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A B S T R A C T   

Objective:Coronavirus disease 2019 (COVID-19) targets several tissues of the human body; among these, a serious 
impact has been observed in the microvascular system. The aim of this study was to verify the presence of 
photoplethysmographic (PPG) signal modifications in patients affected by COVID-19 at different levels of 
severity. 

Approach: The photoplethysmographic signal was evaluated in 93 patients with COVID-19 of different severity 
(46: grade 1; 47: grade 2) and in 50 healthy control subjects. A pre-processing step removes the long-term trend 
and segments of each pulsation in the input signal. Each pulse is approximated with a model generated from a 
multi-exponential curve, and a Least Squares fitting algorithm determines the optimal model parameters. Using 
the parameters of the mathematical model, three different classifiers (Bayesian, SVM and KNN) were trained and 
tested to discriminate among healthy controls and patients with COVID, stratified according to the severity of the 
disease. Results are validated with the leave-one-subject-out validation method. 

Main results: Results indicate that the fitting procedure obtains a very high determination coefficient (above 
99% in both controls and pathological subjects). The proposed Bayesian classifier obtains promising results, 
given the size of the dataset, and variable depending on the classification strategy. The optimal classification 
strategy corresponds to 79% of accuracy, with 90% of specificity and 67% of sensibility. 

Significance:The proposed approach opens the possibility of introducing a low cost and non-invasive screening 
procedure for the fast detection of COVID-19 disease, as well as a promising monitoring tool for hospitalized 
patients, with the purpose of stratifying the severity of the disease.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is a condition caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID- 
19 was identified in Whuan (central China) in late 2019. Since then, this 
disease has spread worldwide and WHO declared COVID-19 a pandemic 
on March 11, 2020. The trend of the spread of the disease led to a severe 
global health crisis with a huge impact on health systems [1]. According 
to the data reported by the World Health Organization, as of 3 April 
2022 there were more than 489 million cases and more than 6 million 
deaths worldwide [2]. 

The novel coronavirus SARS-CoV-2 manages to infect the human 
body mainly by binding to epithelial cells in the oral and nasal cavity. In 
particular, this infection acts through angiotensin-converting enzyme 2 
(ACE2) receptors, widely distributed in the respiratory tract and in other 

tissues such as skin and arterial and venous endothelium [3,4]. As a 
result, SARS-CoV-2 can induce several feared consequences in addition 
to respiratory complications. Among the non-respiratory complications, 
a high prevalence of cardiovascular diseases were found in patients with 
COVID-19 [5]. It was reported that over 7% of COVID-19 patients were 
affected by myocardial damage. This percentage can rise to 22% in the 
case of critically ill patients [6]. Moreover, SARS-CoV-2 infection can 
modify endothelial cells morphology as well as induce their apoptosis. 
As a result of the infection, the endothelial cells may trigger the immune 
system to release a storm of cytokine. This condition, in association with 
endothelial dysfunction, can induce microvascular damage and 
contribute to multiorgan failure [4]. 

Since endothelium has an important role in the regulation of vascular 
tone and the maintenance of vascular homeostasis, endothelial alter-
ation may lead to important consequences such as microvascular 

* Corresponding author. 
E-mail address: eva.rossi1@unifi.it (E. Rossi).  

Contents lists available at ScienceDirect 

Medical Engineering and Physics 

journal homepage: www.elsevier.com/locate/medengphy 

https://doi.org/10.1016/j.medengphy.2022.103904 
Received 11 May 2022; Received in revised form 5 September 2022; Accepted 5 October 2022   

mailto:eva.rossi1@unifi.it
www.sciencedirect.com/science/journal/13504533
https://www.elsevier.com/locate/medengphy
https://doi.org/10.1016/j.medengphy.2022.103904
https://doi.org/10.1016/j.medengphy.2022.103904
https://doi.org/10.1016/j.medengphy.2022.103904
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medengphy.2022.103904&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Medical Engineering and Physics 109 (2022) 103904

2

abnormalities [7]. 
In this sense, it was reported that severe form of COVID-19 is a 

systemic disease that affects the microvessels of the body. Microvascular 
alterations have been observed both in skin and sublingual circulation 
[8]. In particular, the heterogeneity of circulation and reduction of flow 
velocity in addition to a deformation of red blood cells was found [7,9]. 

The timely assessment of the microcirculation of patients with 
COVID-19 is important because the impairment of the microvascular 
response may be correlated with the severity of the disease [9]. In this 
sense, it is well documented how endothelial dysfunction and micro-
circulatory changes caused by COVID-19 are associated with poor 
prognosis in the acute phase [4,10]. Furthermore, ensuring the best 
possible treatments is important because the effects of coronavirus dis-
ease 2019 can last for a long time after healing even in the case of pa-
tients with non-severe symptoms [10,11]. 

All this highlights the importance of studying the effects of COVID-19 
on the microcirculation. Since microvascular evaluation can be 
hampered by the condition and the treatments to which these patients 
may be subjected, the use of devices such as photoplethysmography 
(PPG) may represent a valid solution. PPG technique is a non-invasive, 
low cost and user-friendly method easy to perform. Furthermore, the 
use of PPG technique could allow a more precise assessment and 
monitoring of the microcirculation, even remotely, contributing to the 
detection of the disease and its severity [12]. The aim of the study was to 
define a mathematical model representing the microvascular flow 
starting from a PPG signal in order to detect early alterations in patients 
with COVID-19. The definition of this mathematical model could allow a 
timely detection of the presence of the disease and the evaluation of its 
severity. 

2. Methods 

A total of 143 subjects were enrolled in this study. The subjects 
considered were assigned to Control (50) and Covid (93) groups. The 
Covid group was, in turn, divided into Group 1 (47) and Group 2 (46) on 
the basis of the severity of the disease. Control group, referred as Group 
0, was composed of healthy workers operating at the San Giuseppe 
hospital (Empoli - Italy) while groups 1 and 2 were composed of patients 
admitted to the same hospital. Only white Caucasian subjects were 
included in the study. The clinical classification and assignment of pa-
tients to group 1 and group 2 was carried out on the basis of ventilation 
support and/or oxygen therapy required for the treatment of respiratory 
failure caused by COVID-19. In particular, two indexes were adopted: 
the Horowitz index P/F or PaO2/FiO2: ratio of arterial oxygen partial 
pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2 expressed 
as a fraction, not a percentage) [13] and the ROX index [SpO2/-
FiO2]/respiratory rate, where SpO2 is the peripheral oxygen saturation 
[14]. 

Specifically the two groups of patients were defined as follow:  

• Group 1: Patients with P/F > 200 and RR < 20 (Respiratory Rate) a/ 
min. and ROX > 2.85 at 2 h, ROX > 3.47 at 6 h and ROX > 3.85 at 
12 h, receiving low flow oxygen therapy (nasal canula or face masks) 
or HFNC only without positive pressure ventilatory support.  

• Group 2: Patients with P/F < 200 and/or pH < 7.35, pCO2 > 48 
mmHg and/or RR > 20 a/min. and ROX < 2.85 at 2 h, ROX < 3.47 at 
6 h and ROX < 3.85 at 12 h, receiving non invasive positive pressure 
ventilatory support (CPAP - Continuous Positive Airway Pressure or 
NIV - Non Invasive Ventilation). 

The acquisition procedure involved a commercial system, described 
in more detail in the paragraph 2.1, coupled with a small datalogger 
equipped with a custom software written in Python language. The 
elaboration steps foresaw a preprocessing and segmentation step for 
detecting individual cardiac cycles, a model of each cardiac cycle with 
mathematical function and the analysis of the model parameters. These 

elaboration steps were implemented offline on a dedicated workstation, 
using Matlab workspace (The Math Works, Inc., 2021). 

Patients gave informed consent to the procedure according to the 
Declaration of Helsinki before the acquisitions of the PPG signal [15]. 
The study protocol was approved by the local ethics committee (CEAVC 
19059). 

Data was anonymized during the acquisition phase. The PPG wave-
form alone was considered and associated with the experimental groups. 

2.1. Signal acquisition procedure 

The system for the acquisition of the photoplethysmographic (PPG) 
signal was composed of three components: a finger pulse oximeter 
probe, Mindray touchscreen monitor (Mindray ePM 10 - Mindray, 
China), and a single-board computer - Raspberry Pi 3. The finger pulse 
oximeter probe was positioned on the right forefinger for 5 min. This 
device was wired to the SpO2 input of the monitor providing data 
acquisition and real-time visualization of the PPG signal. The monitor 
was also connected by means of Ethernet connection with the Raspberry. 
The first two components constitute the standard monitoring system in 
use in the hospital, while the third element acts only as a datalogger, 
allowing data to be collected easily. The connection between the 
monitor and the datalogger was based on the standard HL7 protocol, 
already present in the monitor. An HL7 server module was installed on 
the Pi 3 device which allowed the continuous data storage on the device 
itself. Collected data was downloaded using an offline procedure at the 
end of the acquisition phase. The monitor was programmed by entering 
a unique numerical identifier for patient identification before each 
acquisition. This identifier was transmitted along the HL7 stream and 
was thus associated with each signal. Consequently, no user intervention 
was required on the Pi 3 device for managing the recordings. 

Each acquisition lasted 5 min, and was preceded by an acclimatiza-
tion phase of 10 min. This phase was included in order to let the skin 
temperature of the patients reach a stable value to avoid any possible 
data bias caused by temperature variations that in turn, may have 
introduced different levels of vasodilation. 

2.2. Signal preprocessing 

The first preprocessing step consisted in an upsampling procedure, 
followed by a smoothing filter. The monitor provided a waveform 
sampled at 60 Hz that was upsampled to a frequency of 100 Hz to obtain 
a smoothing waveform. This increased the number of points available 
for the fitting procedure, without introducing higher frequency com-
ponents, not present in the original signal. Subsequently, a low pass 
filter with a cutoff frequency of 30 Hz was applied in order to remove 
high-frequency noise that could affect data. Once the signals were 
upsampled and filtered, the waveform was segmented into single pulses: 
a local maximum detector identified possible candidates; those points (i. 
e. local maximums) could be either systolic peaks, or spurious detections 
usually related to the ripples present in the PPG waveform. A refinement 
step eliminated spurious detection using a set of heuristic rules as the 
amplitude and the temporal difference between peaks and variability of 
neighboring cycles. Diastolic valleys, constituting the separation points 
among consecutive cycles, were finally identified as the absolute mini-
mum present between each pair of maximums. 

All the signal key points related to the preprocessing phase are shown 
in Fig. 1. The segmentation algorithm was a derivation of the algorithm 
developed for the analysis of perfusion signals acquired using Laser 
Doppler Flowmeter (LDF) [16–18]. 

2.3. Pulse wave modelling 

Each cardiac cycle is independently modeled by fitting a parametric 
function to the curve to obtain its best approximation. The performances 
of the fitting, thus, strictly depend on the structure of the chosen func-
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tion. Several models have been proposed to this purpose [19]. The 
model presented in this study is based on the same structure we used in 
our recent studies focused on the effect of type 2 diabetes [20] and 
ageing [21] on microcirculation. In brief, the model assumes that the 
pulse waveform is generated by a linear system; this assumption helps to 
simplify the mathematical description of the system response, as the 
response of any linear system to an ideal pulse can be expressed as a sum 
of decreasing exponential functions. Thus, a single PPG cycle can be 
modelled by a sum of decreasing exponential functions m(t) =

∑
idi(t), 

where di(t) can be expressed as: 

di(t) =
{

0 for t < ti
Die(t− ti)/τi for t ≥ ti

(1)  

where Di represents the maximum flow, that is measured at time t = ti, 
and τi is the time constant of the system. The expression above is valid up 
to the start of the next cardiac cycle. A similar approach is exploited in 
the well-known Windkessel model [22], which is focused on the dia-
stolic part of the cardiac pulse. However this expression presents a 
discontinuity for t = ti that is physiologically implausible. 

A possible workaround that ensures the continuity of the curve is 
based on coupling together a pair of exponential functions, thus creating 
an ”exponential pulse function”, defined as: 

PA,k1 ,k2 (t) =
{

0 for t < 0
A
(
e− k1 t − e− k2 t) for t ≥ 0 (2)  

with k1 > k2, where A represents the pulse amplitude, k1 the slope of the 
rising phase and k2 the slope of the falling phase. This definition does not 
present discontinuities, thus avoiding the main issue of Eq. 1. It also has 
an asymmetrical ”pulse like” shape, i.e. the curve tends to zero with 
large values of t, with different slopes on the two sides of the peak. The 
approximate meaning of the parameters is graphically represented in 
Fig. 2. 

While a sum of exponential curves produces (in general) an unsuit-
able pattern for a physiological signal, any sum of n exponential pulses 
has always a practically limited support, without any non-causal effect 
(assuming t0 ≥ 0). Using this auxiliary representation, we propose to 
model the cardiac cycle using a linear combination of three exponential 
pulses (P1, P2 and P3), each one modelling a specific phase of the PPG 
wave:  

• P1 models the systolic wave;  
• P2 models the diastolic wave, meaning the negative pulse generated 

by the closing of the aortic valve;  

• P3 models the reflected wave. 

Fig. 3 shows a combination of three exponential pulses, replicating 
the shape of the PPG signal. 

The resulting model expression m(t) thus becomes: 

m(t) =
∑3

i=1
PAi ,k1,i ,k2,i (t − ti) (3)  

where Ai, k1,i and k2,i are the parameters of the ith pulse and ti is the start 
time of the same pulse. Thus, the proposed model needs to define a 
vector pn composed of twelve parameters, pn = {Ai, k1,i, k2,i, ti}i=1,2,3, to 
fully specify its shape. 

The modeling procedure identifies, for each cardiac cycle n, the 
optimal parameter vector pn that minimizes an objective function, 
defined as the sum of the squared differences between the measured 
waveform ppg(t) and the model m(t). The minimization procedure 
adopts the Levemberg-Marquardt algorithm. This algorithm is an iter-
ative procedure needing to specify a starting value for pn, called seed 
value, that is refined until it reaches the optimal solution. This seed value 
was determined, for every cycle, using a set of heuristic rules on the 

Fig. 1. Signal key points of the preprocessing phase.  

Fig. 2. Exponential pulse with graphic representation of the parameters.  
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curve waveform (i.e., position of dicrotic notch, maximum amplitude, 
cycle length). An acceptable range (maximum and minimum value) for 
every parameter was also defined. 

The minimization procedures yield as output the optimal parameter 
vector pn as well as a quantification of the goodness of fitting, that is 
represented by the determination coefficient rn, defined as follow: 

rn =
SSR
SST

= 1 −
SSE
SST

(4)  

where SSR (Sum of Squared Regression) is the deviance explained from 
the model, SSR =

∑
t [m(t) − ppg]2, where ppg is the mean value of ppg(t)

over the cardiac cycle; SST (Sum of Squared Total) is the total deviance, 
SST =

∑
t [ppg(t) − ppg]2; and SSE (Sum of Squared Error) is the deviance 

not explained from the model, SSE =
∑

t [m(t) − ppg(t)]2. 
The determination coefficient quantifies the quality of the fit on a 

single cardiac cycle; an overall evaluation is provided by the mean 
determination coefficient R defined as: 

R =
1
S

Rs =
1
S
∑S

s=1

1
Ns

∑Ns

n=1
rn (5)  

where Rs is the determination coefficient for the subject s, S is the 
number of subjects and Ns is the number of cardiac cycles of subject s. 

It is worthy of attention that the fitting interval is limited to a single 
cardiac cycle, disregarding both the ”tail” from the model describing the 
previous cycle and the error between the model and the physiological 
signal occurring after the starting of the following cycle. 

The fitting procedure thus associates every cardiac cycle with the 
corresponding pn vector. 

2.4. Statistical analysis 

A preliminary statistical analysis allows the assessment of the capa-
bility of the proposed model for capturing variations of the PPG wave-
form correlated with the presence and severity of the disease. 

We determined the statistical distribution for each parameter and for 
each group of subjects; differences among the groups where analysed by 
using t-test. This procedure also allows the identification of potential 
trends of variation of the parameters with the increase of the disease 
severity. 

2.5. Classification technique and methods 

The number of subjects involved in the trial is relatively large; 
however, the creation of separate training and test sets yields a number 
of subjects that is too small for an adequate evaluation of the system 
performance. 

Although the number of cardiac cycles (and therefore the number of 
vector parameters pn) is large, the consecutive cardiac cycles belonging 
to the same subject cannot be assumed to be unrelated to each other; 
thus, any strategy for creating training and test sets needs to consider 
possible correlations among the samples belonging to the same subject. 

Therefore, it is advisable to use the Leave-One-Subject-Out (LOSO) 
[23] technique for testing the performance of the classifier: it consists in 
removing a subject from the dataset (composed by N subjects), training 
the classifier on the remaining N − 1 subjects and testing on the removed 
subject. Afterwards, the removed subject is reinserted into the dataset 
and the steps are repeated iteratively until all the N subjects have been 
removed once. The global performance of the classifier is evaluated by 
averaging the performance of every single iteration. 

Moreover, the large number of consecutive data cycles available for 
each subject allows the design of three different strategies to classify 
each subject:  

• Single cycle: this strategy classifies the cardiac cycles composing the 
PPG signal of each patient, independently of each other. The patient 
classification is obtained, at a later stage, by an ensemble classifier, 
based on the majority of classifications on the single cycles. In this 
case, the classifier’s input is composed of the modelling parameters 
pj, the cycles length nj and the determination coefficients rj of each 
cycle j.  

• Double cycle: the strategy is similar to the previous one, but in this 
case the cardiac variability is taken into account by providing the 
classifier with an input vector containing the parameter vectors of 
two consecutive cardiac cycles. Again, an ensemble classifier pro-
vides the final subject classification, as in the previous case.  

• Mean cycle: in this case, the classifier operates on each subject, and 
not on each cardiac cycle. Every subject s is represented by one 24- 
component vector vs = {mean(pn), std(pn)}n∈s, containing informa-
tion regarding the mean and standard deviation, over all cycles n 
belonging to the subject s, of each component of the pn vector. 

Each one of those three strategies was tested on three different 
classifiers: Support Vector Machine (SVM) [24], Bayesian Classifier 
(BYM) [25] and K-Nearest Neighbor (KNN) [26]. 

The ensemble classifier used in the first two strategies, is based on a 
variant of the majority voting obtained by adding a voting threshold θ. It 
is assumed that the recording for a subject s contains Ns cycles (or pairs 
of cycles, in case of the second strategy described above), and that the 
classifier labels Nh

s as healthy cycles, and the remaining Np
s = Ns − Nh

s as 
patients ones. Therefore, the subject, as a whole, is classified healthy if 
Nh

s > θNp
s . When θ = 1, the ensemble classifier corresponds to the clas-

sical hard majority voting classifier. 
The latter strategy provides a single classification result for each 

Fig. 3. The black curve represents a single pulse from the photoplethysmographic signal while the three exponential pulses are represented by the colored curves.  
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patient, thus no ensemble classifier is possible. In this case, a variable 
per-class misclassification cost allows the balancing of sensibility and 
specificity. The cost C represents the misclassification cost of a subject 
with Covid-19 (false negative), while the cost corresponding to a false 
positive is assumed unitary. Naive Bayes classifier corresponds to a value 
C = 1. Subsequently, further optimization procedures were performed 
only for the classifiers that achieved better results. 

2.6. Threshold optimization 

By selecting larger (or smaller) values of θ and C, we may balance 
sensibility and specificity of the ensemble classifier in order to optimize 
classification results. 

Since quick screening tests are very important due to the high 
contagiousness of the virus, we decided to reward sensibility at the 
expense of a few percentage values of specificity. To this aim, ROC curve 
of each classifier was evaluated in order to attempt new values of θ and C 
that increase the sensibility keeping the specificity around the starting 
value. 

2.7. Parameters optimization 

The results obtained with the threshold optimization on the various 
classifiers suggest that the number of available subjects is not sufficient 
for completely avoiding overfitting issues; therefore, we introduced a 
regularization step aimed at removing the features that do not provide 
adequate discriminating power. The selected optimization strategy is 
similar to the backward feature selection (BFS) and follows the iterative 
procedure described below. In each procedure iteration, one of the pa-
rameters was removed from the input vector of the classifier, a new 
classifier was so designed and its performance evaluated. The best 
classifier was identified, and we moved to the next step. The entire 
procedure was repeated, by removing one more parameter, until we 
observed that the performance did not improve furtherly. 

3. Results 

The proposed model provides a very good representation of the PPG 
signal. After the fitting procedure based on the Levemberg-Marquardt 
algorithm, we obtained very high values of the R coefficient: Rh =

98.99% (healthy group 0) and Rp = 98.98% (Covid, groups 1 and 2); 
Fig. 4. 

A visual evaluation of the capability of the proposed model to cap-
ture the differences among the different groups is shown in Fig. 5, where 
a noticeable trend is present, as concerns parameters ki,j and ti, 
comparing the groups 0, 1 and 2; in particular, parameters ki,j tends to 

decrease from group 0 to group 2, while starting times t2 and t3 increase 
with the worsening of the disease. 

According to the results observed in the boxplot, we performed a 
comparison of healthy subjects (group 0) and patients (group 1 and 
group 2), Table 1. 

A detailed analysis highlights a ”slower” response in the Covid case: 
all ki,j parameters, unless k2,2, decrease in the Covid group compared to 
the Control group. Thus, the corresponding exponential pulses are 
”wider” with respect to the Control case. While the changes in the sys-
tolic wave kj,1 and in the reflected wave kj,3 are statistically significant, 
changes in kj,2 (diastolic wave) are not significant. The amplitudes of the 
pulses do not present variation. Starting times of the pulses (ti) present 
very small differences. In particular, t2 parameter, namely the starting 
time of the diastolic pulse, is statistically significant. The increased value 
of t2 in the case of patients with Covid-19 confirms the ”slower” increase 
of the waveform. 

According to the data of Table 1, we tested the classifier on healthy 
vs Covid (group 0 vs groups 1 and 2). Moreover, we also evaluated the 
performances of a classifier trained at identifying healthy vs moderate 
Covid subjects (group 0 vs group 2), in order to avoid boundary situa-
tions between mild and moderate Covid patients, or between mild and 
healthy subjects. Among the groups considered in this study there was a 
threshold based only on clinical parameters. This condition may have 
complicated finding differences among the groups. However, a differ-
ence was present between groups 0 and 2, that is, in the case of groups 
with very different clinical parameters. In fact, as shown in Fig. 5, 
parameter values from Group 1 almost always assume values between 
Group 0 and Group 2. Thus, the retention of subjects affected by mild 
Covid-19 disease inside COVID-19 group could lead to a wrong 
classification. 

The classification process was tested on three different classifiers. We 
observed that both KNN and SVM algorithms present unsatisfactory 
performances. The results obtained with the BYM classifier are reported 
in Table 2. In Table 3, the confusion matrix for the best classification 
case related to Table 2 is reported. 

The patient classification reported for the single and double classi-
fication strategy was obtained with the hard voting ensemble classifier, 
i.e. the patient was classified as ”Covid-19” if at least 50% (θ = 1 or C 
=1) of the cycles were classified correspondingly. 

Results indicate that, although the classifier accuracy is quite low, it 
is able to achieve a good sensibility, up to 77% in the Control vs Covid 
classification, and up to 80% in the control vs moderate Covid classifi-
cation, where ”boundary” conditions are not present. Then, we worked 
on the last classification, namely controls vs moderate Covid. 

Given the difference between sensibility and specificity values, we 
optimized the classification on the basis of the analysis of the ROC curve, 

Fig. 4. Red curves represent multiexponential model that fits two cardiac cycles (in black): a) healthy subject and b) COVID-19 subject.  
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shown in Fig. 6. 
Whereas the method appears to be more promising for a quick 

screening procedure, where it gives an early detection warning, the se-
lection of the optimal threshold allows a higher sensibility value, 
without sensible degradation of the specificity. With these aims, the 
optimal value of θ for the double pulse classification, marked with the 
”*” in the plot, corresponds to θ = 1.04 and C = 35 for the mean pulse 
classifier. The analysis of the ROC curve confirmed that, for the single 
pulse classifier, θ = 1 corresponds to the optimal threshold. 

The results obtained with the optimal threshold values were reported 
in Table 4. In particular, with mean strategy we obtained an increase of 
sensibility up to 83% with a lower specificity value of 70%, and an ac-
curacy value of 76%. In Table 5, the confusion matrix for the best 
classification case related to Table 4 is reported. 

The reported results indicate that a Bayesian classifier, in the optimal 
conditions, i.e. dataset restricted to groups 0 and 2, tested with the LOSO 
technique, hard voting classifier and with mean pulse classification 
strategy, reaches an accuracy of 73%. 

Subsequently, after the threshold optimization for the mean pulse 
classification strategy, an accuracy of 76% with a sensibility of 83% and 
a specificity of 70% were reached. 

Given the architecture of the Bayesian classifier, however, we expect 

Fig. 5. Statistical distribution of the parameters given by the mean on each pulse of each subject: pulse amplitudes (a), starting times (b), rising slope (c) and falling 
slope (d). 

Table 1 
Mean and standard deviation of the model parameters of all cardiac cycles in the 
control group (group 0) and mild-to-moderate Covid group (groups 1 and 2), 
respectively. The symbol * next to the p-value indicates statistically significant 
differences (p < 0.05).  

Parameter Control Covid p-value 

A1 334 ± 45 342 ± 50 0.332 
A2 194 ± 22 198 ± 33 0.389 
A3 229 ± 37 220 ± 42 0.189 
k1,1 2.8 ± 0.4 2.4 ± 0.5 ∗

k1,2 4.8 ± 1.4 4.4 ± 1.8 0.144 
k1,3 7.1 ± 2.3 5.7 ± 2.7 ∗

k2,1 5.9 ± 0.9 5.0 ± 1.0 ∗

k2,2 3.0 ± 1.0 3.0 ± 1.6 1 
k2,3 7.8 ± 2.4 6.2 ± 3.1 ∗

t1 0.03 ± 0.004 0.03 ± 0.008 1 
t2 0.18 ± 0.04 0.21 ± 0.05 ∗

t3 0.3 ± 0.04 0.31 ± 0.06 0.236  

Table 2 
Classification results obtained with BYM classifier, hard voting ensemble clas-
sifier/naive Bayes classifier, with the different grouping and classification 
strategies. (1,2) is the sum of group 1 and group 2 (Covid group).  

Groups Strategy θ Sensibility Specificity Accuracy 

0 vs (1, 2) Single θ = 1 77% 56% 70% 
0 vs (1, 2) Double θ = 1 71% 66% 69% 
0 vs (1, 2) Mean C = 1 68% 74% 70% 
0 vs 2 Single θ = 1 80% 66% 73% 
0 vs 2 Double θ = 1 78% 66% 72% 
0 vs 2 Mean C = 1 63% 82% 73%  

Table 3 
Confusion matrix obtained from the comparison between Group 0 and Group 2 
adopting the mean pulse strategy and C = 1.   

Group 0 Group 2 Total 

Group 0 41 9 50 
Group 2 17 29 46  
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its performance may be negatively impacted by the presence of not 
significant, or even misleading, features. The parameters optimization 
procedure identifies the optimal parameter set, separately for each 
classification strategy, confirming that several parameters do not pro-
vide valuable information for the classification task. The resulting 

optimal feature sets are reported in Table 6. 
The optimization procedure identifies five features appearing to have 

a higher relevance, as those features were selected by the procedure in 
all classification strategies: A3, k1,1, k2,1, k2,2 and t3. As expected, the 
elimination of the misleading features improves the classification re-
sults, as shown in Table 7, which indicates that the overall accuracy 
improves about 3% in all the classification strategies except for the 
single pulse classification strategy where we can observe that all the 
parameters were preserved because the parameters optimization didn’t 
improve the performance of the classifier. 

4. Discussion 

With this study, we investigated the feasibility of using photo-
plethysmographic signal for the recognition of patients hospitalized 
with COVID-19 as well as the severity of the disease itself. 

In particular, the proposed multiexponential model showed an 
excellent representation of the PPG signals considering all the patients 
and controls investigated. This result was a good starting point for the 
pursuit of the objectives of the study. As a whole, the results of this study 
confirmed the presence of microvascular alterations in patients with 
COVID-19 [8,27]. Significant differences between the patient group and 

Fig. 6. ROC curves, obtained with the complete feature vector: blue curve, BYM classifier with single cycle; red curve, BYM classifier with double cycle; black curve, 
BYM classifier on mean pulse. Diamonds (⋄) indicate the hard voting classifier, stars (*) indicate the optimized working point of each classifier. 

Table 4 
Classification results, Bayes classifier, all classification strategies, optimized θ 
value, group 0 vs group 2.  

Strategy θ Sensibility Specificity Accuracy 

Single θ = 1 80% 66% 73% 
Double θ = 1.04 80% 64% 72% 
Mean C = 35 83% 70% 76%  

Table 5 
Confusion matrix obtained from the comparison between Group 0 and Group 2 
adopting the mean pulse strategy and optimized θ value.   

Group 0 Group 2 Total 

Group 0 35 15 50 
Group 2 8 38 46  

Table 6 
Leftover parameters for each classification strategy after the optimization 
process.  

Strategy Feature set 

Single A1, A2, A3, k1,1, k1,2, k1,3, k2,1, k2,2, k2,3, t1, t2, t3, nj and rj 

Double A3, k1,1, k2,1, k2,2, k2,3, t3, nj and rj 

Mean A1, A2, A3, k1,1, k1,3, k2,1, k2,2, t1, t2 and t3  

Table 7 
Classification results, Bayes classifier, optimized threshold, optimized parameter 
set.  

Groups Strategy θ Sensibility Specificity Accuracy 

0 vs 2 Single θ = 1 80% 66% 73% 
0 vs 2 Double θ = 1.04 85% 70% 77% 
0 vs 2 Mean C = 35 87% 72% 79%  
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the control group were found, as reported in Table 1. Regarding the 
systolic pulse and the reflected pulse wave, both the slope of the rising 
phase and the falling phase were lower in patients with COVID-19. An 
inverse relationship between the slope of the curves considered and the 
severity of the disease was found (Fig. 5). 

The results of this study are in line with what was reported in pre-
vious studies with regards to the effects of COVID-19 on the microcir-
culatory flow [4,10]. In particular, our results suggest that SARS-CoV-2 
infection can lead to a “damper” microcirculatory response. The 
damping of the shape of the curve along with minor slopes confirms the 
possible effect of vasoconstriction that these patients may show [28,29]. 
This condition can be the result of endothelial damage and cytokine 
storm induced over time by the SARS-COV-2 infection [4,10,30]. 
However, the alteration of several other microcirculatory parameters 
such as: vascular densities, heterogeneity index, functional capillary 
density, and microvascular flow index, in addition to red blood cells 
velocity, blood pressure variability and PPG dropout [8,31–33], were 
associated with COVID-19 disease. A number of studies evaluated the 
usefulness of PPG signal analysis in the treatment of COVID-19 patients 
treated in ICU units. Peck et al. in a recent partially prospective, 
observational study used the PPG signal to confirm the presence in a 
large number of patients of PPG dropout threshold and PPG amplitude 
abnormalities [33]. Other studies have verified how PPG technology can 
be used for monitoring, even remotely, patients with COVID-19 at 
different levels of severity [34–36]. 

Regarding the ability to recognize between the groups of controls 
and patients, the best performances of the proposed model were ob-
tained considering patients affected by a higher level of severity of the 
disease and by using the Bayesian classifier both with the mean pulse 
and single pulse strategies (Table 2). 

However, the results achieved were not completely satisfactory. In 
particular, the objective of obtaining a good result in terms of specificity 
and sensibility with the same strategy was not fully achieved: in fact, 
with mean pulse strategy a sensibility lower then specificity was present, 
while with both single and double pulse strategy the opposite situation 
was present. The greater heterogeneity of PPG signals found in patients 
with COVID-19 could be one of the causes of this not fully satisfactory 
result. In this sense, some studies reported a greater heterogeneity in 
microcirculation in patients with COVID-19 treated in the intensive care 
unit [27,37]. 

The subsequent use of the ROC curve allowed the further improve-
ment of the performance of the classifier and overcoming the limits 
related to the evident difference between the sensibility and specificity 
values. In particular, through this procedure, the BYM classifier with the 
mean pulse strategy and cost C = 35 allowed us to obtain a sensibility of 
83% with a lower specificity value of 70% and accuracy value of 76% 
(Table 4). As a whole, this analysis enabled the defining of a more 
promising and rapid screening procedure with a high level of sensibility 
but a lower specificity. 

Subsequently a procedure of parameter optimization was applied to 
the optimized threshold model in order to evaluate if some features 
could negatively impact on the accuracy of the classifiers. This optimi-
zation led to an accuracy of 77%, with sensibility and specificity values 
respectively at 85% and 70% regarding the double pulse strategy, while 
for the mean pulse strategy, an accuracy of 79% with a sensibility value 
of 87% and a specificity value of 72% were reached (Table 7). 

Moreover, this procedure and the result showed the limits of using a 
BYM classifier, highlighting the importance of carrying out an appro-
priate management and selection of the characteristics to be considered. 
In particular, the optimization procedure allowed the identification of a 
set of parameters common to the different classification strategies pro-
posed. In particular, five characteristics were found to be common to all 
classification strategies. Among these parameters, the presence of the 
rising slope of the systolic curve confirmed the possible role of COVID- 
19 disease in the cardiovascular condition [38]. Furthermore, the 
presence of two out of four parameters related to the reflected wave 

could confirm the presence of microvascular abnormalities. 
The modifications of PPG signals found with this study may be less 

evident in patients with a different clinical picture. In fact, patients with 
severe clinical conditions could show more complex microcirculatory 
alterations with different characteristics of the PPG signal. In this sense, 
in our recent studies we have investigated the relationship between PPG 
signal and Sepsi conditions in addition to Covid-19 disease [39,40]. The 
fact that many factors can contribute to hindering the analysis of indi-
vidual PPGs obtained from patients with Covid-19 is to be considered. 
Among these, as reported in recent articles, skin color can also play an 
important role [41,42]. In this regard, only white Caucasian subjects 
were considered in this study, favoring the appropriate analysis of the 
collected signals. 

5. Conclusion 

This study allowed us to use microcirculation analysis by photo-
plethysmography signal for the screening and classification of patients 
affected by COVID-19. The analysis of the PPG signal is important 
because Sars-Cov-2 infection can cause significant alterations in the 
microcirculation, particularly in patients with a more severe condition. 
The fact that PPG signal analysis consists of a simple, fast, painless and 
inexpensive bedside test may further increase clinical interest in this test 
for the treatment of patients even during the COVID-19 pandemic 
waves. The multi-exponential model proposed in this study showed a 
high ability to detect the physiological changes related to COVID-19, 
especially for the subjects showing moderate severity condition. 

The final results achieved indicate how the analysis of the proposed 
PPG signals can play a role in the screening procedure in which it is 
important to identify a high rate of true positives. 
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