and 11% seen in patients with MMR-proficient CRC [26].

The other two FDA-approved immunotherapy options for CRC are PD-1 inhibitor nivolumab
(i.e., Opdivo) monotherapy or a combination of nivolumab and ipilimumab (Yervoy) [27]. Ipilimumab is
a humanized monoclonal antibody that binds CTLA-4, a T-cell receptor that also inhibits immune
stimulation. Blocking CTLA-4 removes the inhibitory signal received by T-cells during their
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antigen-specific stimulation and allows them to activate and target cancer cells for destruction.
While an initial phase I trial found nivolumab ineffective for CRC, a complete response was observed
in one patient with high MSI and PD-L1 expression [28]. In a later phase II study (CheckMate
142), nivolumab proved effective for those who had progressed on three or more lines of therapy,
with 68.9% of patients maintaining disease control for more than 12 weeks [29]. A subsequent
phase II study found that the combination of nivolumab and ipilimumab for patients with deficient
MisMatch Repair/High levels of Micro Satellite Instability (dMMR/MSI-H) mCRC who had progressed
on standard chemotherapeutic regimens had an ORR of 55% (median follow-up of 13.4 months),
with disease control for 12 weeks or more in 80% of the cohort and 12-month PFS of 71% and 12-month
overall survival of 85% [30,31]. Unsurprisingly, checkpoint inhibitors have been repeatedly shown to
be ineffective in microsatellite-stable (MSS) and refractory canonical CRC [28,30,32,33].

Other checkpoint inhibitors currently under investigation target molecules such as Lymphocyte
activation gene-3 (LAG-3) and T cell immunoglobulin-3 (TIM-3). Broad spectrum combinations of
checkpoint inhibitors, along with proven chemotherapeutics, are being investigated for MMR-proficient
patients, the more common subset of mCRC, and the one that has not yet benefited from checkpoint
inhibition [34]. Studies are being conducted on the viability of using nanoparticle-based chemotherapy
to sensitize tumors to immune checkpoint blockade and promote antitumor immunity [35].

4. Other Immunotherapies

Cancer “vaccination” involves injecting the patient with select tumor antigens to stimulate
immune-mediated recognition of cancers. Autologous vaccination, which involves infusing the
patient with their own identified tumor antigens, has not proven effective for CRC in several clinical
trials [36,37]. Similarly, neither peptide-based vaccines, which present a unique and specific portion
of the cancer cell antigen to the immune system, nor dendritic cell vaccines [38–40], which aim to
prime the body’s primary antigen presenting cells (APCs) with cancer antigens, have shown efficacy as
a CRC treatment [41,42].

Adoptive cell transfer, another type of immunotherapy, aims to boost the immune response against
cancer by replenishing the host’s own (often cancer-specific) T-cell levels through ex vivo expansion
and re-injection in the patient. A phase II trial for adjuvant therapy found that expanded sentinel lymph
node (SLN)-T lymphocytes could boost OS from 14 to 28 months, prompting further investigation [43].
Toll-like receptors (TLR) promote cancer recognition through activation of the innate immune system,
and while TLR9 agonists were found effective in mouse models, a mCRC maintenance trial found only
modest improvement in human patients [44]. Nevertheless, these immunomodulating agents are being
investigated in combination with other immunotherapies, targeted therapies, and chemotherapies.
Novel therapies currently under investigation include inhibitors against enzymes that generate
nutritional stress for T-cells such as indoleamine 2,3-dioxygenase (IDO) and immunomodulatory
molecules such as CD73 and A2A receptors [45,46]. Additionally, early phase studies looking at a novel
T-cell bispecific antibody targeting both Carcinoembryonic antigen (CEA) on tumor cells and CD3 on
T-cells had shown evidence of anti-tumor response in mCRC patients following monotherapy regimes,
and further response enhancement when anti-CEA/CD3 was combined with the anti-PD-L1 checkpoint
inhibitor atezolizumab [47].

Finally, the microbiome has been shown to play an important role in modulating the immune
response to CRC, and the effects of chemotherapy and immunotherapy on the microbiome are currently
under investigation in clinical trials [48,49].

5. Targeted Therapies

5.1. Anti-Angiogenic Agents

Angiogenesis refers to the formation of a new vascular network by endothelial cell budding and
growth of pre-existing vasculature. While angiogenesis is an essential process to keep cells oxygenated,
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it is often abused by cancer cells to increase access to nutrients and also to invade the bloodstream
and metastasize to distant sites [50]. Anti-angiogenic agents can be used to inhibit cancer growth
and metastasis, as well as to improve circulation of other cytotoxic agents to all parts of cancer by
“normalizing” the surrounding vasculature [51].

Vascular endothelial growth factor (VEGF) is the primary cytokine that has been implicated in
tumor-induced angiogenesis. The VEGF family of proteins is composed of five receptor tyrosine
kinases (RTK), of which VEGF receptor-2 (VEGFR-2) is the main member involved in the formation
of new blood vessels [52]. Bevacizumab is a monoclonal antibody targeting VEGFR-2 [53]. It was
first approved by the FDA in 2004 for mCRC in combination with other cytotoxic agents. By blocking
VEGFR-2, bevacizumab prevents cancer angiogenesis.

In its first clinical trial, the addition of bevacizumab to first-line treatment with 5-FU chemotherapy
significantly improved overall survival (OS) (20.3 vs. 15.6 months), PFS (10.6 vs. 6.2 months), and RR
(44.8% vs. 34.8%) [54]. A later phase III trial found that bevacizumab plus FOLFIRI chemotherapy also
produced significant improvement in PFS and OS [55]. Another trial investigating the combination of
bevacizumab with oxaliplatin (platinum-based) chemotherapy found significant prolongation only in
PFS when compared to just oxaliplatin [56]. A recent trial evaluated a combination of all cytotoxic
agents known as FOLFOXIRI with and without bevacizumab. While the addition of bevacizumab
improved PFS and RR, it also increased the incidence of grade 3/4 (significant) adverse events [57].
As an anti-angiogenic agent, bevacizumab has been associated with vascular-related adverse events
such as hypertension, bleeding, and thromboembolic events. It is contraindicated for patients with
high blood pressure and coronary artery disease [58]. A study of safety in elderly patients found
bevacizumab combined with capecitabine to be a well-tolerated regime [59]. Bevacizumab has also
been shown to improve OS, PFS, and HR (hazard ratio of progression) as a second-line treatment and
maintenance treatment for metastatic CRC [60,61].

Other FDA-approved anti-angiogenic agents for mCRC include aflibercept (which binds
VEGF factor A and placental growth factor), ramucirumab (which targets VEGF and HER2/neu),
and regorafenib [47,62]. The latter is an oral multi-RTK blocker that targets angiogenic pathways as
well as oncogenic pathways and stromal suppressive molecules in the tumor microenvironment [63].
It demonstrated slightly prolonged OS and PFS compared to placebo in cases in which CRC had
progressed after all approved therapies, but it also induced a higher incidence of adverse events,
including fatal liver injury [64]. Apatinib, a small-molecule VEGF inhibitor that seems to prolong
survival for gastric cancer is currently being investigated for mCRC [65]. Selective RTK inhibitors such
as apatinib and regorafenib show improved selectivity as compared to early Tyrosine Kinase Inhibitors
(TKIs) such as sorafenib, resulting in significantly better tolerability and improved safety profile.
In order to overcome resistance, selective RTK inhibitors are being investigated in combination with
immunotherapy and chemotherapy [66–68]. For example, in the context of chemotherapy-refractory
or locally advanced mCRC, the combination of cobimetinib, a mitogen-activated protein kinase
kinase (MEK) inhibitor with atezolizumab (an anti-PD-L1 checkpoint inhibitor) has so far displayed
potentiation for anti-tumor T-cells to yield durable and improved OS, compared to those reported with
standard of care regimes, with an acceptable safety profile [69].

5.2. EGFR Inhibitors

Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor involved in the signaling of
cellular proliferation, angiogenesis, migration, and metastasis [70]. Predictably, it is upregulated in
about 80% of colorectal cancers [71].

Cetuximab is a chimeric monoclonal antibody binding and inhibiting EGFR thus hindering
cancer cell proliferation and growth as well as invasive potential and angiogenesis thus reducing
the probability of metastasis. Cetuximab was originally approved for mCRC in 2004, though later
experiments showed that the presence of KRAS mutation in cancer cells bestows resistance to cetuximab.
As such, the therapy has since been confined to KRAS and NRAS wild-type (WT) mCRC patients [72].
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Among WT mCRC patients in a large phase III trial, the addition of cetuximab to FOLFIRI significantly
improved OS (23.5 vs. 20.0 months), PFS (9.9 vs. 8.4 months), and RR (57.3% vs. 39.7%) [73]. A phase
II study of cetuximab in combination with FOLFOX-4 found improvements in RR and PFS but not in
OS relative to FOLFOX-4 alone [74]. As similar results were not found in combinations of cetuximab
with other chemotherapy regimens, the gold standard in first-line mCRC care has remained cetuximab
with FOLFOX or FOLFIRI among KRAS WT cases [75,76].

In KRAS WT mCRC patients who had progressed under the standard of care, cetuximab used
as second-line treatment was shown to significantly improve OS (9.5 vs. 4.8 months) and PFS
(3.7 vs. 1.9 months) while preserving the quality of life standards as compared to best supportive
care [77]. In the salvage setting, cetuximab plus irinotecan chemotherapy significantly improved PFS
and RR, but not OS as compared to irinotecan monotherapy [78,79].

In similar fashion to cetuximab, panitumumab is a monoclonal antibody that targets EGFR and
displays similar toxicities, namely skin rash and hypomagnesemia [80]. Although approved two
years later, panitumumab has demonstrated similar efficacy to cetuximab when used in combination
therapies [81,82]. However, panitumumab was not shown to be an effective salvage therapy for those
who had progressed on cetuximab or had mutant KRAS [83–85].

5.3. Comparisons for Various Genetic Profiles

A phase II trial comparing targeted combination therapies found that for KRAS WT mCRC
patients, panitumumab in combination with FOLFOX had similar PFS and RR but superior OS to that
of bevacizumab with FOLFOX [86]. Similarly, a phase III trial found cetuximab plus FOLFIRI to have
a superior OS compared to bevacizumab with FOLFIRI (of 28.7 vs. 25.0 months), with PFS and RR
remaining the same between the two treatment options [87]. A separate study comparing the same
treatment combinations found that cetuximab had superior RR, but not OS, against bevacizumab [88].
Likewise, panitumumab combination therapy was found to have better RR, but slightly lower PFS and
OS, as compared to bevacizumab when used in second-line treatment [89].

While anti-EGFR therapy had long been considered the standard for KRAS WT CRC, a recent
genomic analysis revealed that 17% of KRAS WT patients suffer from mutations in different RAS gene
exons, including the NRAS gene [87]. Those cases that were WT for all these mutations (all-RAS)
displayed prolonged OS with FOLFOX + anti-EGFR treatment as compared to those that were only
KRAS WT [90]. In a retrospective analysis of the trials above, all-RAS WT patients were found to have
further overall survival benefits (though questionable PFS benefits) under anti-EGFR combination
therapy as compared to anti-VEGF (bevacizumab) [91]. Approved therapies and their associated
biomarkers have been summarized in Table 1.
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Table 1. Approved therapies and associated biomarkers in colorectal carcinoma.

Therapy Trade Name FDA Approval Year and
References Cellular Target Indication/Biomarker

Pembrolizumab Keytruda 2017 [92] PD-1 High MSI/MMR deficient

Nivolumab +
Ipilimumab Opdivo + Yervoy 2018 [27] PD-1, CTLA4 High MSI/MMR deficient

Bevacizumab Avastin, Altuzan 2004 [54] VEGF All mCRC, in combo
w/chemo

Aflibercept Zaltrap, Eylea 2012 [62] VEGF, PGF All mCRC, in combo
w/chemo

Ramucirumab Cyramza 2015 [47] VEGF, HER2/neu All mCRC, in combo
w/chemo

Regorafenib Stivarga 2012 [64] Multi RTK Salvage therapy

Cetuximab Erbitux 2004 [78,93] EGFR KRAS, NRAS, BRAF WT,
in combo w/chemo

Panitumumab Vectibix 2006 [94] EGFR KRAS, NRAS, BRAF WT,
in combo w/chemo

PD-1—programmable death protein 1; CTLA-4— cytotoxic T-lymphocyte-associated protein 4; VEGF—vascular
endothelial growth factor; PGF—placental growth factor; HER2—human epidermal growth factor 2; RTK—receptor
tyrosine kinase; EGFR—epidermal growth factor receptor; MSI—microsatellite instability; MMR—mismatch repair;
mCRC—metastatic colorectal cancer, WT—wild type.

6. Targeted Therapies in Development

EGFR can also be blocked using small-molecule receptor tyrosine kinase (RTK) inhibitors such as
gefitinib or erlotinib. Multiple phase II trials found that these RTK inhibitors, in combination with
chemotherapy, produced no improvement in survival, but higher toxicities, as compared to standard
chemotherapy [95–97]. Increasing the selectivity of RTK inhibitors has allowed for mitigation of
adverse events and improved efficacy. Identification of new oncogenic targets beyond VEGF and EGFR
for RTK inhibitors could further support this blossoming field and address the current limitations of
targeted mCRC treatment [98]. Molecular profiling and identification of RTK activation patterns can
allow for personalized, broad-spectrum multi-RTK therapies, which can be especially effective for
single RTK-resistant mCRC cases [99].

For patients with mutant KRAS (thus unresponsive to anti-EGFR therapy), two other monoclonal
antibodies for different surface receptors have been developed. Ganitumab targets type-1 insulin-like
growth factor receptor, while conatumumab targets proapoptotic death receptor 5. In a trial in
combination with FOLFIRI, conatumumab offered a slight improvement in PFS relative to ganitumab
or placebo (6.5, 4.5, and 4.6 months, respectively), while the OS was unchanged [100].

A recent trial looking at trastuzumab (Herceptin) and lapatinib, two targeted therapies normally
used for HER2-positive breast cancer, was conducted in the context of HER2-positive mCRC [101].
Trastuzumab was the first anti-cancer monoclonal antibody developed (for the HER2/neu receptor,
a close relative of EGFR), while lapatinib is a small-molecule inhibitor of both the HER2/neu receptor and
EGFR [102]. While only 5% of screened mCRC patients were identified as HER2-positive, the overall
response rate (ORR) for those patients with this therapy was 30% [101]. Although promising for a small
population, the therapy has yet to be tested in large clinical trials in order to be FDA approved.

7. Conclusions

As CRC incidence across the world continues to grow, development of better treatment options
for the metastatic, late-stage disease has become even more imperative. CRC is the third leading cause
of cancer mortality, and it continues to climb, while advanced-stage five-year survival has remained
extremely low at only 15% in the US. Fortunately, several immunotherapies and targeted therapies
have proven more efficacious and less toxic than the standard chemotherapy regimens for the treatment
of mCRC.
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Checkpoint inhibitors, a novel form of immunotherapy, have proven effective for MMR-deficient
and high-MSI mCRC patients, while other forms of immunotherapy have yet to show significant
promise. Anti-angiogenic agents such as bevacizumab have been shown to increase survival in first-line
and second-line treatment in combination with chemotherapy, though they have a high rate of adverse
events. Anti-EGFR agents improve survival among KRAS WT mCRC patients and offer an even greater
benefit for all-RAS WT patients. For these patient groups, anti-EGFR therapy seems to be slightly more
efficacious than bevacizumab. With improved selectivity, small-molecule RTKs may allow for safer
and more efficacious targeting of EGFR, VEGF, and other mCRC oncogenes, such those promoting
invasion and metastasis, that is yet to be fully characterized. While HER2 therapy was shown to
improve survival among HER2-positive mCRC patients, larger clinical trials are required to investigate
this benefit further, prior to approval.
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3. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in
colorectal cancer incidence and mortality. Gut 2016, 66, 683–691. [CrossRef] [PubMed]

4. Hong, S.N. Genetic and epigenetic alterations of colorectal cancer. Intest. Res. 2018, 16, 327–337. [CrossRef]
[PubMed]

5. Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [CrossRef]
6. Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence—SEER 18 Regs

Research Data+Hurricane Katrina Impacted Louisiana Cases, Nov 2015 Sub (1973–2013 varying)—Linked
To County Attributes—Total, U.S., 1969–2014 Counties, National Cancer Institute, DCCPS, Surveillance
Research Program, Surveillance Systems Branch, released 16, based on the November 2015 submission.
Available online: www.seer.cancer.gov (accessed on 28 February 2018).

7. Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.;
Lansdorp-Vogelaar, I.; Seeff, L.C.; et al. Annual report to the nation on the status of cancer, 1975-2006,
featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to
reduce future rates. Cancer 2010, 116, 544–573. [CrossRef] [PubMed]

8. Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.;
Labianca, R.; et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. New Engl. J. Med.
2018, 378, 1177–1188. [CrossRef]

9. Bishayee, A.; Block, K. A broad-spectrum integrative design for cancer prevention and therapy: The challenge
ahead. Semin. Cancer Biol. 2015, 35, S1–S4. [CrossRef]
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