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Abstract

A number of machine learning-based predictors have been developed for identifying immu-

nogenic T-cell epitopes based on major histocompatibility complex (MHC) class I and II

binding affinities. Rationally selecting the most appropriate tool has been complicated by the

evolving training data and machine learning methods. Despite the recent advances made in

generating high-quality MHC-eluted, naturally processed ligandome, the reliability of new

predictors on these epitopes has yet to be evaluated. This study reports the latest bench-

marking on an extensive set of MHC-binding predictors by using newly available, untested

data of both synthetic and naturally processed epitopes. 32 human leukocyte antigen (HLA)

class I and 24 HLA class II alleles are included in the blind test set. Artificial neural network

(ANN)-based approaches demonstrated better performance than regression-based

machine learning and structural modeling. Among the 18 predictors benchmarked, ANN-

based mhcflurry and nn_align perform the best for MHC class I 9-mer and class II 15-mer

predictions, respectively, on binding/non-binding classification (Area Under Curves =

0.911). NetMHCpan4 also demonstrated comparable predictive power. Our customization

of mhcflurry to a pan-HLA predictor has achieved similar accuracy to NetMHCpan. The

overall accuracy of these methods are comparable between 9-mer and 10-mer testing data.

However, the top methods deliver low correlations between the predicted versus the experi-

mental affinities for strong MHC binders. When used on naturally processed MHC-ligands,

tools that have been trained on elution data (NetMHCpan4 and MixMHCpred) shows better

accuracy than pure binding affinity predictor. The variability of false prediction rate is consid-

erable among HLA types and datasets. Finally, structure-based predictor of Rosetta Flex-

PepDock is less optimal compared to the machine learning approaches. With our

benchmarking of MHC-binding and MHC-elution predictors using a comprehensive metrics,

a unbiased view for establishing best practice of T-cell epitope predictions is presented,

facilitating future development of methods in immunogenomics.
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Author summary

Computationally predicting antigen peptide sequences that elicit T-cell immune response

has broad and significant impact on vaccine design. The most widely accepted approach

is to rely on machine learning classifier, trained on large-scale major-histocompatibility

complex (MHC)-binding peptide dataset. Because of the constant development of

machine learning algorithms and expanding training data, providing comprehensive

benchmarking of existing algorithms on blind testing dataset is important for recognizing

the pros and cons of different algorithms and providing guidelines on specific applica-

tions. Here we present a study of such benchmarking by characterizing on a wide array of

accuracy metrics, highlighting the best-in-class algorithms as well as their limitations. The

rising concept that “naturally presented” antigen epitopes are more likely to generate

effective T-cell immune response has led us to also consider the accuracy of these machine

learning algorithms on predicting naturally presented peptides. We demonstrate that

recent advance in incorporating high-quality naturally presented peptide data from mass

spectrometry experiments has improved the accuracy. Our benchmarking of machine

learning predictors for MHC-binding and MHC-naturally presented antigen peptides

contributes to establishing best practice of computational T-cell epitope analysis, which

also has implication in tumor neoantigen-based cancer vaccine discovery.

Introduction

The increasing wealth of immunogenomic information generated by next-generation sequenc-

ing (NGS) technologies is boosting the application of cancer immunotherapy that takes full

advantage of individual’s adaptive immunity by administrating personalized cancer vaccines.

[1–3] An essential step in provoking adaptive immunity, delivered by the activated CD8+ or

CD4+ T cells, is the recognition of T cell receptor (TCR) to T cell epitopes.[4] As sequence rep-

ertoire for potential TCR-recognizing epitopes, whole exome or transcriptome from pathogens

or tumor cells can be analyzed by bioinformatics pipelines to identify vaccine candidates.[5,6]

Among various processes related to antigen presentation, the binding of antigen peptides to

MHC proteins is considered to be the major determinant. Therefore, computational predictors

that identify MHC-binding peptides in a high-throughput fashion are critical.[7–9] In princi-

ple, these predictors utilize availability of the large-scale peptide-MHC binding affinity matrix

from experimental measurements, to train machine learning (ML)-based classifiers to distin-

guish MHC-binders from non-binders.[10] While all serving the purpose of MHC-binding

prediction in general, the increasing method variations among these tools, in combination

with the emerging new types of experimental data, render it necessary to rationally select the

best approach, especially for the potential applications in cancer vaccine design.

Immune Epitope Database (IEDB) hosts a series of ML-based tools, each trained on specific

dataset of experimental peptide-MHC binding affinity matrix.[10] These different tools

encompass two common approaches of ML (Table 1), namely, linear regression (LR) and arti-

ficial neural network (ANN). LR predicts peptide-MHC binding affinity by fitting the weight

matrix that relates peptide sequence to end-point binding affinity value. Depending on the

specific parameters used, such as whether regularization of weight matrix is included during

training stage, tools utilizing LR can be further categorized into naïve position-specific scoring

matrix (PSSM)[11] and stabilized matrix method (SMM)[12]. The inclusion of regularization

terms, in general, helps to prevent overfitting of LR weight matrix on training set. For MHC

class I epitope prediction, SMM is widely adapted, including smm[12], smmpmbec[13], and
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PickPocket[14]. For MHC class II, IEDB-hosted tools also contain those applying naïve PSSM,

including comblib[15] and tepitope[16]. The applicability of LR approaches to predict MHC-

binding relies largely on the assumption that the contribution of individual residues to the

overall binding affinity is linear in nature. While it has been shown that certain types of amino

acids are predominant at MHC-anchoring positions of peptide epitopes[17], the correlation

between neighboring residues was also demonstrated to affect MHC-binding. Therefore, ANN

presents as a better approach to capture the non-linear relationship between peptide sequence

and MHC-binding affinity, compared to LR.[18,19] In ANN, the contribution of residue type

of peptides to MHC-binding is simulated by one or more hidden layers.[20] These nodes

essentially add extra features in addition to the input peptide sequences and are able to com-

prehend the contribution of intrapeptide residue-residue interactions to the binding affinity.

IEDB tools utilizing ANN include ann (NetMHC3.4) and NetMHC4 for MHC class I predic-

tion[18,21], and nn_align (NetMHCII2) for MHC class II prediction[7,22]. To overcome the

low reliability resulted by a lack of sufficient training data for specific human leukocyte antigen

(HLA) alleles that encode MHC proteins, ANN pan-allele tools have also been developed, such

as NetMHCpan and NetMHCIIpan.[23] These approaches perform imputation to obtain

MHC-binding affinity of untrained allele, on the basis of neighboring MHC bearing the high-

est sequence similarity. Pan-allele methods exhibited comparable classification accuracy

between common HLA alleles and rare alleles that were not yet trained in allele-specific

approaches.

Despite the cross-validation results reported previously for different approaches and tools,

their prediction power is eventually determined by the performance on predicting “blind”

dataset, that is, data that have never been exposed to the predictors. Benchmarking the trained

Table 1. Accuracy metrics for all tested MHC-binding prediction tools.

AUC (± err) SRCC (± err) VUS (± err) SPE R-squared

MHC Class I (9-mer)

smm 0.856 ± 0.014 0.701 ± 0.020 0.498 ± 0.025 0.677 0.490

smmpmbec 0.857 ± 0.014 0.700 ± 0.020 0.503 ± 0.025 0.682 0.493

ann(NetMHC3.4) 0.860 ± 0.014 0.708 ± 0.019 0.537 ± 0.026 0.805 0.551

NetMHC4 0.881 ± 0.012 0.725 ± 0.017 0.545 ± 0.025 0.836 0.574

PickPocket 0.796 ± 0.016 0.580 ± 0.025 0.437 ± 0.022 0.332 0.339

consensus 0.860 ± 0.014 0.706 ± 0.019 0.521 ± 0.026 0.755 0.527

NetMHCpan2.8 0.846 ± 0.015 0.690 ± 0.020 0.519 ± 0.026 0.792 0.536

NetMHCpan3 0.880 ± 0.012 0.731 ± 0.016 0.545 ± 0.025 0.836 0.580

NetMHCpan4 0.872 ± 0.012 0.732 ± 0.016 0.536 ± 0.025 0.836 0.581

NetMHCcons 0.838 ± 0.018 0.675 ± 0.024 0.520 ± 0.029 0.810 0.530

mhcflurry 0.911 ± 0.010 0.761 ± 0.015 0.614 ± 0.026 0.813 0.641

mhcflurry_pan 0.873 ± 0.012 0.740 ± 0.016 0.549 ± 0.025 0.873 0.599

MixMHCpred 0.842 ± 0.021 Not calculated 0.399 ± 0.040 0.116 Not calculated

MHC Class II (15-mer)

NetMHCIIpan 0.891 ± 0.005 0.784 ± 0.006 0.622 ± 0.011 0.326 0.579

nn_align 0.911 ± 0.004 0.838 ± 0.005 0.694 ± 0.011 0.577 0.671

smm_align 0.871 ± 0.006 0.746 ± 0.007 0.598 ± 0.011 0.256 0.537

consensus 0.851 ± 0.006 0.700 ± 0.008 0.556 ± 0.010 0.164 0.000

comblib 0.750 ± 0.010 0.499 ± 0.016 0.404 ± 0.015 0.158 0.102

tepitope 0.759 ± 0.010 0.522 ± 0.016 0.379 ± 0.011 0.237 0.186

mhcflurry 0.744 ± 0.007 0.495 ± 0.011 0.383 ± 0.010 0.060 0.238

https://doi.org/10.1371/journal.pcbi.1006457.t001
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predictors against blind peptide-MHC binding data can provide necessary metrics needed.

While such effort has been attempted as an automated process on the IEDB server[19] (~ 7000

peptides across 42 HLA alleles with experimental IC50 available, since 2014), the evaluation

metric reported only contains the ranking score of each tool, lacking other detailed metrics

such as correlation of absolute binding affinities and accuracy of predicting strong binders,

which are critical for precise epitope selection. Also, allele-specific accuracy is not reported.

Furthermore, the benchmarking on emerging, high-quality mass spectrometry (MS) peptide is

yet available. The same gaps also apply to the MHC class II benchmarking.[24] In this paper,

we aim to deliver a systematic and quantitative benchmarking of a spectrum of MHC class I

and II binding predictors, using blind binding affinity dataset collected from both IEDB con-

sortium as well as independent studies.

With respect to the application of MHC-binding prediction in vaccine development, a sig-

nificant gap of capacity is the lack of knowledge on the correlation between the MHC binding

affinity and the immunogenicity of peptides.[25,26] While ML-based predictors are capable of

selecting potent MHC-binders, the selected sequences can only be presented to TCR if they are

truly generated by proteasome cleavage and transported to MHC within antigen-presenting

cells (APCs).[27,28] The accuracy in predicting these two processes is limited by the volume of

high-quality training set. For the same reason, accurately predicting immunogenic T cell epi-

topes by trained ML framework has also been a daunting task.[29] Previous attempts to filter

epitope-based vaccine candidates by solely relying on MHC-binding prediction have discov-

ered that a majority of predicted binders were non-immunogenic.[30,31] Therefore, evaluat-

ing the accuracy of different binding affinity predictors in identifying naturally processed T

cell epitopes is of critical relevance to their applications in neoantigen and vaccine prescreen-

ing. Besides ML-based predictors, protein structural modeling taking advantage of high-reso-

lution crystallographic data has emerged as an informative alternative, not only to predict

peptide-MHC binding affinity, but also to guide understanding on the immunogenicity of

peptide-MHC complex.[30,32] The development of structure-based prediction of peptide-

MHC binding by peptide-protein docking algorithms has enabled enhanced sampling of pep-

tide-protein binding landscape.[33,34] Structure-based predictions can potentially comple-

ment ML-based approaches by providing high-resolution peptide-MHC structure, which

allows the further assessment on the TCR interaction and the immunogenicity of the predicted

epitope. Hence, the structural modeling approach presents an opportunity for predicting the T

cell epitope immunogenicity.

The aforementioned gaps in current knowledge formulate several key queries of this paper.

We firstly introduced the test set and evaluate the prediction performance of MHC class I and

II tools on the blind test set. The tools include published IEDB methods, MixMHCpred[17],

and mhcflurry, as well as our development of pan-type I HLA epitope prediction version

[20,35]. To provide a comprehensive understanding of prediction reliability, we performed

evaluation metrics covering the prediction accuracy of binder classification and binding affin-

ity ranking. We then benchmarked particular user cases, including understanding allele-spe-

cific performance and recapturing absolute binding affinity of strong MHC-binders. We also

focused on evaluating the reliability of MHC-binding predictors to recover T cell-presenting

epitopes using the dataset of naturally processed and eluted peptides. In addition, we demon-

strated the performance of structure-based approach Rosetta FlexPepDock for peptide-MHC

binding affinity prediction and explored its possible usage to improve T-cell epitope identifica-

tion towards better identification power on T cell immunogenicity.

Benchmarking MHC-presenting epitope prediction methods
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Methods

Datasets

Experimental binding affinities. A comprehensive dataset of MHC-binding peptidome

was downloaded from IEDB database as of Oct. 2016.[36] The total number of entries is

513701. The most recent datasets used for training IEDB tools as well as mhcflurry was down-

loaded from IEDB.[37] For MHC class II, the “similarity reduced” set was selected. Several

steps were taken to generate the test datasets for benchmarking prediction tools: Firstly, quan-

titative measurements were selected by choosing binding assay types that report KD, IC50, or

EC50; secondly, the measurement values larger than 50000 nM were filtered out; thirdly,

9-mers for human HLA type I and 15-mers for human HLA type II alleles were chosen to be

included in the test datasets; finally, the test sets were compared with training sets of MHC I

and II prediction tools, and repetitive sequences in the test sets were removed to ensure that

data in the test sets have not been exposed to prediction tools. 29 HLA type II alleles have not

been included in the training of any prediction tools and therefore were discarded. In addition,

two independent sets of binding affinity measurement for 9-mer peptides to HLA-B2705 and

B3801alleles were also identified from literature and added to the MHC I cohort.[38,39] These

steps resulted in two test datasets including 32 and 24 unique HLA type I and II alleles with

2827 and 15691 binding affinity values, respectively (Tables 2 and S1). MHC class I testing

data are more heavily distributed in strong binder (IC50< 50 nM) and non-binder

(IC50> 500 nM) regimes, while MHC class II are heavily distributed in non-binder

(IC50> 1000 nM) regime. These ratios are comparable to the existing training data. Com-

pared to class I, more new data were generated for class II binding and non-binding peptides.

10-mer MHC-ligands from IEDB were preprocessed in the same fashion as the 9-mers, result-

ing in testing data comprised of 18 HLA type I alleles.

PDB structures of binding complexes. 10 MHC I-peptide binding complexes were

extracted from Protein Data Bank and were used as templates for the FlexPepDock modeling

(S2 Table). The HLA-A and HLA-B alleles of MHC protein PDB entries have at least 50 unique

peptide sequences and measurements in the test dataset to ensure a sufficient benchmarking

between experimental and modeling results. For multiple PDB entries with the same allele, the

model with highest resolution was used.

MHC Class I elution data. Three MS-derived elution datasets were introduced in the

benchmarking:

• “Dana Farber”: The first elution dataset consisting of six HLA type I alleles was part of the

test sets published in the 2nd Machine Learning Competition in Immunology 2012,

Table 2. Details of the blind test datasets included for current benchmarking.

Class # of test

data

# of HLA alleles

included

% of strong binder

(IC50< 50 nM)

% of weak binder

(class I< 500
nM;

class II < 1000
nM)

% of non-binder (class
I> 500 nM;

class II > 1000 nM)

# of data trained by

prediction tools�

MHC I

(9-mer)

2827 32 38.8 11.6 49.6 43258

MHC I

(10-mer)

747 18 50.9 11.2 37.9 22889

MHC II

(15-mer)

15691 24 12.3 26.6 61.1 76763

�The number here accounts for the training datasets reported in Kim et al.(2014)[37] and Andreatta et al.(2011)[22], for MHC I and II respectively.

https://doi.org/10.1371/journal.pcbi.1006457.t002
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downloaded from Dana-Farber Repository.[40,41] This data include the elution property of

each peptide as eluted (“+”) or negative (“-”) as verified by unpublished High-Performance

Liquid Chromatography-MS experiments, and were widely employed in various previous

efforts to predict naturally processed and MHC-bound peptides. For negative sequences,

binding affinity assays have been performed to verify that they are MHC binders.

• “Abelin”: The second dataset originates from the MS-identified eluted peptidome on engi-

neered mono-allelic HLA cell lines, published by Abelin et al.[42] For this dataset, we

restricted benchmarking to top seven HLA types with the largest amount of associated pep-

tides. For the “negative” class, 9-mer peptides were selected from the same proteomic data-

base used by the authors for searching MS data. The selection was done in a similar fashion

as Abelin et al., by randomly extracting 9-mer sequences and ensuring that no sequence can

be aligned locally to the positive peptides. The number of negative peptides is at 1:1 ratio

with the MS-confirmed positive ones for each HLA.

• “Sternberg”: The third dataset originates from MS-identified tumor antigen peptides in mel-

anoma patients, published by Bassani-Sternberg et al.[43] The reported dataset has been pre-

filtered with NetMHC4 to include only MHC class I binders and to select the strongest bind-

ing allele as target HLA type. In addition, we assigned the matching HLA types using the

strongest binding affinity, predicted by NetMHC4 for each sample. We also restricted

benchmarking to top seven HLA types with the largest amount of peptides associated. The

“negative” class was generated using the same approach as in the previous Abelin dataset,

with the exception that the positive to negative ratio was set to 1:50.

MHC binding prediction tools

8 MHC Class I and 6 MHC Class II binding prediction methods hosted on IEDB Analysis

Resource Server[10] were benchmarked (Table 3). Sequence submission was performed

through RESTful API. mhcflurry[20], NetMHC4[18],NetMHCpan3[23], and MixMHCpred

were locally installed on Linux server as stand-alone binary executables. NetMHCpan4 bench-

marking was conducted on the website interface hosted by DTU Bioinformatics.

Based on the ML principle utilized, these tools can be divided into two general categories:

LR-based binding score matrix and ANN approaches. PickPocket[14] is the only tool that is

trained on features reflecting sequence space of MHC proteins rather than binding peptides.

Pan-allele methods, including NetMHCpan2.8 and NetMHCpan3, utilize a nearest neighbor

classification to assign untrained allele in quest to a trained allele based on similarity in binding

pocket sequence. While other web-based prediction tools are not included in the current

benchmarking, mainly due to lack of disclosed corresponding training datasets, their princi-

ples can be fitted into the aforementioned two types of ML approaches. Therefore, we are con-

fident that the tools benchmarked in this study represent a comprehensive landscape of

commonly applied MHC binding prediction algorithms.

Details of mhcflurry_pan approach

Python package of mhcflurry has been pulled from the original code repository. The original

version uses 9mer peptide as input feature with sparse matrix encoding of sequence. To incor-

porate the sequence of class I MHC, the input dimension has been extend to 43mer to create

mhcflurry_pan (S6 Fig). The 34mer putative MHC binding pocket information was extracted

from NetMHCpan3, which covers 3725 HLA types. Two branches of mhcflurry_pan were

developed: 1) the modified ANN was trained on all available alleles of HLA binding data

(mhcflurry_pan); and 2) the modified ANN was trained on all available alleles of HLA binding

Benchmarking MHC-presenting epitope prediction methods
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data, except leaving out the HLA type being tested (mhcflurry_pan_LOO). The accuracy of

these approaches at both cross-allele and individual allele levels were benchmarked against

mhcflurry (Figs 1 and 2). The final version of mhcflurry_pan is available at: https://github.

com/juvejones/mhcflurry_pan.

Rosetta FlexPepDock workflow

FlexPepDock protocol in Rosetta3.5[44,45] was implemented into the workflow of predicting

binding of 9-mer peptides to MHC Class I proteins utilizing existing high-resolution crystal

structure of peptide-MHC complexes. The protocol resembles the ones introduced previously

with the addition of comparative modeling as the initial step for building bound peptide back-

bone based on template structure.[45,46] As a result, we were able to obtain a good conforma-

tional sampling of peptide with a low number of decoys (1000).[34] Starting from a peptide-

MHC complex as the template, rotamer libraries of the peptide were firstly built, then

Table 3. Summary of ML-based prediction tools employed for current benchmarking.

MHC Class I binding predictor

Name Method

Principle

Details Training Data Cutoff

ann (NetMHC3.4) ANN 2 to 10 hidden neurons; trained on 9-mer peptides IEDB—2013

consensus Combination Value reported as the median of ann, smm, and PSSM IEDB—2006

NetMHC4 ANN 5 hidden neurons; trained on all length peptides IEDB—2014

NetMHCcons Combination Value reported as the best performer among NetMHC, NetMHCpan, and PickPocket IEDB—2012

NetMHCpan2.8 ANN Trained on 9-mer peptides; nearest neighbor searching for untrained allele IEDB—2009

NetMHCpan3 ANN 56 or 66 hidden neurons; trained on all-mer length peptides IEDB—2015

NetMHCpan4 ANN Addition of MS-derived elution peptides to the training set and the prediction mode for elution

probability score

IEDB—2017

PickPocket LR Alternative smm with binding specificity vectors of MHC pocket as additional features IEDB—2009

smm LR SM with regularization term IEDB—2005

smmpmbec LR smm + MHC binding pocket sequence IEDB—2009

mhcflurry ANN 32 or 64 hidden neurons; trained on 9-mer peptides IEDB—2014

mhcflurry-pan ANN 32 or 64 hidden neurons; trained on 43-mer peptides IEDB—2014

MixMHCpred Clustering + LR Nearest neighbor clustering with distance calculated by PSSM Collective HLA-

peptidomics—2017

MHC Class II Binding Predictor

Name Method

Principle

Details Training Data Cutoff

nn_align

(NetMHCII2)

ANN 2 to 60 hidden neurons; trained on 9-mer binding core with additional flanking region features IEDB—2011

NetMHCIIpan ANN 10 to 60 hidden neurons; trained on 9-mer binding core with additional flanking region features;

nearest neighbor searching for untrained allele

IEDB—2014

consensus Combination Value reported as the median of nn-align, smm_align, and PSSM IEDB -2010

smm_align LR SM with regularization term; trained on 9-mer binding core with additional flanking region

features

IEDB—2007

comblib LR Naïve PSSM IEDB—2008

tepitope LR Naïve PSSM with binding specificity of MHC pocket as additional features IEDB—2001

mhcflurry ANN 32 or 64 hidden neurons; trained on 15-mer all-length peptides IEDB—2014

�PSSM (also know as Position-weighted Matrix): the binding specificity of each residue to a given MHC protein is represented by a score contributing independently to

overall binding affinity. The derivation of position-specific score of individual amino acid is by regression method similarly applied in SM, but without the

regularization term.

https://doi.org/10.1371/journal.pcbi.1006457.t003
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incorporated for the following comparative modeling step. Needle package[47] was used to

create the pairwise alignment profile between the target peptide sequence and the template

required for comparative modeling. Through comparative modeling, backbone conformation

of the target peptide was generated that resembles the template, providing a centroid-mode

Fig 1. Binary classification (binder vs. non-binder) performance. (a) AUC of MHC-I binding epitope prediction tools. (b) ROC curves. IC50 = 500 nM was

used as the cutoff for classifying experimentally measured epitopes. AUC was shown by box plot with upper and lower boundaries covering confidence level of

95%. (c) ROC curves enlarged for TPR between 0.7 and 1.0.

https://doi.org/10.1371/journal.pcbi.1006457.g001
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initial sampling of the peptide-MHC binding conformation.[46] The refinement step gener-

ated 1000 structures, which were optimized from the centroid-mode and provided high-reso-

lution side chain packing structures within MHC pocket. Finally, clustering of the 1000

structures was performed based on 2.5 Å root-mean square distance (RMSD) cutoff. The low-

est scoring model within the largest structural cluster was identified as the globally energy-

minimized peptide-MHC binding complex. The reweighted scores, comprised of MHC pro-

tein energy, peptide energy, and peptide-MHC interfacial energy, were transformed into (0, 1)

scale by establishing the highest and lowest scoring peptides in each allele as upper and lower

boundaries, respectively. The resulted Rosetta Score for each peptide was aggregated and asso-

ciated to the experimental binding affinity array. Visualization of the complex structures was

made by VMD 1.9.3.[48]

Evaluation metrics and statistical analysis

Receiver operating characteristic (ROC) curve and area under curve (AUC) were employed to

benchmark the performance of binary classification between binders and non-binders, using a

commonly applied cutoff of IC50 = 500 nM for MHC class I[49] and 1000 nM for class II[50].

Alternatively, we also evaluated HLA allele-specific IC50 cutoff based on established study of

binding repertoire size, by using the specific IC50 value corresponding to identifying at least

75% of binder peptides of each HLA.[51] To further identify the performance of the prediction

Fig 2. Evaluation of mhcflurry_pan predictor. Comparison of prediction power, indicated by (a) AUC, (b) specificity of

binders, and (c) specificity of strong binders, of 9mer-based mhcflurry with 9mer-based NetMHCpan4, 43mer-based testing

HLA included (mhcflurry_pan) and testing HLA leave-one-out (mhcflurry_pan_LOO) pan-predictor. Each point represents

one HLA type.

https://doi.org/10.1371/journal.pcbi.1006457.g002
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tools to distinguish strong binders from weak binders, volume under surface (VUS) was used

to calculate the capacity to correctly classify a group of three peptides into strong binder, weak

binder, and non-binder types on the basis of IC50 cutoffs of 50 and 500 nM:

VUS ¼ ∬ fPrft� � T � tþggdxdy

x ¼ PrfT � t� g ¼ F� ðt� Þ; y ¼ PrfT > tþg ¼ GþðtþÞ

D00 ¼ f0 � x � 1; 0 � y � GþðF
� 1

�
ðxÞÞg

where t− and t+ indicate lower and upper cutoffs respectively, Pr indicates corresponding dis-

tribution probability, and D00 indicates integral space The calculation of VUS also introduces

the specificity (SPE) measure of correctly assigning a peptide to strong binder.

Spearman’s ranking correlation coefficient (SRCC) between predicted and measured bind-

ing affinities was calculated to evaluate the reliability of binding predictions to correctly rank

out stronger MHC-binding peptides. R-squared values were generated by linear regression of

predicted IC50 to experimental IC50. Error estimation was performed based on 95% confi-

dence interval. All analysis and corresponding data visualizations were implemented using R

scripts. In particular, package ROCR[52] was used for ROC and AUC analysis and Diag-

Test3Grp[53] was used for VUS analysis. Note that MixMHCpred does not directly output

binding affinity, so the ‘Max_score’ was used as the predicted affinity strength for calculating

accuracy and correlations.

Results

MHC class I binding prediction tools

The half maximal inhibitory concentration (IC50) characterizes the effectiveness of a peptide

in substituting a high affinity molecule for binding to MHC and represents the binding affinity

of that peptide. The threshold of IC50 = 500 nM or 50 nM selects peptide binders or strong

binders, respectively, to MHC and can be used to identify T cell epitopes. The accuracy of the

predictors can thus be judged by the correctness of classifying peptides into binders and non-

binders based on experimental results. For MHC I-peptide binding prediction, mhcflurry

exhibits the best binary classification performance with AUC = 0.911 ± 0.010. ANN-based

approaches with the most recent versions (mhcflurry, NetMHC4, NetMHCpan4, and

NetMHCpan3) on average perform better than LR-based ones, including PickPocket, smm,

and smmpmbec (Fig 1). Compared with LR, the ability of ANN to adapt weights of the hidden

layer to capture the complex interactions between MHC-binding residues has been suggested

previously.[43] In addition, ANN generally performs better on the task of regularization, lead-

ing to less overfitting on the training set. When comparing different versions of the same tool,

newer versions (NetMHC4 and NetMHCpan3/4) generally outperform older ones

(NetMHC3.4 and NetMHCpan2.8), with the exception of NetMHCpan4 versus NetMHC-

pan3. The improvement is likely a result of updated training set. On the other hand, since

NetMHCpan4 was developed with the specific aim of improving the prediction of MS-derived,

MHC-eluted peptides, the lack of better accuracy compared to NetMHCpan3 on binding

affinity dataset is not surprising.

Note that AUC is independent of the cutoff chosen for binder versus non-binder classes,

therefore providing the overall robustness with respect to accurately selecting MHC-binders

from the peptide pool generated by all tumor somatic mutations. ROC curve also contains

information about false-alarm rate in the positive class space defined by a given cutoff, which

Benchmarking MHC-presenting epitope prediction methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006457 November 8, 2018 10 / 28

https://doi.org/10.1371/journal.pcbi.1006457


is the ratio of false positive rate (FPr) to true positive rate (TPr). For the high ANN performers

such as mhcflurry and NetMHC4, high TPr (> 80%) can be achieved with relatively low FPr

(~ 10%, Fig 1C). MixMHCpred demonstrates interesting behavior. While the overall AUC

(0.842 ± 0.020) and the FPr at TPr = 80% (~ 22%) do not rank high among the methods, it

attains second lowest FPr at TPr = 90%. As an important criterion for selecting reliable MHC-

binding prediction, low FPr directly contributes to downsized and efficient experimental vali-

dation cycle. In this regard, mhcflurry represents a preferable tool as it achieves lowest FPr at

either TPr = 80% or 90% (Fig 1B and 1C, orange), and MixMHCpred is also viable at

TPr = 90% (Fig 1C, lime).

The preferable performance of mhcflurry encourages us to develop its pan-HLA version,

mhcflurry_pan, on the basis of its open source ANN code (see Methods for details). Extended

by the dimension of input sequence feature to 43mer, our version of mhcflurry_pan has

achieved comparable predictive power of MHC-I epitopes in comparison with NetMHCpan4,

with AUC = 0.873 ± 0.012 (Fig 1), with median AUC across alleles = 0.931 (Fig 2). Specificities

of predicting both binder (< 500 nM) and strong binder (< 50 nM) are in the same statistical

range with the original HLA-specific mhcflurry. We also tested the performance of mhcflur-

ry_pan when trained by leave-one-out (mhcflurry_pan_LOO) approach, in which the corre-

sponding binding data of HLA type in-test were not included. The accuracy of mhcflurry_

pan_LOO maintained for a certain subset of alleles but lowered predictive power for others,

with median AUC = 0.790. We note that this precision reaches similar level compared to the

most recent version of NetMHCpan4.[54] Overall, mhcflurry_pan has achieved sound accu-

racy to facilitate the prediction of epitopes on untrained class I HLA types, which is critical for

the study of tumor immunogenicity and design of vaccine epitopes across broad cancer patient

populations.

In addition to conventionally used AUC criteria for differentiating MHC binder from non-

binder, we introduce VUS (Volume Under Surface) as a measure for an additional classifica-

tion of strong MHC binders that have IC50 < 50 nM (see Methods for details). This cutoff has

been used empirically to further filter out peptides that may detach from MHC under instable

thermal conditions. Fig 3 shows that mhcflurry still outperforms others with respect to three-

class classification, followed by mhcflurry_pan and NetMHC4/NetMHCpan3. The ability of

these tools to identify strong binders is also illustrated by specificity for predicting peptides

with< 50 nM affinity (SPE, Fig 3B). For this benchmarking, mhcflurry_pan has the highest

value 87.3% TPr on identifying peptides that have binding affinity< 50 nM. NetMHC4,

NetMHCpan3, and NetMHCpan4 all have the second highest value (0.836).

For predicting the affinity ranking of peptides to MHC, we calculated SRCC and R-squared

for the value pairs of experimental-predicted (Fig 3C and 3D). SRCC was employed commonly

in previous studies to measure the correlation of affinity ranking between predictions and

experimental values, proven valuable in selecting vaccine candidate epitopes. In addition to

SRCC, we also calculated R-squared here to benchmark how close predicted affinities match

experimental data. Both data indicate mhcflurry delivers the best correlation between pre-

dicted and experimentally measured binding affinities. A SRCC value of 0.761 ± 0.015 for

mhcflurry demonstrates that mhcflurry is reliable with respect to ranking strong binders above

weak binders when applied to epitope identification. On the other hand, the linear correlation

between the predicted and measured absolute binding affinities, as indicated by R-squared,

may not be satisfying. Even the best-in-class mhcflurry (R-squared = 0.641) can predict experi-

mentally IC50 correctly only to a certain extent. Since the threshold for designating strong

MHC binder peptides are only arbitrarily chosen at either 50 or 500 nM, the deficiency of

these ML-based predictions tools at providing correct absolute binding affinity is likely to

impact the identification of MHC-binding epitopes. A further confounding factor is that these
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threshold values were shown to be only applicable to certain alleles, while alleles with varied

population frequency exhibiting different affinity ranges of binding repertoire.[51] While our

data show that allele-specific cutoff generally does not alter the prediction accuracy in terms of

AUC (S2 Fig), this still impacts the way to interpret true or false prediction rate at specific cut-

off. The correct prediction of absolute peptide-MHC binding affinity is equally, if not more,

significant compared with the binary classification task.

For MixMHCpred, the prediction score does not directly correspond to binding affinity

due to the different type of HLA-ligandome training data. Therefore, the comparison with

other predictors on SRCC and R-squared is not straightforward. In addition, the cut-point

Fig 3. Multiclass classification performance of MHC class I binding epitope prediction tools: (a) VUS; (b) SPE; (c) SRCC; (d): R-squared

of linear regression. IC50 thresholds of 50 nM and 500 nM were used to classifying experimental measurements between strong binder, weak

binder, and non-binder. The box plots of VUS and SRCC show values covering 95% confidence level. Note that IC50 is not calculated in

MixMHCpred.

https://doi.org/10.1371/journal.pcbi.1006457.g003
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between ‘strong’ and ‘weak’ HLA-binders is not well-defined for MixMHCpred training data,

leading to declined VUS and SPE (Table 1). Nonetheless MixMHCpred appears to be a valid

candidate for binary classification of MHC-ligand.

Figs 1 and 3 demonstrate that mhcflurry is a superior choice for predicting 9-mer MHC I-

binding epitopes, which is also in accordance with recent automated benchmarking results

hosted on IEDB server.[19] We note that one advantage of mhcflurry for end-users is the

Python API that enables tunable ANN training parameters, such as number of hidden neurons

and dropout probability. In particular, setting dropout probability allows user-defined ANN to

prevent overfitting on the training set. In this benchmarking, a relatively larger number of hid-

den neurons (64) and dropout rate of 0.1 were assigned to capture effectively the non-linear

weight matrix relating 9-mer peptide sequence to binding affinity at a low degree of

overfitting.

MHC class I predictions of different peptide length

While most MHC class I binding peptides are 9-mers, the length of MHC class I ligands may

vary (3.4% 8-mer, 44.4% 9-mer, 29.9% 10-mer and 28.7% longer in IEDB database). Therefore,

we also conducted analysis to compare the accuracy of class I MHC-ligand predictors between

9-mer and 10-mer testing data. All methods benchmarked for 9-mer dataset were considered

expect mhcflurry and mhcflurry_pan. The highest AUC was obtained on consensus (0.968)

and the second highest one was obtained on NetMHC4 (0.965). Overall the classification accu-

racy is encouraging as reflected by the ROC curves (Fig 4A). Among the 11 methods, six even

demonstrated statistically significant higher accuracy for 10-mers than corresponding testing

data for 9-mers (Fig 4B). Similar observation can be made on SRCC result as well. Taken AUC

Fig 4. Comparison of prediction accuracy between 9-mer and 10-mer testing data. (a) ROC curves of 10-mer predictions with AUC value shown after each method.

(b) Boxplots of AUC and SRCC calculated for 9-mer and 10-mer predictions, with each point representing a type I HLA allele. Significant levels were obtained by

Wilcoxon test (�: p< 0.05; ns: p> 0.05).

https://doi.org/10.1371/journal.pcbi.1006457.g004

Benchmarking MHC-presenting epitope prediction methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006457 November 8, 2018 13 / 28

https://doi.org/10.1371/journal.pcbi.1006457.g004
https://doi.org/10.1371/journal.pcbi.1006457


and SRCC together into consideration, NetMHC3.4, NetMHC4, smm, and consensus meth-

ods demonstrated consistently more reliable prediction for the HLA alleles tested.

MHC class II binding prediction tools

As shown by Figs 5 and 6, ANN-based approach nn_align (NetMHCII2) exhibits a significant

advantage of accuracy over other tools regarding the binding prediction of MHC class II epi-

topes. nn_align delivers an AUC value of 0.911 ± 0.004, with 80% TPr reached at the expense

of ~ 13% FPr (Fig 5C). Further examination of ROC curves at high TPr range suggests that

other two popular methods, including NetMHCIIpan and smm_align, have also been able to

achieve < 20% FPr when reaching TPr of 80%. nn_align also achieves the highest VUS, SRCC

and R-squared, with comparable performance to the best MHC class I prediction tools. The

only exception in the metrics is SPE (0.671 for nn_align versus 0.836 for NetMHCpan3). This

deficiency can be a result of the test set composition, as only 12.3% are strong MHC II binders

(IC50< 50 nM), while 38.8% are strong MHC I binders. In other words, MHC II binding pre-

diction tools have a higher chance of falsely omitting strong binders, especially when the size

of positive data available is small. Trailing nn_align on accuracy, NetMHCIIpan serves as a

good alternative approach when the allele of interest is not yet trained by nn_align.

In the present study, we also employed the ANN framework of mhcflurry to train allele-spe-

cific MHC class II predictors using the same training set as of nn_align. For nn_align, smm_a-

lign, and NetMHCIIpan, this preference was determined a priori by Gibbs sampling of

existing MHC II-binding sequences.[55] However, in contrast to these methods, class II

mhcflurry did not consider separately the two 3-mer peptide flanking regions and the 9-mer

binding core.[7] In other words, the binding core and the flanking regions bear the same

weight as training input features. Instead, the 15-mer sequences were directly used as if all resi-

dues were assigned to binding region. The substandard performance of mhcflurry-MHC class

II predictors (Fig 5, AUC = 0.740) indicates that this strategy has difficulty in capturing the

correct sequence-binding affinity relationship. Evidently, the proper training to determine

such relationship by ANN requires explicit consideration on the sequence matrix of flanking

and binding core regions of peptides.

Despite the large sequence space of peptides bound to MHC proteins, the binding motif to

a specific MHC protein is often characteristic. For example, the anchoring residues of MHC

class I-binding 9-mer peptides exhibit heave amino acid preference at the 2nd and 9th position.

[17,56] For this reason, even the simplistic PSSM approach can often predict the binding pref-

erence of peptides to MHC proteins with high accuracy, given a sufficient training set. How-

ever, in LR-based PSSM approaches such as smm and PickPocket, the contribution of each

amino acid to overall MHC binding affinity is assumed to be independent.[13] Given evidence

showing that pair-wise interactions between neighboring residues of MHC-binding peptides

also influence the binding behavior[57], it is expected that ANN performs superiorly in terms

of learning such complex features and handling regularization. This hypothesis is confirmed

by our benchmarking on both MHC I and II binding prediction tools.

Allele-specific prediction performance and training data size

Allele-specific binding prediction performance, measured by AUC for binary classification

and by SRCC for affinity ranking, was consolidated as shown in S1 Fig. S2 Fig and S3 Fig show

the ROC curves of individual MHC class I and II allele. The grey blocks on the heatmap sug-

gest alleles that are not available for that particular method. At current state, allele-specific

mhcflurry and pan-allele methods, including NetMHCpan2.8, NetMHCpan3, and PickPocket,
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accept the widest range of HLA alleles. For HLA type II, the training set of nn_align encom-

passes the most allele types.

The effect of training data size is examined by dividing HLA alleles into three groups, each

with different sizes of MHC-binding peptide repertoire. For MHC class I, training data size

has no significant impact on the performance of binary classification, as shown by lack of dif-

ference on heatmap across cyan, yellow and purple regime (S1 Fig). The same observation can

be made based on boxplots of AUC (S1 Fig). Alleles with training set that has larger than 2500

peptides tend to achieve affinity ranking predictions better than alleles with binding repertoire

smaller than 500 peptides. In contrast, larger training size for class II cases does not necessarily

lead to better performance of neither binary classification (AUC) or affinity ranking (SRCC).

This conclusion holds true in the case of allele-specific binding affinity threshold as well (S1

Fig).

Fig 5. Binary classification performance of MHC-II binding epitope prediction tools. (a) AUC. (b) ROC curves. IC50 = 1000 nM

was used as the cutoff for classifying experimentally measured epitopes. AUC was shown by box plot with upper and lower

boundaries covering confidence level of 95%. (c) ROC curves enlarged for TPR between 0.7 and 1.0.

https://doi.org/10.1371/journal.pcbi.1006457.g005
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This result suggests that while gaining more training data can potentially increase the accu-

racy of affinity ranking on specific alleles, significant improvement on the performance of

identifying MHC-binding epitopes by binary classification is less likely expected. Our data

shows that a dataset larger than 500 points may be sufficient enough as the training set for ML

predictions. Depending on different cross-validation schemes employed, the size of allele-spe-

cific MHC-affinity array in pursuit needs to encompass both training and cross-validation

sets, especially for the practical application of training new learning network for rare alleles.

Absolute binding affinity prediction in strong binder space

While ANN-based approaches have given satisfying performance on the classification of MHC

binders, the prediction on accurate absolute binding affinity has been less scrutinized. As

Fig 6. Multiclass classification performance of MHC-II binding epitope prediction tools: (a) VUS; (b) SPE; (c) SRCC; (d): R-squared of

linear regression. The box plots of VUS and SRCC show values covering 95% confidence level.

https://doi.org/10.1371/journal.pcbi.1006457.g006
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already shown by Figs 4D and 6D, the linear correlation between predicted and measured

IC50 values does not adequately support the prediction as a good indicator for absolute bind-

ing affinity of untrained sequences. In practical applications, a strong binder threshold of

IC50 = 50 nM is often used to further identify the most potent epitopes; therefore we plotted

and fitted the regression between predicted and measured IC50 at the stronger binder regime

for MHC class I and II test data (Fig 7). As suggested by the decreased R-squared, the correla-

tion is deteriorated than the whole IC50 range (Figs 4D and 6D). A fair amount of points

which represent measured strong MHC-affinity were incorrectly predicted to be non-binders

or weak binders (Fig 7, points below grey dashed and dotted lines). The FNr of strong binder

classification, as shown in Fig 7, suggest the high risk of false filtering when applying 50 nM

Fig 7. Reliability of predicting absolute affinities of strong binding MHC Class I and II epitopes for (a) NetMHC4, (b)

mhcflurry-class I, (c) nn_align, and (d) mhcflurry-class II. Measurement and prediction values were represented as 1-log10
(IC50)/log10(50000 nM) and were light-colored based on 2-D data density. Grey dotted lines mark 50 nM threshold (y = 0.638) and

grey dashed lines mark 500 nM (y = 0.426) threshold. Red lines show the linear regression of the data. FNr(50 nM) indicates the

false negative rate of classifying strong binders.

https://doi.org/10.1371/journal.pcbi.1006457.g007
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as cutoff for peptide binders. Furthermore, MHC I binding predictors actually generated

diverge predictions for peptides that have highly similar measured affinity (Fig 7, yellow

arrows.)

Previous studies have reported that the sequences identified from MHC-peptide binding

predictions often resulted in a sparse immunogenic space.[31,42] Clearly, the false negative

rate and the weak correlation between measured and predicted affinities of these predictors

can be key sources of errors. While these predictors can identify the sequence pool of strong

binders relatively well by classification, prioritizing antigen candidates by ranking the pre-

dicted MHC binding affinities may not be appropriate. One caveat to recognize is the sensitiv-

ity or resolution of experimental binding assays in measuring high affinity zone, which leads

to the inaccuracy in training the predictors. Therefore, extra caution is required when applying

the predictors, such as applying the predicted relative ranking score instead of the affinity for

minimizing the discrepancy between predicted and experimental absolute affinity values.

MHC-eluted peptides prediction capacity

While MHC-binding is postulated to be the most important step for antigen processing

and presentation, subsequent steps involving proteasome cleavage of proteins and trans-

porter-associated processing (TAP) contribute together to determine the final peptidome

displayed on APC surface. Methods such as NetChop[58] and NetCTL[59] were devised

to train ANN to predict such events. Due to the smaller amount of high-quality data avail-

able for training, however, these predictions can hardly achieve the same level of classifi-

cation reliability compared to binding prediction tools such as NetMHC. Thus in

practical applications of antigen identification, often MHC-binding prediction is relied

solely upon. Recent efforts have emerged for developing the reliable prediction of natu-

rally APC-presented peptides, by training ANN on a set of MHC-eluted peptide sequences

that were obtained from high-resolution and high-throughput liquid chromatography-

mass spectrometry (LC-MS) experiments.[17,43,54,60,61] Here we assessed the ability of

currently benchmarked tools to identify MHC-eluted peptides correctly. The test sets

include three MS-derived datasets from recent studies (Methods).[62]

Across the three datasets, we obtained varied accuracy for NetMHC4, NetMHCpan4, and

MixMHCpred methods (Figs 8 and S4). We considered the primary cutoff using ranking

score, in that the binding affinity threshold (IC50) should not be applicable in the scenario of

predicting elution probability. In addition, similar to the heterogeneous nature of binding rep-

ertoire, the MHC-eluted repertoire will mostly likely vary in size and affect the allele-specific

cutoff. Overall, NetMHCpan4 achieves better accuracy compared to NetMHC4, which is

expected as it considered elution data in addition to binding affinity data for training. Due to

the fact that the negative class in Abelin and Sternberg testing sets are synthetic peptides ran-

domly drawn from MS peptidome database, their binding affinities are also very low, leading

to high accuracy of both NetMHCpan4 as well as NetMHC4 (Fig 8A and S4 Fig). In contrast,

the negative class in Dana Farber testing set is composed of predicted MHC binders. In this

case, NetMHCpan4 overall achieves lower false prediction rates than NetMHC4. Similar trend

can also be observed when using predicted binding affinity/elution score as cutoff (S4 Fig).

MixMHCpred also has improved accuracy than NetMHC4 on the three testing data when

comparing prediction score using a putative cut-point of 0.5. Its low false prediction rates are

also close to NetMHCpan4, with the improvement of zero false discovery rate (FDr) on B4403

allele and zero false negative rate (FNr) on A0301 allele. When considering all the prediction

tools on Dana Farber data, NetMHCpan4 performs the best across six HLA types (S5 Fig),

which is likely due to that the dataset has already been included in the training set.
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One potential caveat of binding affinity predictors for tasking eluted peptide prediction is

the relative high FDr, in that MHC-eluted peptides identified by MS experiments were often

observed to have much smaller repertoire size than MHC-binding peptides. This caveat is also

demonstrated here, with FDr reaching as high as 54% (Fig 8B, HLA-B0702 in Dana Farber

testing set). While FNr is generally lower than FDr, significant allelic variability was also

observed, with FNr reaching 30% for certain HLA types. Considering that the repertoire size

of actual MHC-presented epitopes is often limited, the misclassification of 3 out 10 epitopes

can be critical during experimental validations.

These observations demonstrate the variability of MHC-binding predictors when used for

classifying antigen presentation, as shown by the non-trivial FPr and FNr. We note that, due

to the inherit difference in repertoire sequences of MHC-binding and MHC-presenting pep-

tides, it is reasonable for prediction methods trained on one type of data to perform sub-opti-

mal on another type. In general, ML-based MHC-binding prediction tools are capable of

achieving decent AUC values for classifying eluted versus non-eluted antigen-processed pep-

tides, especially with the recent development of NetMHCpan4 and MixMHCpred. Neverthe-

less, the FNr and FDr should be taken into rigorous account in a cancer vaccine prediction

pipeline.

MHC I binding prediction by peptide-protein docking

We applied structure-based peptide-protein docking protocol FlexPepDock to model the

binding of 9-mer peptides to MHC class I proteins. Fig 9A shows the ROC curves and AUC

benchmarking classification by Rosetta Score. The accuracy of the binary classification is at the

lower spectrum end when put in line with ML-based approaches. In order to achieve a TPr of

80%, the Rosetta predictor commits about 50% FPr or higher for most alleles. Consistent with

previous modeling study, while FlexPepDock displays as an operating predictor for differenti-

ating MHC binders of certain alleles, it suffers from the insufficiency of backbone conforma-

tional sampling. In the current FlexPepDock protocol, although backbone structure was

optimized before side chain refinement, the flexibility of MHC-binding epitope backbone

made searching of the vast conformational space exhaustively challenging. Thus, the accuracy

of final optimized model still largely depends on the template crystal structure chosen.[32]

However, the peptide-MHC complex structure rendered by FlexPepDock still provides use-

ful information at 3-D level. We extracted the conformation and energy of two HLA-A0201

binding epitopes from modeling results and analyzed the peptide-MHC binding pocket (Fig

9B and 9C). Rosetta FlexPepDock correctly ranked FLSHDFTLV (FLS) (exp. IC50 = 1 nM,

Rosetta score = -784.357) above FLGGTPVCL (FLG) (exp. IC50 = 238 nM, Rosetta score =

-765.261) as stronger binder. The binding conformations for both peptides are stabilized by

the fitting of leucine (L, B2 and B9) or valine (V, B9) side chains into the hydrophobic pocket

on MHC surface (Fig 9B and 9C, blue labels). These two amino acids were confirmed to be the

primary anchoring residues for epitope binding to A0201.[17,32] On the other hand, we found

that stronger binder FLS may not necessarily be an ideal candidate for eliciting immunogenic-

ity, in that its 5th and 6th residues, aspartic acid and phenylalanine respectively, actually pose

side chains towards the MHC pocket as well (Fig 9B). In contrast, slightly weaker binder FLG

poses 5th and 6th residues threonine and proline preferably outwards, making their contact

Fig 8. Assessing the reliability of binding prediction methods for the identification of naturally processed MHC-epitopes. (a) Box plots

showing the quartile distribution of binding affinity rankings as predicted by NetMHC4 and NetMHCpan4 for MHC-eluted and non-eluted

peptides. Grey dashed line indicates predicted binder ranking of top 2%. (b) FDr and FNr values calculated based on top 2% percentile rank

cutoff on three MS-derived datasets visualized as heatmap. Similar plots of predicted scores are shown in S4 Fig.

https://doi.org/10.1371/journal.pcbi.1006457.g008
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with T-cell receptor more energetic favorable (Fig 9C).[29,63,64] In this case, positive epitopes

from binding affinity-based prediction may not entirely conform to antigens that promote

strong T-cell receptor binding and immunogenicity. Structural modeling-based approaches

such as Rosetta FlexPepDock, hence, provide an alternative avenue to complement the analysis

pipelines towards identifying vaccine candidates.

Discussion

Improving the prediction accuracy of absolute binding affinity

Our data suggests that while current MHC-binding predictors achieve high accuracy on classi-

fying MHC-binders and non-binders, their performance on delivering precise binding affini-

ties are inferior. This problem is almost intrinsic to ML-based approaches: the effect of the

most dominant features on the weight matrix is penalized by regularization intentionally to

achieve better generalization on those blind test data with less dominant features.[65] While

this setting is designed to solve the classification problem, it limits the extent of recovering the

absolute binding affinity by regression prediction. One source of the inaccuracy roots in the

loss of sensitivity of experimental assays at either very high or low binding affinity regimes.

Another related error may come from imbalance of training data across different affinity tiers.

As a consequence, epitope candidates for subsequent experimental validation selected by rank-

ing the predicted binding affinities may not necessary reflect the in vivo affinity values.

Fig 9. Prediction of MHC class I epitopes by FlexPepDock. (a) ROC curves and AUC values (shown after allele legend) generated based on reweighted binding energy

scores reported by FlexPepDock. Peptides were labeled as positive or negative class by the IC50 = 500 nM cutoff. True positive and false positive were then calculated by

correlating with FlexPepDock reweighted score. (b) and (c) Lowest energy conformations of 9-mers FLGGTPVCL and FLSHDFTLV to HLA-A0201 protein. MHC

proteins are shown by orange ribbon and white surface; peptide backbones are shown in cyan; MHC-binding residues are shown in silver; potential T cell receptor

contacting residues are shown in pink.

https://doi.org/10.1371/journal.pcbi.1006457.g009
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Molecular modeling-based technique can calculate peptide-MHC binding free energy with

high fidelity to experimental value.[66] Due to the limitation on computational cost, this solu-

tion would be applied only as a downstream, detailed analysis for structural interaction

between peptides and MHC.[30] Imprecise affinity prediction can also lead to inferior classifi-

cation performance for certain alleles, in that arbitrary affinity thresholds are often used in

practice (i.e., 500 nM for binders and 50 nM for strong binders). Such thresholds were shown

to underestimate MHC-binding peptide repertoire for rare HLA alleles.[51] To alleviate this

limitation, percentage rank, instead of binding affinity, has been introduced to rank epitope

candidates. Increasing the prediction accuracy of absolute binding affinity for ML-based

approaches remains to be a major direction of improvement.

Predicting different peptide length

In the current study, it is demonstrated that majority of the methods are able to attain compa-

rable prediction performance between MHC class I 9-mer and 10-mer ligands. This observa-

tion is in concordance with previous testing on these methods, which employ strategies of

designing gap and insertion[18], or different training matrices for mapping different length

[17]. We note that expanding the benchmarking to other length of MHC-ligands or immuno-

genic peptides is of significant relevance for understanding length preference of T-cell epi-

topes, which will be considered in our future work.

Combining synthetic with naturally processed MHC-peptidome

The MHC-peptidome repertoire used to train binding affinity prediction tools has included a

substantial amount of artificially synthesized peptides. While this inclusion has largely

enhanced the sequence space of potential MHC-binders, it also generated bias in training set.

The predictions from these tools lead to a skewed population of binding motifs that do not

necessarily consider APC endogenous processing and TAP. As seen from our benchmarking

of IEDB tools, the precision of the predictors in identifying naturally processed MHC-binders

is suboptimal compared to predicting binding affinity.

Mass spectrometry (MS) of “pull-down” experiment, taking advantage of MHC-specific

antibodies, yields a relatively unbiased sampling of naturally processed endogenous peptides,

and can correct the training set bias introduced by synthetic sequences. Moreover, it has been

reported that a considerable amount of peptides eluted from MHC molecules are in fact pro-

teasome-spliced sequences.[27] MS-based naturally processed MHC-peptidome is expected to

facilitate the discovery of such non-canonical MHC-binding motifs as well. Increasing number

of studies have focused on generating such MS-based MHC-peptidome dataset[43,67,68],

while a large fraction of the results are scattered and yet to be included as new training set.

Incorporating large-scale MS-based MHC-peptidome data with existing binding affinity and

antigen-processing predictors[17,42,43,54], as demonstrated by our benchmarking of

NetMHCpan4 and MixMHCpred versus NetMHC4, is capable to improve the identification

accuracy of naturally processed epitopes.

Overall, the integration of multiple data sources in the antigen presentation and T-cell

interaction pathways should be considered for efficient identification of vaccine candidates.

For example, current MS-based MHC-peptidome data still lack good concordance with pep-

tides predicted to be strong MHC binders. Our benchmarking indicates that binding affinity

predictors have varied accuracies on MS-identified peptides, suggesting potential bias can be

introduced when analyzing original MS data with predicted affinity filtering. For example, the

Sternberg dataset was filtered by NetMHC4 prediction to reduce non-binding negatives and

therefore is subject to bias when benchmarked on this predictor. A recent study has alleviated
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such issue with MHC-peptidome deconvolution[17], which also provides future direction to

assess the soundness of different predictors on unbiased MHC-peptidome testing sets. In addi-

tion to curating high-quality MHC-peptidome data, considerable upgrading of prediction

power can potentially be gained by combining feature descriptors related to MS data, such as

protein abundance, to fully realize the advantage of ANN approach[42]. This strategy offers a

path towards a deep understanding of antigen presentation process.

Evolving from MHC-binding prediction to T cell epitope prediction

The ultimately goal of MHC-binding and other antigen presentation predictions is to identify

peptides for eliciting adaptive immune response. In particular, the success of cancer immuno-

therapy has opened a venue for applying personalized cancer vaccine based on individual’s

HLA allele types and tumor profile. Tumor-associated antigens or neoantigens are prominent

candidates for cancer vaccine. In silico prediction methods are expected to prioritize antigens

based on their potentials to elicit T cell responses, yet only a small fraction of predicted candi-

dates turned up to be immunogenic in many case studies.[26] One reason is the lack of data-

base reporting the relationship between epitope sequences and the associated T cell

immunogenicity. Current high-throughput approach using tetramer staining of tumor infil-

trating lymphocytes[69] has only produced a limited amount of affinity matrix as training set.

As shown in this paper, alternative approach using structure-based modeling may be used to

predict TCR-peptide-MHC interaction without prior knowledge. However, compared to the

interactions between peptide epitope and MHC, the recognition of TCR to peptide-MHC is

much more complex, due to the lack of well-defined binding groove at TCR protein surface.

This complexity raises a tremendous amount of computational burden in practice. Despite

these difficulties, we argue that the current prediction algorithms are necessitated to evolve

towards T cell epitope prediction, in order to transform personalized cancer vaccine and bio-

marker development into practices that are approachable beyond research laboratory.

Summary

In this study, we performed a systematic and quantitative benchmarking of popular MHC

class I and II-binding prediction methods by using a comprehensive evaluation metrics. We

also developed mhcflurry into a pan-HLA prediction approach to facilitate its application on

HLA types with insufficient training data. For MHC class I, mhcflurry (AUC = 0.911) and con-

sensus (AUC = 0.968) was demonstrated to be the best binary classifier on 9-mers and

10-mers, respectively. mhcflurry also achieved the best for multi-class classification and rela-

tive affinity ranking. Pan-HLA version of mhcflurry have the best accuracy in identifying

strong MHC I-binders (IC50 < 50 nM). For MHC class II, nn_align/NetMHCII2

(AUC = 0.911) constantly outperformed other tools on all evaluation standards. The current

binding prediction tools have achieved tremendous accuracy with respect to categorical classi-

fication of strong MHC-binders from the test set, demonstrating the advances made by large-

scale synthetic peptide-MHC binding dataset and state-of-the-art ML approaches. On the

other hand, important lessons have also been learnt as to the deficiency of current algorithms

in predicting absolute binding affinity. With respect to identifying naturally processed MHC-

peptidome using predicted ranks, variability of accuracy has been observed between different

testing data, while the newly developed tool NetMHCpan4 displayed good performance com-

pared to conventional binding affinity predictors. The contrast between results on MHC-bind-

ing and MHC-elution epitopes presents a new view of best practice in T-cell epitope

prediction. In addition, we conducted extensive benchmarking of structure-based peptide-

MHC binding prediction by Rosetta FlexPepDock, demonstrating the usage and weakness of
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structural modeling for antigen identification. Our benchmarking results provided an overall

guideline regarding the predictive capacity of MHC-binding predictors and the potential

directions of improvement for their applications in personalized cancer vaccine design and

development.
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