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Abstract

The Pig-a assay, a promising tool for evaluating in vivo genotoxicity, is based on flow cytometric enumeration of
red blood cells (RBCs) that are deficient in glycosylphosphatidylinositol anchor protein. Various approaches for
measuring Pig-a mutant cells have been developed, particularly focusing on measuring mutants in peripheral RBCs
and reticulocytes (RETs). The Pig-a assay on concentrated RETs—the PIGRET assay—has the potential to detect
genotoxicity in the early stages of a study. To verify the potential and usefulness of the PIGRET assay for short-term
testing, we conducted an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity
Study Group of the Japanese Environmental Mutagen Society (MMS/JEMS). The collaborating laboratories assessed

standard protocol for the RBC Pig-a assay in detail.

HIS49

the mutagenicity of a total of 24 chemicals in rats using a single-treatment design and standard protocols for
conducting the Pig-a assay on total RBCs (the RBC Pig-a assay) and the PIGRET assay. Here, we describe the
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Background

The Pig-a assay is an in vivo gene mutation assay that uses
the Pig-a gene as an endogenous reporter. The Pig-a assay
has attracted attention as a potential mutation assay for
regulatory safety assessments. In 2013, a workgroup of the
International Workshop on Genotoxicity Testing (IWGT)
reviewed data, protocols, and the state of assay validation,
and published consensus statements on the current status
and research needs for the assay [1]. Preparations are now
underway for a new Organisation for Economic Cooper-
ation and Development (OECD) test guideline for the in
vivo Pig-a assay. In addition, the assay is recommended in
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the International Conference on Harmonization (ICH)
guideline M7(R1), “Assessment and control of DNA reac-
tive (mutagenic) impurities in pharmaceuticals to limit po-
tential carcinogenic risk”, as a follow-up test for positive
in vitro findings [2].

Pig-a assays evaluate the mutagenic potential of chemicals
by detecting phenotypic changes in cells caused by intracellu-
lar gene mutations. The Pig-a or phosphatidylinositol glycan
class A gene (Pig-a in rodents, PIG-A in humans) codes for
an enzyme essential for synthesis of the glycosylphosphatidy-
linositol (GPI) anchor [3-6]. GPI anchors tether many
unique proteins, e.g, CD59, CD55, and CD48, to the surface
of various cell types in humans and rodents [7, 8]. The Pig-a
gene is located on the X chromosome in mammalian cells
[3, 9] and is present as one functional copy per cell (the
second copy is transcriptionally silenced in females). Thus, a
single Pig-a gene mutation can result in a deficiency in
GPI-anchored proteins at the cellular surface (Fig. 1a). Since
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Fig. 1 Principle of the Pig-a assay and flow cytometry analysis. a Pig-a is an essential gene for synthesis of the glycosylphosphatidylinositol (GPI)
anchor. In wild-type cells, GPI anchors and CD59, a GPl-anchored protein marker, are synthesized independently and GPI tethers CD59 to the cell
surface. However, in Pig-a mutant cells, CD59 proteins on the cell surface are reduced because GPI anchors are not synthesized due to Pig-a gene
mutation(s). Thus, Pig-a mutant cells do not react with FITC-conjugated anti-CD59 antibodies while wild-type cells react to the antibodies and
fluoresce. b Peripheral blood is stained with fluorescent-labeled antibodies. Cells are gated by light scatter and then analyzed by flow cytometry
for HIS49 rat erythroid marker expression. HIS49-positive cells are further analyzed for CD59 expression and Pig-a mutant cells are detected as the

Pig-a mutant cells

the Pig-a assay uses an endogenous gene on the X chromo-
some for detecting mutations, transgenic rodents are not re-
quired. An additional advantage is that the Pig-a assay can
often be integrated into existing genotoxicity and general
toxicology studies as a combination assay.

The red blood cell (RBC) Pig-a assay can measure
mutants that accumulate in whole peripheral blood as
a result of repeat dosing [10]. Only a few microliters
of peripheral blood from live animals are required to
conduct the assay; thus, the mutagenicity risk of com-
pounds may be evaluated longitudinally, in multiple
samples collected from a single set of animals. When
the Pig-a assay is conducted as part of long-term/
chronic repeated dosing studies, that is, when aging
animals are assayed, the RBC Pig-a assay might be
preferable to other genotoxicity assays that require
animal sacrifice (e.g., the transgenic rodent assay) or
where genotoxicity responses do not accumulate (e.g., the
Comet assay or the bone marrow micronucleus assay).

In vivo Pig-a assays were first described for rodents in
2008 [11-14]. Several methods using peripheral blood
cells or bone marrow cells have been developed for mice
and rats, but the rat peripheral blood method, particularly
using RBCs, is most commonly used at present. Although
there are multiple approaches for Pig-a assays, we used a

method using the anti-rat erythroid marker HIS49 in this
protocol. The RBC Pig-a assay was conducted using
anti-HIS49 to identify erythrocytes and a flow cytometer
(FCM) to evaluate mutant frequency (MF) in erythrocytes
from peripheral blood. The Pig-a gene is essential for GPI
synthesis; thus, mutants are identified as HIS49-positive
cells with reduced GPI-anchored protein (CD59 in this
assay) on the cell surface (Fig. la). Comparing with the
others, this is the simplest protocol for Pig-a assay, that is,
this requires less blood sample volumes and less experi-
mental procedures. The technical hurdle for FCM setup is
also lower, so this protocol is suitable for first time users
of Pig-a assay.

The RBC Pig-a assay has been used in two collabora-
tive studies conducted by Japanese research groups. The
first of these studies was conducted in a trial supported
by the Japan Health Sciences Foundation (JHSF). The
collaborating laboratories defined standardized gating
rules for CD59-negative cells and examined the interla-
boratory transferability and reproducibility of the RBC
Pig-a assay [15-20]. The second collaborative study was
organized by the Mammalian Mutagenicity Study Group
of the Japanese Environmental Mutagen Society (MMS/
JEMS). The collaborators confirmed that significant
increases in Pig-a MF were observed after a single
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administration of typical mutagens. In addition, the re-
sults of the MMS/JEMS collaborative study demon-
strated the excellent reproducibility and high
transferability of the assay [21].

In the present paper, we describe the procedure for
the rat RBC Pig-a assay that was validated in the MMS/
JEMS collaborative study. An outline of the assay is
shown in Fig. 1b. Peripheral blood is collected from rats
and mixed with an anticoagulant. The blood samples are
stained with fluorescent-labeled anti-CD59 antibody and
fluorescent-labeled antibody to an erythroid marker
(HIS49) and, then, analyzed using an FCM. At least one
million RBCs are analyzed for each sample, and the fre-
quency of CD59-negative cells, which is taken to be the
Pig-a ME, is calculated.

RBC Pig-a assay standard protocol

Instruments

The standard procedure for the RBC Pig-a assay uses an
FCM equipped with blue and red lasers and its corre-
sponding analysis software. Here, we describe a proced-
ure with a FACSCantoll FCM (BD Biosciences)
equipped with 488 nm blue and 633 nm red lasers and
FACSDiva software (BD Biosciences) as an example.

A single-laser FCM can be used if an alternative fluor-
escent label (e.g., PerCP-Cy5.5-conjugated) is used on
the anti-rat erythroid antibody. See Notes section (a)
and the article by Kikuzuki et al. [22].

Chemicals and materials
FITC-conjugated anti-rat CD59 antibody (FITC-CD59
Ab, clone TH9, BD Biosciences) and APC-conjugated
anti-rat erythroid marker antibody (APC-HIS49 Ab,
clone HIS49, BD Biosciences) are obtained commer-
cially. Phosphate buffered saline (Ca- and Mg-free, PBS)
is required to dilute blood samples and antibodies.
EDTA-2K solution (12mg/mL) is used as an
anti-clotting reagent for tail vein blood collection.

Animals and dosing

Both male and female rats can be used for this assay
[23-25]. Groups of six were recommended by the 6th
IWGT Pig-a Workgroup [1]. The maximum dose and
lower doses should be selected according to the criteria
laid out in the OECD Test Guidelines for in vivo geno-
toxicity and general toxicity studies (e.g., TG407 [26],
TG474 [27], and TG488 [28]).

The positive control group is not required to be the
same size as the test group; however, it is necessary to
judge whether the assay is performed properly (see
Notes section (b)). N-Nitroso-N-ethylurea (Cas#
759-73-9, ENU) may be used as a positive control com-
pound; a single dose of 40 mg/kg ENU induces signifi-
cant increases in Pig-a MF. Dissolve ENU in warm PBS
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(pH adjusted to 6.0-6.1, 37 °C) and filter the solution to
remove undissolved particles. Keep away from light and
use within 2 h.

Blood collection and preservation

Blood collection

Blood is collected from rats prior to and at appropriate
times after the administration of the test compound. In
the MMS/JEMS collaborative study, the RBC Pig-a as-
says were conducted prior to and 1, 2, and 4 weeks after
a single administration.

About 10 pL peripheral blood are collected from a tail
vein and mixed well with 12 mg/mL EDTA-2 K solution at
a ratio of 9:1 or 10:1. To prepare control samples for gate
adjustments, an additional 10 uL. blood should be col-
lected from one of the animals in the negative or vehicle
control groups. It is also possible to collect blood from the
abdominal aorta with vacutainer blood collection tubes
containing anti-coagulants (e.g., EDTA or heparin). Store
blood samples on ice or in a refrigerator (2—8 °C).

Coagulation of the blood samples has a negative im-
pact on Pig-a assay data, and may cause a false positive
result due to poor staining. The blood sampling method
is left to the operator’s discretion as long as blood co-
agulation is avoided.

Storage of blood samples

Refrigerated blood samples should be used for the Pig-a
assay within seven days of collection. Prior to storage,
the tubes are centrifuged briefly to collect all the blood,
including blood adhering to the lid and the wall of the
tubes, into a single volume at the bottom and prevent
the blood from drying out. Then, the tubes are tightly
capped and stored in a dark refrigerator (2-8 °C).

Blood processing for the RBC Pig-a assay

Preparation of master mix

One pg FITC-CD59 Ab and 0.133 ug APC-HIS49 Ab so-
lution for each 3 pL blood sample (plus some extras)
were combined in a master mix solution. Specifically,
2 uL FITC-CD59 Ab stock solution (0.5 mg/mL) and
2 pL diluted APC-HIS49 Ab solution (0.2 mg/mL stock
solution is diluted three-fold with PBS to 0.0667 mg/mL)
are mixed per sample. Four pL of the master mix solu-
tion are used to stain each sample.

Staining assay samples

Dispense 0.2 mL PBS into each FCM sample tube. Ensure
that the PBS is at the bottom of the sample tube, taking
care to prevent PBS from adhering to the wall of the tube.
Since blood might separate during storage, mix the blood
samples well by tapping, pipetting, or vortexing before
dispensing. Take 3 pL blood using a micropipette and
completely expel it into the PBS in the sample tube, taking
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care to prevent blood from adhering to the wall of the
sample tube. Rinse blood in the pipette tip by pipetting
and vortex the sample tube for several seconds.

Add 4 pL of the master mix prepared above to each
assay sample, taking care to prevent the antibody from
adhering to the wall of the sample tube. Rinse the
antibody in the tip by pipetting. After adding the master
mix solution to all samples, vortex the sample tubes for
several seconds. If blood splashes on the upper part of
the tube, mix well until it is mixed with antibodies com-
pletely, or transfer the sample solution to a new tube.

Incubate samples for 1h at room temperature in the
dark. After incubation, mix the samples again by vortex-
ing and, then, centrifuge at approximately 1700xg for 5
min at room temperature. Remove the supernatant with
an aspirator or a pipette while tilting the tubes.

Loosen the blood cell pellet by gently tapping the bot-
tom of the tube. It is critical to thoroughly disperse the
pellet at this point to keep cells from clumping. Add
0.5-1.0 mL PBS, resuspend the blood cells and vortex
for several seconds. Adjust the volume of PBS to attain
the desired sample flow rate on the FCM; see the ‘Data
collection’ section below. Keep the samples at room
temperature in the dark until FCM analysis.

Staining control samples used for gate adjustment

A non-stained sample, a CD59 single-stain sample, and
a HIS49 antibody single-stain sample are prepared.
Dispense 0.2 mL PBS into sample tubes and take 3 pL of
blood collected from an animal in the negative or vehicle
control group. Expel it completely into the PBS in each
sample tube.

Add 2 pL FITC-CD59 Ab stock solution to the CD59
single-stain sample tube. Add 2 pL diluted APC-HIS49
Ab to the HIS49 single-stain sample tube. The CD59
single-stain sample and the HIS49 single-stain sample
contain 1 pg and 0.133 pg of each antibody, respectively.
Incubate the two single-stain samples and the
non-stained sample for 1h, centrifuge at approximately
1700xg for 5 min at room temperature and, then, resus-
pend as described above for assay samples.

Flow cytometry

The following steps vary depending on the FCM model
and analysis software; the procedures described below
describe using a BD FACSCantoll FCM and BD FACS-
Diva software, but are relevant for most models. The de-
tails of each procedure and gate settings can be adjusted
at each facility to fulfill the acceptance criteria for the
analysis.

Cytometer startup and plot creation
Start up the FCM as described in the instruction man-
ual. Perform quality control to ensure that the
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instrument is in optimal condition. Keep the flow cell
and fluid lines clean to prevent detecting nonspecific
events.

Create a worksheet and three plots, as shown in Fig. 2:
dot plots of forward scatter (FSC) vs side scatter (SSC)
and FSC vs FITC, and a histogram for APC fluorescence.
Set FSC and SSC in the log scale. When using analysis
software such as FACSDiva, set the area scaling factor at
an appropriate value so that the results of the analyses
using area will be accurate. To evaluate only a single-cell
population and eliminate nonspecific data, an FSC-H/
FSC-W dot plot can be included in addition to the basic
plots defined in Fig. 2. Analog instruments such as the
FACSCalibur FCM do not have this function; therefore,
an area scaling factor and the FSC-H/FSC-W plot are
not used.

Creating gates with the non-stained sample

Place the non-stained sample in the FCM and start acquir-
ing and previewing data (without recording). During data
acquisition, adjust the photomultiplier tube (PMT) voltage
so that the cell population is plotted in the upper right
quadrant of the FSC/SSC plot, as shown in Plot 1 of Fig. 3.
Create a P1 gate by enclosing the cell population in Plot 1
using a polygon or a freeform gate tool. If applicable, a
threshold option can be set on FCS and SSC.

Then, create a P2 gate in Plot 2 using an interval gate
tool, as shown in Plot 2 of Fig. 3. Display only the P1
gate population on Plot 2 and create the P2 gate as a
subset of the P1 gate. Confirm that the new population
(P2 gate) appears indented below the selected population
(P1 gate) in the Population Hierarchy view. Create a P3
gate in Plot 3 using a rectangle gate tool, as shown in
Plot 3 of Fig. 3. Display only the P2 gate population in
Plot 3 and create the P3 gate as a subset of the P2 gate.
At this point, few cells are detected in Plot 3 since the
cells are not stained with antibodies. Confirm that the
P3 gate appears indented below the P2 gate in the Popu-
lation Hierarchy view.

Adjusting gates with single-stain samples

While loading each single-stain sample, adjust the PMT
voltages of the APC and FITC signals so that the posi-
tive or negative cell population shifts to an appropriate
position in the P2 and P3 plots.

Adjust the position of the P2 gate using the CD59
single-stain sample. Move the P2 gate to include less
than 0.5% of the APC-negative population (Fig. 4).

Next, optimize the P3 gate following the rule set in
our previous collaborative study, the JHSF study [15].
Gate P3 is critical for the accurate detection of
CD59-negative cells. At this point, use the HIS49
single-stain sample which is detected in the P3 region as
a CD59-negative cell population. Adjust the P3 gate to
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include 99.0% (acceptable range is between 98.9 and
99.1%) of the CD59-negative cell population in Plot 3
(Fig. 5). Confirm that the P3 gate reaches the x-axis. If
applicable, select “Bi-exponential” for the y-axis (FITC
intensity scaling) in the Plot Inspector.

Finally, acquire and record data for control samples in
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non-stained sample, and CD59 single-stain sample.

Count at least one million cells in the P1 region for the
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single-cell population is defined, count cells in the
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protocol, fine-tune the PMT voltages and the gate set-
tings. Make sure that the rule for the CD59-negative cell
region has been strictly applied to the P3 gate setting;
that is, that the P3 gate is set to include 99.0 + 0.1% of
the CD59-negative cell population using the HIS49
single-stain sample (see Notes section (c)).

Data collection

Immediately before placing an assay sample on the
FCM, thoroughly mix the sample by vortexing. If cell
clumps are present in the sample tubes, filter the sample
solutions with a cell strainer. It is advisable to collect
and save all events to the database rather than certain
cell populations (e.g., cells in the P1 region), so that the
complete data are available for re-analysis if needed.

Maintain the sample flow rate at 10,000 events/sec or
below by adjusting the event rate on the instrument or
the cell concentration of each sample. By adjusting to an
appropriate flow rate, nonspecific data are reduced and
highly efficient sample analysis is achieved. Acquire and
record data for at least one million cells in the P2 region
(HIS49-positive cells: total RBCs).

If a large number of cells are detected in the P3 region
(CD59-negative cells), load PBS or purified water to
wash the fluid lines and prevent contaminating the cells
in the next sample. After washing, acquire data from the
next sample, confirm that the events fall within the ap-
propriate gates and, then, continue to record data.

Data analysis

Calculation of Pig-a MF

Pig-a MF is calculated according to the following
formula:

Pig-a MF (x10°°)

_ Number of CD59 negative RBCs (cells in the P3 region)

10°
Number of total RBCs (cells in the P2 region) X

Acceptance criteria for the assay
The negative/vehicle and positive control groups are re-
quired to satisfy the criteria below (see Notes section (b)):

e The average Pig-a MF in the negative/vehicle
control group is 10 x 107° or below.

e The Pig-a MF of each animal in the positive control
group is significantly higher than that in the
negative control group (10 x 107 or above is
adequate).

Statistical analysis
Statistical analyses of Pig-a MF data are performed fol-
lowing the method described in the IWGT report [1].
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An offset of 0.1 is added to each Pig-a MF value
(expressed as mutants x 107° total RBCs) because Pig-a
MEF values of zero are occasionally observed, and the
values are log (10) transformed. Then, transformed Pig-a
MEF values are analyzed by Bartlett’s test for homogeneity
of variance among the groups. If the group variance is
determined to be homogeneous, the significance of in-
creases in treated rats relative to negative control groups
is analyzed using Dunnett’s multiple comparison test. If
Bartlett’s test indicates heterogeneous variance, the non-
parametric Dunnett’s multiple comparison test (Steel
test) is used. Significance is evaluated at the 5% level
using a one-tailed test for increases relative to the nega-
tive or vehicle control.

Tips for conducting the RBC Pig-a assay

The RBC Pig-a assay has just two simple steps to obtain
data; the first step is mixing each blood sample and anti-
bodies and the second step is analyzing the samples
using an FCM. The method is simple; however, it is im-
portant to stain the blood samples carefully and set up
the FCM correctly. Any unstained blood in the sample
tube might cause a false positive result in the Pig-a assay
because unstained cells are recognized as CD59-negative
(mutant) cells. The rule for CD59 negative gate-setting,
which is defined as containing 99.0 £ 0.1% cells using the
HIS49 single-stained sample, is effective for reducing
variability in the measurement of CD59-negative cells
(Pig-a MF) [15]. To evaluate compounds correctly,
insure that the PMT voltages are adjusted appropriately
and that the CD59-positive (wild-type) population has
sufficient FITC intensity. If normal (wild-type) cells have
insufficient fluorescence intensity in spite of the PMT
voltage adjustment, it is better to change the antibody.
Keep the flow cell and fluid lines clean to prevent the
detection of nonspecific particles.

When each facility establishes and validates RBC Pig-a
assay techniques on-site, it is desirable to conduct an
assay on rats treated with a single dose of 40 mg/kg
ENU and confirm that the Pig-a MF increases signifi-
cantly at 2 or 4 weeks after administration, as shown
Fig. 6. The average Pig-a MF in the negative control
group should be consistently 10 x 10~ ° or below.

Notes

(a) When using a single-laser FCM, use PerCP-Cy5.5-
labeled erythroid marker, which can be used with
FITC- and PE-labeled reagents for analyses using a
single-laser FCM. Kikuzuki et al. conducted the Pig-
a assay with an Epics XL equipped with SYSTEM II
software in the MMS/JEMS collaborative study
[22], and their results satisfied the acceptance cri-
teria. For a single-laser FCM, alter the procedures
as follows.
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Fig. 6 Example RBC Pig-a assay results and typical flow cytometer plots. a RBC Pig-a assays were conducted pre-treatment (0), and at 1, 2, and 4
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Genes and Environment 36, 199-202, 2014 [20] and modified. b Typical plots measuring Pig-a mutant cells (CD59-negative cells) from vehicle

PerCP-Cyb5.5-conjugated rat erythroid marker
(clone HIS49) is prepared. Add 0.8 ug PerCP-Cy5.5-
conjugated HIS49 antibody per sample; if PerCP-
Cy5.5-conjugated HIS49 antibody stock solution is
0.2 mg/mL, the master mix is prepared by mixing
2 uL FITC-CD59 Ab stock solution and 4 pL
PerCP-Cy5.5-conjugated HIS49 antibody per sam-
ple for the total number of assay samples. Then,
add 6 pL master mix to each sample tube. Create a
histogram of PerCP-Cy5.5 fluorescence instead of
APC and adjust the gates in the same manner as
described in the ‘Flow cytometry’ section. If needed,
calculate and apply compensation values.

(b) Acceptance criteria in this protocol are intended for
first time users for Pig-a assays.
Positive control: A positive control group is
required as acceptance criteria to validate the Pig-a
assay technique on-site. According to the INGT
recommendations [1], a positive control group is
not considered mandatory in case that an appropri-
ate standard that “mimics” mutants is used each
time FCM analysis.

Negative/Vehicle control: After validating the Pig-a
assay technique and gathering enough historical
data on-site, the acceptance criteria can include
comparison of the negative control values with the
historical negative control distribution for the
laboratory.

(c) If a FACSCalibur FCM and FlowJo software are
used, the instrument settings for the analysis can
also be confirmed based on the peak Ch value.
By setting the peak Ch value for the cell
population that is positive for HIS49 (for
example, a fixed value of 400-430) in advance,
the instrument settings can be adjusted by simply
changing the PMT voltage without redefining the
gate when there is any deviation from the
previous analysis. When using FACSDiva, a
similar setting can be developed by the mean
value in the statistics view.

Conclusions
The Pig-a assay is an attractive in vivo gene mutation
assay, using an endogenous reporter gene, that has
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shown potential for conducting regulatory safety assess-
ments. The RBC Pig-a assay requires only a few microli-
ters of blood from animals, a property that facilitates
developing longitudinal data from single groups of ani-
mals and integrating the assay with other genotoxicity
and general toxicity tests. The protocol described here
was validated by the MMS/JEMS collaborative study and
the results were reported in a special issue of Mutation
Research (Vol. 811, 2016). We expect that studies using
this protocol will provide important information for fur-
ther development of the Pig-a assay.
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