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Abstract: This paper proposes an efficient channel information feedback scheme to reduce the
feedback overhead of multi-user multiple-input multiple-output (MU-MIMO) hybrid beamforming
systems. As massive machine type communication (mMTC) was considered in the deployments
of 5G, a transmitter of the hybrid beamforming system should communicate with multiple devices
at the same time. To communicate with multiple devices in the same time and frequency slot,
high-dimensional channel information should be used to control interferences between the receivers.
Therefore, the feedback overhead for the channels of the devices is impractically high. To reduce
the overhead, this paper uses common sparsity of channel and nonlinear quantization. To find a
common sparse part of a wide frequency band, the proposed system uses minimum mean squared
error orthogonal matching pursuit (MMSE-OMP). After the search of the common sparse basis,
sparse vectors of subcarriers are searched by using the basis. The sparse vectors are quantized
by a nonlinear codebook that is generated by conditional random vector quantization (RVQ). For
the conditional RVQ, the Linde–Buzo–Gray (LBG) algorithm is used in conditional vector space.
Typically, elements of sparse vectors are sorted according to magnitude by the OMP algorithm.
The proposed quantization scheme considers the property for the conditional RVQ. For feedback,
indices of the common sparse basis and the quantized sparse vectors are delivered and the channel
is recovered at a transmitter for precoding of MU-MIMO. The simulation results show that the
proposed scheme achieves lower MMSE for the recovered channel than that of the linear quantization
scheme. Furthermore, the transmitter can adopt analog and digital precoding matrix freely by the
recovered channel and achieve higher sum rate than that of conventional codebook-based MU-MIMO
precoding schemes.

Keywords: channel feedback; compressive sensing; hybrid beamforming; MU-MIMO; mmWave

1. Introduction

In conventional wireless communication systems, beamforming techniques are op-
tional as the signal to noise power ratio (SNR) of received signals is enough for nearly
error-free communication with modern channel coding techniques. Furthermore, tech-
niques to increase the usable frequency bandwidth and the number of independent streams
were more efficient for the data rate than techniques for high received SNR. However, the
resources of the frequency band have been exhausted with the massive growth of wireless
devices such as smartphones, IoT machines, and the wireless infrastructure of cities. The
mMTC deployment of 5G was considered for the case that massive wireless connections
exist. Furthermore, measurements have shown that wireless channels cannot provide inde-
pendent spatial paths proportional to the number of antennas [1–3]. To accommodate the
traffic of massive wireless devices, many wireless systems consider the use of millimeter-
wave (mmWave) frequency bands over 30 GHz. The one feature of mmWave frequency
bands is high path loss. Due to the high path loss, beamforming becomes essential to
wireless systems that use the millimeter frequency bands.
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For beamforming of mmWave frequency bands, massive MIMO systems have been
studied [4,5]. In massive MIMO systems, the antenna number of a transmitter is larger
than four times the total antenna number of receivers. The systems can provide nearly
optimal SNR gain with zero-forcing (ZF) beamforming. However, the same number of
RF chains with the antenna number is an infeasible constraint. To ease the constraint,
hybrid beamforming where analog and digital beamforming are combined appeared [4–9].
Analog beamforming uses only phase shifters to make beamforming gain by combining the
multiple same signals coherently at the desired direction. In hybrid beamforming, the gain
of analog beamforming complements the loss of digital beamforming gain that is caused
by reduced RF chains. As analog beamforming is conducted by phase shifters, the signal
processing is modeled by a matrix that the elements are complex values of unit modulus.
The constraint of the analog beamforming matrix makes the joint optimization of the
beamforming matrices a non-convex problem. There have been many studies concerning
the non-convex optimization in flat and selective fading channel [5,7–9]. Most of those
studies have used alternate optimization assuming perfect channel state information at a
transmitter (CSIT). However, in a real environment, it is difficult that a transmitter acquires
the estimated channel matrices due to feedback overhead and almost wireless systems
use a codebook of precoding matrices for feedback [10–13]. In the real systems, wireless
transceivers that adopt hybrid beamforming use a protocol for beam management to
determine analog beams [14–16]. The protocols determine the best beam pair for each link
among beams of a predefined codebook and the selected indices of the pair are delivered
to the transmitter as feedback information. Although the protocols provide realistic ways
for hybrid beamforming, the feedback of precoding matrices does not allow the joint
optimization of the hybrid beamforming structure.

Another promising technique to accommodate the growth of wireless devices is multi-
user MIMO (MU-MIMO) [17,18]. Wireless systems that use MU-MIMO precoding can
transmit independent data streams to multiple receivers stably in the same time-frequency
resource block. By MU-MIMO technique, wireless systems can achieve better throughput
than that of single-user MIMO (SU-MIMO) technique. However, for stable transmission,
suppression of interference between receivers is essential. If high-dimensional CSIT is
satisfied, the inter-user interference (IUI) is suppressed efficiently by MU-MIMO precoding.
The feedback of precoding matrices is inefficient for suppressing dynamic IUI. Imperfect
precoding severely degrades the performance of MU-MIMO systems [12,13].

To realize beamforming and MU-MIMO systems sufficiently, the improvement of
channel estimation and feedback techniques is important. For channel estimation of hybrid
beamforming systems, many schemes have been proposed in frequency-division duplex
(FDD) and time-division duplex (TDD) environments [19–25]. In FDD systems, uplink
and downlink channels use different bands. Therefore, for CSIT, the receiver must allocate
some resources of an uplink channel to deliver channel information. The recent trend that
increases the number of antennas has intensified the feedback overhead. In TDD systems,
uplink and downlink channels use the same frequency band. By exploiting the reciprocity,
CSIT for downlink can be achieved from pilot signals of the uplink channel. As CSIT can
be achieved from the uplink channel, the overhead for CSIT is proportional to the number
of receivers. However, channel estimation by using the reciprocity is not always possible
due to various configurations of transmission and reception modes. Therefore, to cope
with the complex configuration, TDD systems also need the feedback of channels for CSIT.

In massive MIMO systems, generally, the antenna number of a transmitter is much
larger than the total antenna number of receivers. By the rate of the antenna numbers, the
least-square (LS) method does not provide reasonable performance for channel estimation.
In the mmWave frequency bands, the wireless channel shows sparsity in the angle domain
as most signals of multiple paths are absorbed and removed easily by the surrounding
environment [1,3]. In the case of MIMO channel, the sparsity is also observed since the
received signals of multiple antennas propagate through similar paths [3]. By exploiting
the sparsity, compressed sensing (CS) can provide reasonable performance for channel



Sensors 2021, 21, 5298 3 of 17

estimation although the rate of antenna numbers is high [19–22,26–28]. The schemes
can be classified into three groups. The schemes of the first group have focused on the
design of beam sweeping vectors to acquire qualified measurements for CS [19,26], and
the schemes of the second group provided methods to reduce the computational load
of the conventional OMP operation [21,22,26,28]. The schemes of the last group utilized
structure of channel basis to improve the accuracy of channel estimation [20,27,28]. The
topics are important subjects of CS-based channel estimation. However, the schemes did
not provide a practical feedback method of the estimated channel. Another category of
CS-based channel estimation is hierarchical search (HS). HS schemes have focused on
reduction of overhead for the measurements [23–25]. To reduce the overhead, the proposed
schemes in [23–25] optimized search regions for the measurements by the feedback of
search results. However, the schemes need multiple reports for channel estimation within
a coherent time block. The closed-loop can be a high overhead for MU-MIMO systems
due to protocol for multiple receivers and these schemes also did not provide a feedback
method for the estimated channel.

Some estimation methods adopted machine learning (ML) schemes [25,29–31]. The
ML-based methods also focused on estimation performance and shown better performance
than that of the CS-based methods. Among the proposed systems, the authors of [30,31]
considered feedback schemes of receivers. The feedback schemes designed pilots of a
transmitter jointly with the structure of receivers. However, the joint designs only consider
low-dimensional baseband channels.

2. Contributions and Notations

In this paper, a feedback scheme is proposed to reduce the feedback overhead of
high-dimensional RF channels and improve the quality of the quantized estimated channel.
The estimation and recovery of channels are performed by CS.

• To reduce the feedback overhead, only sparse vectors are delivered for each subcarrier
with a common sparse basis of all subcarriers. The matrix for the common sparse
basis is delivered as indices of a pre-shared codebook. In this paper, the elements
of the codebook are assumed as column vectors of the discrete Fourier transform
(DFT) matrix. The sparse vectors are quantized by a low-dimensional codebook.
The dimension of the codebook is only proportional to the estimated sparsity of the
wireless channel. As the quantization is performed on only the sparse vectors, the
reduction and quality improvement of feedback information is achieved.

• The proposed scheme also uses the nonlinear codebook to improve the quality of CSIT.
The sparse vectors of the common basis are calculated by the OMP method. After the
calculation, elements of the sparse vectors are sorted by order of magnitudes. The
nonlinear codebook is generated by considering the property of the sparse vectors.
The quantized vectors by the nonlinear codebook can achieve lower error than that of
a linear codebook with the same codebook size.

• By the feedback of the proposed scheme, a transmitter can recover more accurate high-
dimensional channels than recovered channel by linearly quantized pilots with the
same codebook size. The recovered high-dimensional channels allow the transmitter
to optimize jointly the analog and digital beamformer. Furthermore, a higher sum
rate can be achieved than that of feedback using a codebook of precoding matrices.

This paper uses the lower-case letters for scalars, lower-case bold letters for vectors,
and upper-case bold letters for matrices. Further, Ca×b for a-by-b matrix of complex
elements, ‖‖ for norm operation, and diag() for diagonalization of a vector are used. For
transpose and conjugate transpose of matrix A, AT and AH are used. [A]a,b means the
element of A at the a-th low and the b-th column. [A]:,b means the b-th column vector of A.
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3. System Model

In this paper, a multi-user hybrid beamforming system is considered. In the system,
it is assumed that beam sweeping is used to acquire CSI for beamforming. Figure 1
shows the beam sweeping operation of the multi-user hybrid beamforming system. The
system includes a transmitter and multiple receivers. The transmitter is consisted of
digital beamformer following OFDM modulator and analog beamformer. Ns, NRF, and Nt
are the number of independent data streams, RF chains, and antennas for transmission,
respectively. In the structure, NRF is set to hold a condition that Ns 6 NRF < Nt. To
consider MU-MIMO transmission, the same number of receivers are assumed with Ns.
Each receiver consists of an analog combiner with Nr antennas following a RF chain. At
the same time as the beam sweeping operation the transmitter sweeps channel with Mt
beams. The receivers also sweep the channel with Mr beams. The measurements by the
beam sweeping are as follows:

Ru[k] = QHHu[k]P + QHZu[k], (1)

where
Q =

[
q1 q2 · · · qMr

]
, (2)

P =
[

p1 p2 · · · pMt

]
. (3)

qn ∈ CNr and pn ∈ CNt are vectors for the beam sweeping at the receivers and the trans-
mitter. Hu[k] ∈ CNr×Nt is a channel matrix of frequency domain between the transmitter
and the u-th receiver. k is an index of a OFDM subcarrier. Zu[k] ∈ CNr×Mt is a noise matrix
at the u-th receiver. The elements of Ru[k] ∈ CMr×Mt represent the measurements by the
beam pairs. After the beam sweeping operation of the transmitter and the receivers, the
best beam pairs of each receiver can be selected from the measurements and used for
analog beamforming. Furthermore, the digital beamformer can use pre-shared precoding
matrices based on baseband channels of the selected beam pairs.

s
N 

 

 !"

#$%&'

(!)*

)+,-./0%1-2
)+#-.+2

3'%0-4

5+%,6-2,+2

r
N

 

 !"#$%

&'"()$*('*

 

 

 

RF
N s

N

 
 

t
N

 !"

#$%&'

(!)*

*+,-.%/+0

)&1&/%.

23%45+0430

6'#+,30

6'#+,30

6'#+,30

 !"

#$%&'

(!)*

*+,-.%/+0

 !"

#$%&'

(!)*

*+,-.%/+0  !"

#$%&'

(!)*

)34+,-.%/+0
)3#+,30

7'%.+1

23%45+0430

r
N

 

 !"#$
t

M

 !"#$
r

M

 

 !"#$%& '($$)*+,

-!"#$%& '($$)*+,

.'/ 0$$12%34

Figure 1. Multi-user hybrid beamforming system.

For the channel model, a three-dimensional statistical channel model is considered. In
the time domain, the channel matrix Hlu ∈ CNr×Nt of the model is calculated as follows:

Hlu =

√
NtNr

LuCu
Ar,lu Dlu AH

t,lu , (4)

where
Ar,lu

=
[

ar

(
φr

lu ,1, θr
lu ,1

)
· · · ar

(
φr

lu ,Cu
, θr

lu ,Cu

) ]
,

(5)
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At,lu

=
[

at

(
φt

lu ,1, θt
lu ,1

)
· · · at

(
φt

lu ,Cu
, θt

lu ,Cu

) ]
,

(6)

Dlu = diag
([

αlu ,1 αlu ,2 · · · αluCu

])
. (7)

Ar,lu ∈ CNr×Cu and At,lu ∈ CCu×Nt are response matrices at the transmitter and the receiver
sides. Dlu ∈ CCu×Cu is a diagonal matrix that reflects distortion of amplitude and phase
for transmitted signals. Lu, and Cu means number of propagation paths in channel of
the u-th receiver and the number of scatterers in the lu-th path. αlu ,cu ∼ CN (0, glu ,cu) and

glu ,cu are complex and real gains of the cu-th scatterer in the lu-th path. ar

(
φr

lu ,cu
, θr

lu ,cu

)
and

at

(
φt

lu ,cu
, θt

lu ,cu

)
are response vectors at the transmitter and the receiver sides. φlu ,cu and

θlu ,cu are azimuth and elevation through the cu-th scatterer of the lu-th path, respectively.
The response vector for azimuth φ and elevation θ is as follows:

aa(φ, θ)

=
1√
Na

[
1 · · · ej 2π

λ dT
0 dp · · · ej 2π

λ dT
0 dNa

]T
,

(8)

d0 =
[

cos φ sin θ sin φ sin θ cos θ
]T , (9)

dp =
[

dx dy dz
]T , (10)

where d0 and dp are vectors for three-dimensional direction and position of the p-th antenna
element, respectively. λ is wavelength of the transmitted signals. After demodulation,
the channel matrix should be considered in frequency domain. The channel matrix of
frequency domain is calculated from the matrix of time domain as follows,:

Hu[k] =
Lu

∑
lu=1

Hlu ej2πklu/Lu . (11)

4. Hybrid Beamforming Based on CSI

In multi-user hybrid beamforming systems, a received signal of each receiver is
expressed as follows:

y[k] =
P

γ[k]
wH

u Hu[k]FV[k]su[k], (12)

where
F =

[
f1 · · · fu · · · fNR f

]
, (13)

V[k] =
[

v1[k] · · · vu[k] · · · vNs [k]
]
, (14)

γ[k] =
1

‖FV[k]‖2 . (15)

su[k] is a signal for the u-the receiver and E
{

su[k]sH
u [k]

}
= 1. P and γ[k] are average power

for transmission and a constant for normalization. γ[k] is also viewed as beamforming
gain in massive MIMO systems. wu ∈ CNr is a analog combiner of the u-th receiver for Rx
beamforming. fu ∈ CNt and vu[k] ∈ CNRF are analog and digital Tx beamforming vectors
for the u-th receiver. For y[k], spectral efficiency is calculated using signal to interference
plus noise ratio (SINR) as follows [9]:

Su[k] = log2

(
1 +

P
γ[k]

h̃H
u [k]vu[k]vH

u [k]h̃u[k]Φ−1[k]
)

, (16)
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where
Φ[k]

=
P

γ[k]

Ns

∑
j=1,j 6=u

h̃H
u [k]vj[k]vH

j [k]h̃u[k] + σ2wH
u wu,

(17)

h̃H
u [k] = wH

u Hu[k]F. (18)

In (16), P
γ[k] h̃

H
u [k]vu[k]vH

u [k]h̃u[k] is the part that belongs to the desired signal and Φ[k]

is the part that includes interference and noise. h̃u[k] ∈ CNRF is baseband channel of the
u-th receiver. The transmitter should determine F and vu[k] for each receiver to maximize
the sum rate as follows:

F†, v†
1[k], · · · , v†

Ns
[k] = arg max

F,v1[k],··· ,vNs [k]

Ns

∑
u=1

Su[k]. (19)

However, in most modern wireless systems, searching for the optimal matrices is
impossible as the transmitter can not acquire Hu[k] or h̃u. In the systems, the transmitter
only acquires fu and the quantized version of wH

u Hu[k]fu from feedback of the each receiver.
The receivers acquire the information from received baseband pilots that are transmitted by
beam sweeping operation. For multi-user transmission, the transmitter determines analog
and digital beamforming matrices separately based on the feedback information.

If a transmitter can acquire Hu[k] or h̃u, the transmitter can determine the analog
and digital beamforming vectors to maximize beamforming gain γ[k] and suppress IUI of
Φ[k]. The example is a conventional beam-steering method. The beam-steering method is
a hybrid beamforming method that determines analog beamformer as the reported best
beam and digital beamformer as the ZF matrix for

[
h̃1[k] h̃2[k] · · · h̃Ns [k]

]H .

5. Quantized Channel Feedback Based on Non-Linear Quantization of Sparse Vectors

Originally, CS was invented to recover an original sparse signal from small measure-
ments of the signal. Typically, most of natural signals show high sparsity. Thus, CS can
achieve high performance when compressing and recovering the signals. In the case of
the mmWave channel, sparsity is observed in angle domain. After beam sweeping opera-
tion and OFDM demodulation, formulation of CS for compressive channel estimation is
as follows:

min
eu [k]
‖eu[k]‖0 subject to

∥∥∥ru[k]− PTΨeu[k]
∥∥∥ 6 ε. (20)

ru[k], Ψ, and eu[k] are the measurements by Tx beam sweeping, a sparse basis matrix, and
a sparse vector. ε means magnitude of noise. When Rx beam sweeping is performed, ru[k]
is determined as follows:

ru[k] =
(

PTHH
u [k] + ZH

u [k]
)

qβ, (21)

where

β = arg max
i

K

∑
k=1

∥∥∥(PTHH
u [k] + ZH

u [k]
)

qi

∥∥∥. (22)

qβ ∈ CNr is the selected vector among the column vectors of Q. K means the number of
OFDM subcarriers. ru[k] of the receivers that do not support Rx beam sweeping is just a
measurement vector by only Tx beam sweeping. For P and Q, various matrices can be
adopted [19–22]. In this paper, discrete Fourier transform (DFT) matrix is used for Tx and
Rx beam sweeping. Typically, random matrices for measurements achieve high recovery
performance at compressive sensing due to incoherence with the sparse basis. However,
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the random matrices spread power and significantly decrease SNR of the measurements.
When DFT matrices are used for the measurements, P and Q are calculated as follows:

P

=
[

p
(
− 1

2

)
p
(
− 1

2 + 1
Mt

)
· · · p

(
1
2 −

1
Mt

) ]
,

(23)

Q

=
[

q
(
− 1

2

)
q
(
− 1

2 + 1
Mr

)
· · · q

(
1
2 −

1
Mr

) ]
,

(24)

where
p(m) =

[
1 e−j2πm · · · e−j2πm(Nt−1)

]T
, (25)

q(m) =
[

1 e−j2πm · · · e−j2πm(Nr−1)
]T

. (26)

In the matrices, Mt and Mr must be equal to Nt and Nr, respectively. In other words,
the number of time slots for beam sweeping is proportional to the number of antennas.
This can be a large overhead for initial access. Furthermore, DFT matrix can be used
for only linear array antenna. However, the design of the sweeping matrices is not a
focus of this paper and DFT matrices can provide qualified measurements for compressive
channel estimation.

There are several methods to find the solution of (20). The non-convex minimization
with the zero-norm condition for the sparse vector provides the best solution but the
complexity is impractically high. Among the methods, OMP is the simplest method. OMP
is a greed algorithm that finds the best basis matrix and the correspond sparse coefficients
iteratively. In this paper, OMP is used to find basis matrix and sparse vectors of channel.
The formulation for OMP is as follows [19]:

min
e[k]

∥∥∥ru[k]− PTΨeu[k]
∥∥∥

subject to ‖eu[k]‖0 6 L.
(27)

In (27), the condition for the sparse vector is relaxed for lower complexity. In the OMP
algorithm, the elements of the sparse vector are found by iterative search from the largest
element. As the sparse vector has few non-zero elements, the sparse vector can be used for
feedback information to reduce the feedback overhead.

5.1. Channel Feedback Using Common Sparse Basis

Measurements by qβ can be represented as follows:

ru[k]

= PT
Lu

∑
lu=1

(
At,lu DT

lu AT
r,lu e−j2πklu/Lu

)
qβ + ZH

u [k]qβ

= PTAubu[k] + ZH
u [k]qβ,

(28)

where
Au =

[
At,1 At,2 · · · At,Lu

]
, (29)

bu[k] =


DT

1 AT
r,1qβe−j2πk/Lu

DT
2 AT

r,2qβe−j2πk2/Lu

...
DT

Lu
AT

r,Lu
qβe−j2πk

. (30)

Au ∈ CNt×Cu Lu and bu[k] ∈ CCu Lu are a basis matrix and a vector of coefficients for the
basis. The first term of (28) shows the similar structure with PTΨeu[k]. In other words, Ψ
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and eu[k] can be mapped to Au and bu[k]. Furthermore, note that Au is independent of
k. Therefore, the channel coefficients of the every subcarrier can be recovered using the
common Au. The only feedback information of the each subcarrier is bu[k] except Au.

In channel recovery with the common basis, the quality of the selected basis is a signif-
icant factor of recovery performance. Incorrect selection severely degrades the performance
of channel recovery, and this is caused by noise. To search for the common basis efficiently,
MMSE-OMP is used. As MMSE-OMP considers the effect of the noise, the quality of the
recovered channel at a low SNR environment can be improved. In the process, the common
basis is searched from a conjugated DFT matrix. Algorithm 1 shows the search process.
In the algorithm, Γ, Ψ̂, and b̂[k] represent a constant for normalization, a matrix of the
selected basis, and a estimated sparse vector of the k-th subcarrier, respectively. As a result
of Algorithm 1, Ψ̂ and b̂u[k] are found from the received measurements. As Ψ̂ is a submatrix
of the DFT matrix for Tx beam sweeping and independent on k, uplink resources for CSI
feedback can be significantly saved. Furthermore, b̂u[k] can be quantized for the feedback
by using a codebook that the dimension of the codebook is only dependent on the sparsity
of wireless channel. Due to the sparsity of the mmWave wireless channels, the codebook
can be searched more efficiently than a codebook for quantizing high-dimensional matrices.

Algorithm 1 Search of Common Sparse Basis and Corresponding Sparse Vectors

Input : ru[k] ∈ CMt , P ∈ CNt×Mt , σu
Require : Ψ̂← []

Step1 : Constitute basis pool Ψ̃ as
{

PT}H

Step2 : Select L columns from Ψ̃
for l = 1→ L do

isel ← arg max
i

{
PH[Ψ̃]:,i + σ2

uIMt

}H K
∑

k=1
ru[k]

Ψ̂←
[

Ψ̂
[
Ψ̃
]

:,isel

]
end for
Step3 : Find the sparse vectors with Ψ̂
for k = 1→ K do

b̂u[k]← 1
Γ
{

PHΨ̂ + σ2
uIMt

}Hru[k]
end for
Output : Ψ̂, b̂u[k]

5.2. Nonlinear Codebook Generation

To recover the channel matrix at the transmitter, the matrix for the common basis and
the sparse vectors must be delivered to the transmitter. In the case of the basis matrix, the
selected columns by Algorithm 1 can be delivered in the form of indices. For the sparse
vectors, quantization is an inevitable process. The sparse vectors of OMP show a property
that the elements of the vector are sorted according to the magnitude. By considering
the order of the magnitude, quantization can be performed more effectively than simple
linear quantization. It is well known that the Grassmannian manifold provides an optimal
codebook for complex unit vectors. However, it is difficult to use the Grassmannian
manifold method for conditional vector space. In this paper, conditional RVQ is used
for the quantization of conditional vector space and the nonlinear codebook is generated
by the LBG algorithm in conditional vector space [32]. Figure 2 shows an example of a
codebook for conditional RVQ generated by the LBG algorithm.
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Figure 2. Codebook for conditional RVQ generated by the LBG algorithm.

In Figure 2, green and blue dots mean unselected and selected vectors by a specific
condition, respectively. The codebook is generated from the selected vectors. The red dots
mean the vectors of the codebook. The generated codebook of Figure 2 is calculated in the
conditional vector space that the angle between the purple vector and the arbitrary green
vector is lower than π

3 .
Algorithm 2 details generation of a codebook for the sparse vectors. In Algorithm 2,

the condition is as follows: ∣∣∣[T]1,i

∣∣∣ > ∣∣∣[T]2,i

∣∣∣ > · · · ∣∣∣[T]L,i

∣∣∣, (31)

where the column vectors of T ∈ CL×T constitute space that sparse vectors of wireless
channel can be observed. By the condition, the vectors of the space are filtered. Then, the
filtered column vectors of T are grouped into G1, G2, · · ·G2B according to distances with
the vectors of the codebook. B means the size of the codebook. The vectors of the codebook
are calculated by averaging the column vectors of the each group. mean() calculates an
average vector of the groups. The calculation of the codebook is repeated until convergence
is observed. η of Algorithm 2 is a small number close to zero. The output of Algorithm 2 is
the codebook B and B is used to quantize the estimated sparse vector b̂[k] as follows:

[B]:,isel
= arg min

[B]:,i

∥∥∥{b̂[k]/
∥∥∥b̂[k]

∥∥∥}− [B]:,i
∥∥∥. (32)

In (32), only phase of b̂[k] is quantized. The magnitude can be quantized more
efficiently than the phase as the dimension is one. Therefore, this paper considers the case
that magnitude and phase are quantized separately.
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Algorithm 2 Codebook Generation for Conditional RVQ

Input : L, B, T
Require : G1, G2 · · · , G2B ← [], ∆ ∈ C2B ← 0,

T ∈ CL×T ∼ CN (0, IL), Bn ∈ CL×2B ← 0, n ∈ N
Step1 : Normalize magnitude of column vectors of T
Step2 : Select column vectors of T
for i = 1→ T do

if not
{∣∣∣[T]1,i

∣∣∣ > ∣∣∣[T]2,i

∣∣∣ > · · · ∣∣∣[T]L,i

∣∣∣} then
[T]1,i ← []

end if
end for
Step3 : Group column vectors of T
n← 1
while diff < η do

n← i + 1
for i = 1→ T do

for j = 1→ 2B do

[∆]j ←
∥∥∥[Bn−1]:,j − [T]:,i

∥∥∥2

end for
jsel ← arg min

j

∣∣∣[∆]j∣∣∣
Gjsel ←

[
Gjsel [T]:,i

]
end for
for i = 1→ 2B do
[Bn]:,i ← mean(Gi)

[B]:,i ← [B]:,i/
∥∥∥[B]:,i∥∥∥

end for
diff← ‖Bn − Bn−1‖2

G1, G2 · · · , G2B ← []
end while
B← Bn
Output : B

6. Simulation Results

This section shows simulation results for the NMSE of the recovered channels and a
sum rate of multi-user downlink transmission. In the results, the proposed quantized chan-
nel feedback (QCF) scheme is compared with the linear quantized feedback scheme and the
beam-steering method based on perfect CSIT. Parameters for simulation environment are
presented in Table 1. To reflect the sparsity of the angle domain, the number of multi-path
and scatterers are set to small numbers. The sparsity of the angle domain is shown in an
environment that the number of propagation paths is close to one [3,28]. Furthermore,
azimuth spread of departure (ASD), elevation spread of departure (ESD), azimuth spread
of arrival (ASA), and elevation spread of arrival (ESA) are set to 3 degrees for the sparsity.
For NMSE, the normalized error between the perfect channels and recovered channels at a
transmitter is calculated as follows:

NMSE of ĥu = 10 log


∥∥∥hu − ĥu

∥∥∥2

‖hu‖2

, (33)

where hu and ĥu are the perfect channel and the recovered channel at the transmitter. In the
simulation for a sum rate, the number of receivers is set to four and the number of RF
chains are set to the same number of receivers except for one case.
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Table 1. Simulation Parameters and Schemes.

Parameters Value

Center frequency 30 GHz
Number of OFDM subcarriers 1024

Numeber of Tx antennas 64, 32
Number of RF chains 8, 4
Number of receivers 4

Number of Rx antennas 4, 1
Multi-path (non-line of sight) 3

Number of scatterers 10 per path
ASD, ESD, ASA, ESA 3 degree

Size of codebook 8, 6 bits
Compared scheme for quantization of sparse vectors Linear RVQ

Compared schemes for a sum rate Beam-steering, Method of [9]

In Figure 3, NMSE measurements according to codebook size are presented. QCF-L
means a QCF scheme using the linear codebook that is generated by the LBG algorithm in
complex unit vector space. For feedback, the two schemes use the same linear codebook.
The results of Figure 3 indicate that channel recovery using the common basis achieves the
same NMSE with channel recovery using the selective basis. Therefore, there is no penalty
to use the common sparse basis for basis of all OFDM subcarriers. When beamforming is
used at the receivers, the same results are observed.

2 3 4 5 6 7 8 9 10

Codebook Size [bit]

-6

-5

-4

-3

-2

-1

0

1

N
M

S
E

 [
d

B
]

QCF-L, selective basis, 1-Rx

QCF-L, common basis, 1-Rx

QCF-L, selective basis, 4-Rx

QCF-L, common basis, 4-Rx

Figure 3. NMSE measurements according to codebook size, SNR = 10 dB, Nt = 32, and Nr = 1, 4.

Figures 4 and 5 also show NMSE measurements according to codebook size. In
Figures 4 and 5, QCF schemes using the linear codebook and the proposed codebook are
compared. QCF-NL means the QCF scheme using the proposed nonlinear codebook.
In the figures, the schemes use the same common basis for channel recovery. Common
observation of Figures 4 and 5 is that the nonlinear codebook achieves better performance
than that of the linear codebook with the same codebook size. Specifically, systems can
reduce 1.5∼2 bits per subcarrier to achieve the same performance with the non-linear
codebook. Furthermore, the performance gap of the two codebooks decreases with the
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increase of the codebook size. In the case of Nt = 64, the gap is smaller than the gap of
Nt = 32.

2 3 4 5 6 7 8 9 10

Codebook Size [bit]
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E
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B
]

QCF-L, 1-Rx

QCF-NL, 1-Rx

QCF-L, 4-Rx

QCF-NL, 4-Rx

Figure 4. NMSE measurements according to codebook size, SNR = 10 dB, Nt = 32, and Nr = 1, 4.
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Figure 5. NMSE measurements according to codebook size, SNR = 10 dB, Nt = 64, and Nr = 1, 4.

Figure 6 and 7 show NMSE measurements according to SNR. For QCF schemes, a
codebook of 6 bits is used. From the results, the nonlinear codebook shows better perfor-
mance than the linear codebook and the performance gap is larger with the beamforming
of the receivers. In the interval of 0 ∼ 5 dB SNR, the QCF schemes experience a lower
effect of the noise than CS-OMP schemes. It seems that the basis selection of MMSE-OMP
provides robustness to the noise even at the channel recovery of the transmitter.
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Figure 6. NMSE measurements according to SNR, codebook size = 6 bits, Nt = 32, and Nr = 1, 4.
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Figure 7. NMSE measurements according to SNR, codebook size = 6 bits, Nt = 64, and Nr = 1, 4.

Figures 8 and 9 show measurements of a sum rate according to SNR. For the mea-
surements, the number of receivers is set to four and the same SNR is assumed for all
receivers. The beam-steering method uses the same number of RF chains with the number
of receivers and the beams that are directed to the true elevation of departure (EOD) and
the true azimuth of departure (AOD) for each receiver. For digital beamforming, ZF beam-
former is used in all measurements. Furthermore, a fully connected structure is used for
all hybrid beamforming. For the hybrid beamforming of the QCF schemes, the method
of [9] is used to optimize jointly the analog and digital beamformers. As the proposed
systems deliver compressed versions of the estimated channel matrices instead of indices
for precoding matrices, a transmitter can adopt any beamforming schemes that use the
channel matrix. In the results, the nonlinear codebook achieves a better sum rate than that
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of the linear codebook. The gap of the performance increases with SNR and is constant in
the interval that the additional improvement for MNSE is not observed. The similar results
are shown in the case of Nt = 64. However, the slightly larger gap is observed at a low
SNR environment than that of the case of Nt = 32.

-5 0 5 10 15 20

SNR [dB]

0

5

10

15

20

25

30

35

S
u

m
 r

a
te

 [
b

p
s/

H
z]

Beam Steering, 1-Rx

QCF-L, 1-Rx

QCF-NL, 1-Rx

Beam Steering, 4-Rx

QCF-L, 4-Rx

QCF-NL, 4-Rx

Figure 8. Sum rate measurements according to SNR, codebook size = 8 bits, Nt = 32, NRF = 4, and
Nr = 1, 4.
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Figure 9. Sum rate measurements according to SNR, codebook size = 8 bits, Nt = 64, NRF = 4, and
Nr = 1, 4.

Figure 10 shows measurements of the case that the number of RF chains is twice the
number of the receivers. For the beam-steering method, the same number of RF chains is
used with the number of the receivers as the joint optimization cannot be performed. When
the number of RF chains is twice the number of receivers, hybrid beamforming can achieve
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optimal beamforming gain with the joint optimization [8]. Although the QCF schemes use
imperfect CSI, the schemes show a higher sum rate than that of the beam-steering method
based on perfect CSIT. However, the improvement of the sum rate decreases drastically
after the SNR of 10 dB. Furthermore, the improvement by the Rx beamforming decreases
with the increase of SNR. It is can be thought that the sum rate is limited by imperfect
suppression of the IUI. Therefore, the limited sum rate can be improved by the more
accurate estimation of sparse vectors.
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Figure 10. Sum rate measurements according to SNR, codebook size = 8 bits, Nt = 64, NRF = 8, 4,
and Nr = 1, 4.

7. Conclusions

This paper presents a channel feedback scheme for multi-user hybrid beamforming
systems to recover high-dimensional RF channel matrices effectively. The proposed scheme
exploits the common sparsity of mmWave broadband channel and the property of OMP
operation for codebook generation to reduce feedback overhead and improve the quality
of the feedback information. From the results of NMSE for the recovered channels, it is
shown that the scheme using the proposed codebook provides more accurate recovery
with the same size of feedback than that of the channel recovery scheme with the linear
codebook. Furthermore, the proposed feedback scheme allows a transmitter to adopt joint
optimization for the hybrid beamformer. By the joint optimization, the systems can control
the beamforming gain and the IUI flexibly. The NMSE of the recovered channel can be
improved by using a more accurate estimation scheme for the sparse vectors than the
simple OMP scheme.
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